
The Blockchain Imitation Game

Kaihua Qin
Imperial College London, RDI

Stefanos Chaliasos
Imperial College London

Liyi Zhou
Imperial College London, RDI

Benjamin Livshits
Imperial College London

Dawn Song
UC Berkeley, RDI

Arthur Gervais
University College London, RDI

Abstract
The use of blockchains for automated and adversarial trading
has become commonplace. However, due to the transparent
nature of blockchains, an adversary is able to observe any
pending, not-yet-mined transactions, along with their execu-
tion logic. This transparency further enables a new type of
adversary, which copies and front-runs profitable pending
transactions in real-time, yielding significant financial gains.

Shedding light on such “copy-paste” malpractice, this paper
introduces the Blockchain Imitation Game and proposes a gen-
eralized imitation attack methodology called APE. Leveraging
dynamic program analysis techniques, APE supports the auto-
matic synthesis of adversarial smart contracts. Over a time-
frame of one year (1st of August, 2021 to 31st of July, 2022),
APE could have yielded 148.96M USD in profit on Ethereum,
and 42.70M USD on BNB Smart Chain (BSC).

Not only as a malicious attack, we further show the po-
tential of transaction and contract imitation as a defensive
strategy. Within one year, we find that APE could have suc-
cessfully imitated 13 and 22 known Decentralized Finance
(DeFi) attacks on Ethereum and BSC, respectively. Our find-
ings suggest that blockchain validators can imitate attacks in
real-time to prevent intrusions in DeFi.

1 Introduction

Decentralized Finance (DeFi), built upon blockchains, has
grown to a multi-billion USD industry. However, blockchain
peer-to-peer (P2P) networks have been described as dark
forests, where traders engage in competitive trading, indulging
in adversarial front-running [14]. Such front-running is possi-
ble, because of the inherent time delay between a transaction’s
creation, and its being committed on the blockchain. This time
delay often lasts only a few seconds, posing computational
challenges for the front-running players. To yield a financial
revenue, a DeFi trader needs to monitor the convoluted market
dynamics and craft profitable transactions promptly, which
typically requires professional domain knowledge. Alterna-
tively, an adversarial trader may also seek to “copy-paste” and

Victim Trader

Victim Transaction

Adversary

Imitation Transaction

Victim Contract(s)

Adversarial Contract(s)

DApp2

DApp1
Extract

&
Synthesize

Figure 1: High-level APE attack mechanism, a generalized, au-
tomated imitation method synthesizing adversarial contracts
without prior knowledge about the victim’s transaction and
contract(s). APE appropriates any resulting revenue.

front-run a pending profitable transaction without understand-
ing its logic. We term such a strategy as an imitation attack. A
naive string-replace imitation method [46] was shown to yield
thousands of USD per month on past blockchain states. The
practitioners’ community swiftly came up with defenses to
counter such a naive imitation method. At the time of writing,
traders often deploy personalized and closed-source smart
contracts, making exploitation harder. The known naive im-
itation algorithm no longer applies, because these contracts
are typically protected through, for example, authentications.

However, the possibility of a generalized imitation attack
that can invalidate existing protection mechanisms has not
yet been explored. The goal of this work is to investigate, de-
sign, implement, and evaluate a generalized imitation method.
We find that, to successfully imitate a transaction, an attacker
needs to overcome the following three technical challenges.
(I) The short front-running time-window may exclude the
application of powerful program analysis techniques, such
as symbolic executions, which are not designed for real-time
tasks. (II) An attacker needs to recursively identify the victim
contracts that hinder the imitation execution, and replace them
with newly synthesized adversarial contracts. Blockchain vir-
tual machine instrumentation is hence necessary to ensure
the efficiency of this identification process. (III) An attacker

must guarantee that the synthesized contracts are invoked and
executed correctly, while the generated financial revenue is
sent to an adversarial account after the imitation execution. To
the best of our knowledge, no existing work nor off-the-shelf
tool allows automatically copying and synthesizing smart
contracts with custom logic injected.

In this work, we propose APE (cf. Figure 1), an automated
generalized imitation methodology. On a high level, APE
is designed to construct an imitation transaction that copies
the logic of a victim transaction. When it is necessary, APE
synthesizes and deploys adversarial smart contracts to bypass
copy protections, such as authentication mechanisms. To this
end, APE leverages dynamic taint analysis, program synthesis,
and advanced instrumentations to realize imitation generation.
The generalization stems from the fact that the adversary does
not require prior victim knowledge, nor needs to understand
the victim transaction logic, nor requires prior knowledge
of the interacting Decentralized Application (DApp). APE
applies to e.g., trading activities for fungible, non-fungible
tokens, and exploit transactions.

Despite the blockchain-based DeFi domain flourishing, it
is plagued by multi-million dollar hacks [62]. As outlined in
this work, an imitation attack can yield a significant financial
profit to an adversary. However, following a defence-in-depth
approach, a blockchain imitation can also act as an intrusion
prevention system by mimicking an attack, appropriating the
vulnerable funds, and returning them to its victim. The prac-
titioner community has dubbed such benevolent activity as
“whitehat hacking”.

We summarize our contributions as follows.

• We introduce the generalized blockchain imitation game
with a new class of adversary attempting to imitate its vic-
tim transactions and associated contracts, without prior
knowledge about the victim’s intent or application logic.
We design APE, a generalized imitation tool for EVM-
based blockchains. We are the first to show that dynamic
program analysis techniques can realize an imitation
attack, posing a substantial threat to blockchain users.

• We evaluate APE over a one year timeframe on Ethereum
and BNB Smart Chain (BSC). We show that APE could
have yielded 148.96M USD in profit on Ethereum,
and 42.70M USD on BSC. We find that 73.74M USD
stems from 35 known DeFi attacks that APE can im-
itate. APE’s impact further becomes apparent through
the discovery of five new vulnerabilities, which we re-
sponsibly disclose, as they could have caused a total loss
of 31.53M USD, if exploited.

• We show that APE executes in real-time on Ethereum
(13.3-second inter-block time) and BSC (3-second
inter-block time). On average, a single APE imitation
takes 0.07±0.10 seconds. Because of APE’s efficiency,
it could have front-run in real-time 35 DeFi attacks

within our evaluation timeframe. Miners that execute
APE can ultimately choose to carry out the attacks, or
could act as whitehat hackers in a defensive capacity.

2 Background

In this section, we outline the required background and pro-
vide motivating examples.

2.1 Blockchain and Smart Contract
A blockchain is a chain of blocks distributed over a P2P
network [36]. Users approve transactions through public-
key signatures from an account. Miners collect transactions
and mine those in a specific sequence within blocks. Smart
contract-enabled blockchains extend the capabilities of ac-
counts to hold assets and code, which can perform arbitrary
computations. Smart contracts are initialized and executed
through transactions and remain immutable once deployed.
They are usually written in high-level languages (e.g., So-
lidity) that are compiled to low-level bytecode, executed by
a blockchain’s virtual machine, e.g., Ethereum Virtual Ma-
chine (EVM) [54]. The EVM is a stack-based virtual machine
supporting arithmetic, control-flow, cryptographic and other
blockchain-specific instructions (e.g., accessing the current
block number). Each executed bytecode instruction costs gas,
paid with the native cryptocurrency. Note that all code and
account balances are typically transparently visible. The Ap-
plication Binary Interface (ABI) of a smart contract defines
how a smart contract function should be invoked (including
the function type, name, input parameters, etc). If a smart
contract is not open-source, the ABI is likely unavailable.

DeFi [44], an emerging financial ecosystem built on top of
smart contract blockchains, at the time of writing, reached a
peak of 300B USD total value locked.1 At its core, DeFi is a
smart contract encoded financial ecosystem, implementing,
e.g., automated market maker [2], lending platforms [45, 53],
and stablecoins [11, 34]. Users can access a DeFi application
(a DApp) by issuing transactions to the respective contracts.

2.2 Blockchain Extractable Value
It is well-known that Wall Street traders profit by front-
running other investors’ orders (i.e., high-frequency trad-
ing) [32]. Similarly, the transaction order in DeFi fatefully
impacts the revenue extraction activities. By default, min-
ers order transactions on a descending transaction fee ba-
sis. Therefore, DeFi traders can front- and back-run pending
(i.e., not yet mined) transactions by competitively offering
a transaction fee [16, 46]. Miners, however, have the single-
handed privilege to order transactions, which grants them a
monopoly on blockchain value extraction. This privilege leads

1https://defillama.com/

https://defillama.com/

to the concept of Miner Extractable Value (MEV) [14]. Qin
et al. [46] generalize MEV to Blockchain Extractable Value
(BEV) and show that over 32 months, the extracted BEV on
Ethereum amounts to 540.54M USD, contributed by three ma-
jor sources, sandwich attacks [61], liquidations [43,45], and ar-
bitrage [60]. Note that Front-running as a Service (FaaS) (e.g.,
flashbots) reduces the risks of extracting BEV, by colluding
with miners in a private network. Similar to bribes [5], BEV is
proven to threaten the blockchain consensus security because
miners are incentivized to fork the blockchain [14,46,60]. An
SoK on DeFi attacks systematizes attacks over a timeframe
of four years [62], identifying the various attack causes and
implications. In this paper we make the distinction among
whitehat and blackhat attackers, wherein a blackhat attacker
is one who retains the financial proceeds of an attack, whereas
a whitehat refunds the attack revenue to the identified victim.

2.3 Naive Transaction Imitation Attack

BEV extracting entities can follow two strategies: either metic-
ulously analyzing DeFi applications (i.e., application-specific
extraction), or applying a naive generalized transaction imita-
tion attack (i.e., application-agnostic extraction).

Qin et al. [46] propose a naive but effective transaction
imitation attack. This algorithm takes as input a victim trans-
action, and simply replaces the transaction’s sender address
with an adversarial address in the transaction sender and data
fields. As such, this imitation algorithm corresponds to a
string replacing approach, and does not attempt to synthe-
size adversarial smart contracts. When simulating on past
blockchain data, it was shown that such naive algorithm could
have generated 35.37M USD over a 32 month timeframe.
We provide a naive imitation example in Appendix A. This
algorithm, however, fails when traders protect their transac-
tion through, for example, authentication mechanisms as we
outline below.

2.4 Motivating Examples

Traders in DeFi typically deploy customized smart contracts
to perform financial actions, such as arbitrage and liquida-
tions.2 Those traders should protect their transactions from
imitation attacks, by for instance only allowing predefined
accounts to invoke their smart contract (cf. Figure 2). Such
protection corresponds to an authentication mechanism, a
common practice that the practitioners’ community employs.
We proceed with a real-world authentication example.

Authentication Protection Example. In Figure 2, we show
how a liquidation contract3 attempts to prevent a transaction
imitation attack. The solidity code of Figure 2’s liquidation
contract is not open-source, and we therefore decompile the

2A liquidation refers to the process of selling collateral to secure debt [45].
3Address: 0x18C0cA3947E255881f94DE50B3a906Fc2759F7FE.

Customized
Liquidation Contract

Liquidator

Transaction

1 contract CustomizedLiquidationContract {
2 function printMoney (...) public payable {
3 require (0x53d8 ...0 d81 == msg.sender);
4 // liquidation logic omitted
5 }
6 }

Figure 2: Motivating example. A liquidator triggers a liquida-
tion by sending a transaction to its customized contract. The
customized contract (cf. 0xe0a9efE32985cC306255b395a1b
d06D21ccEAd42) contains a authentication (line 3).

contract bytecode with a state-of-the-art EVM contract de-
compiler [22]. To trigger a liquidation, the liquidator needs
to send a transaction4 to the augmented contract along with
parameters (e.g., the flash loan size and liquidation amount).
If there is no protection mechanism, an adversary might front-
run the liquidator, by calling the same contract with iden-
tical parameters. However, the presented contract requires
the transaction sender to match a specific address (in line
3). Specifically, the liquidation function printMoney() is
only callable by a hard-coded address. If this condition is
not met, the naive imitation attack from Section 2.3 fails.
To circumvent authentication protections, one approach is to
synthesize an adversarial contract that replicates the liquida-
tor’s customized contract. By reconstructing the bytecode,
the synthesized contract preserves the liquidation logic while
bypassing the authentication. To perform the attack, the ad-
versary does not need to understand the business logic of the
liquidation transaction. Instead of invoking the liquidator’s
customized contract, the adversary invokes the synthesized
contract, which then triggers a liquidation.

In this work, we present an automated and generalized
imitation methodology, APE, that thwarts such protections.
Not only limited to authentications, APE provides a compre-
hensive approach to overcome various forms of protection
mechanisms that cannot be handled by the naive imitation
strategy. As another example, we consider a scenario where a
trader issues a profitable transaction that deposits the earned
revenue in a smart contract under the trader’s control. While
an adversary may succeed in executing an imitation transac-
tion through the naive strategy, the revenue would remain in
the “victim” trader’s contract, resulting in no financial gain
for the attacker. In contrast, APE resolves this predicament
by synthesizing an adversarial contract that serves as the rev-
enue recipient. Further details of this scenario are presented
in Section 5.3, where we showcase a real-world transaction.

4E.g., 0x631a4941eb8d0903c1c0073784423f87019cddd7c3822c772581
72bd8d1a862c.

https://docs.flashbots.net/
https://etherscan.io/address/0x18C0cA3947E255881f94DE50B3a906Fc2759F7FE
https://etherscan.io/address/0xe0a9efE32985cC306255b395a1bd06D21ccEAd42
https://etherscan.io/address/0xe0a9efE32985cC306255b395a1bd06D21ccEAd42
https://etherscan.io/tx/0x631a4941eb8d0903c1c0073784423f87019cddd7c3822c77258172bd8d1a862c
https://etherscan.io/tx/0x631a4941eb8d0903c1c0073784423f87019cddd7c3822c77258172bd8d1a862c

Table 1: Notations adopted in this work.

Symbol Description

S A blockchain state
txv Victim transaction
scvi Victim contract i
ŝcvi Tainted contract i
scvi Contract i to be patched and replaced
txc Adversarial imitation transaction
scai Adversarial synthesized contract i
E The native cryptocurrency
Balma (S) Balance of asset m held by account a
∆m

a (S, tx) Balance change of m held by a after executing tx upon S

3 APE Overview

We proceed to outline the system and threat model. We then
overview the key components of APE.

3.1 Preliminary Models
System Model We consider a smart-contract-enabled dis-
tributed ledger with an existing DeFi ecosystem. A trader
performs financial actions through its blockchain account,
signing transactions mined by miners. Similarly, smart con-
tracts are referenced by their respective account. A ledger is
a state machine replication [49], with state S. A blockchain
transaction tx represents a state transition function, converting
the ledger state from S to S′, i.e., S′ = tx(S).

We assume that, within the DeFi system, there exist various
asset representations (e.g., fungible tokens) in addition to the
native blockchain cryptocurrency E. The balance of asset m
held by an account a at the blockchain state S is denoted by
Balma (S), while ∆m

a (S, tx) denotes the balance change after
executing a transaction tx upon S (cf. Equation 1).

∆
m
a (S, tx) = Balma (tx(S))−Balma (S) (1)

We further assume the existence of on-chain exchanges which
allow trades from any asset m to the native cryptocurrency E.

Threat Model Our strongest possible adversarial model
considers a miner that can single-handedly order transactions
in its mined blocks. As a miner, A has access to every pending
transaction and the current blockchain state. A actively lis-
tens for data on the P2P network through multiple distributed
nodes and peer connections. A can moreover act as, or col-
laborate with a FaaS provider to privately receive pending
transactions. Because A is a miner, A can front-run any pend-
ing transaction. We assume that A is financially rational and
attempts to maximize its asset value. Moreover, we assume
that A has access to sufficient E to execute APE.

APE is application-agnostic, meaning that A does not need
to have any upfront knowledge of the logic of a victim trans-
action txv, nor its target smart contract. We, however, assume

that A understands how to interact with asset tokens and that
A can swap a token m to E over an on-chain exchange.

We refer to a transaction that aims to copy and replace the
actions of txv as an imitation transaction txc. txv interacts
with a set of contracts {scvi}, where A may need to replace a
subset of those contracts to achieve the successful execution
of txc. We denote that A may process any victim contract scvi

to synthesize respective adversarial contract scai .
Clarification. APE cannot synthesize new attacks because

APE has no prior knowledge of previous blockchain attacks
and no knowledge of the application level logic. Therefore,
APE is reliant on a template transaction and the associated
contracts encoding attack logic.

3.2 Attack Overview
Given a profitable victim transaction txv, an adversary A can
attempt to imitate its logic with a naive imitation transaction
(cf. Section 2.3). However, the naive method may fail due to
various existing defense mechanisms, e.g., an authentication
(cf. Section 2.4). Understanding a failure is challenging for A
due to the lack of prior knowledge about txv. Moreover, the
execution of txv may be intertwined with multiple invoked
contracts {scvi}, complicating the analysis. Finally, A must
attack in real-time because the attack window typically only
lasts a few seconds until txv is mined.

The objective of APE is to generate an imitation transaction
txc, as well as a set of synthesized contracts {scai} that imitate
the logic of txv (and the associated victim contracts {scvi})
with the following properties:

No prior victim knowledge Any profitable transaction
should be considered a potential victim, independent of
the issuer. A is not expected to have prior knowledge of
the victim transaction, intent, or past blockchain history.

No reasoning about the victim logic A has no knowledge
about the application logic of txc and involved scvi .

Higher payoff over additional complexity APE intro-
duces additional complexity over the naive imitation
method [46] and should therefore exceed its revenue.
For an objective comparison, we evaluate both imitation
methods over the same blockchain transaction history.

Real-time We assume that A only attacks pending vic-
tim transactions. Therefore, it is essential that APE is
faster than the inter-block time (e.g., about 13.3 sec-
onds on Ethereum, 3 seconds on BSC). Thus, it is nec-
essary to prioritize execution speed over attack optimal-
ity [47]. Note that A , as a miner, could choose to fork the
blockchain over txc, granting an extended attack time
window, which is beyond the scope of this work.

The high-level logic of APE operates as follows. Given a
potential victim transaction txv, A first attempts to imitate txv

① Dynamic control-
�ow graph (DCFG)

② Pro�tability
analyzer

④ Patch identi�er
⑤ Smart contract

synthesis
⑥ Validation

③ Dynamic taint
analysis

A B
C

D
E

F
G

DCFG

Abort attack

Fallback to the naive imitation attack Abort attackApe Attack

Pro�table

No contract synthesizing required

Bene�ciary Detected

Bene�ciary account(s)

Jump destination mappingStorage value

Failure

Tainted contract(s)

Potential victim
transaction

Imitation transaction
including adversarial
contract(s) deployment

No bene�ciary Imitation transaction

P2P Network / FaaS

A B
C

D
E

F
G

DCFG

Synthesized adversarial contract(s) Contract(s) to replace

Adversarial Miner

Front-run with
 in the next block

Figure 3: Overview of the APE, a real-time imitation attack on EVM based blockchain transactions.

by creating and executing txc as a naive imitation transaction.
If txc’s execution reverts, A identifies the execution traces
triggering the failure. A then synthesizes scai replacing the
scvi that led txc to revert. To this end, A copies the victim’s
contract(s) bytecode, and amends the instructions that prevent
a successful imitation execution. Finally, A locally validates
scai deployment(s) and txc’s profitability. Under the assump-
tion that A can front-run any competitor (cf. Section 3.1),
APE is risk-free. Note that, leveraging the transaction com-
posability, A can operate scai deployment(s) and imitation
execution (i.e., txc) atomically within a single transaction.

APE (cf. Figure 3) consists of six key components:

Step 1 : Dynamic control-flow graph A executes txv lo-
cally at the current blockchain state and builds a dynamic
control-flow graph (DCFG). The DCFG captures (i) the
inter-contract invocations of scvi while txv executes, and
(ii) the contract bytecode execution flow of invoked scvi .

Step 2 : Profitability analyzer A extracts the asset trans-
fers triggered by txv to observe the beneficiary ac-
count(s). A then attempts to replace those accounts as
in to become the beneficiary. If A does not succeed in
becoming the beneficiary, A aborts the attack.

Step 3 : Dynamic taint analysis A performs a dynamic
taint analysis and compares the analysis outcome to the
DCFG constructed in Step 1 . If the comparison shows
no difference, A proceeds with the naive transaction im-
itation (cf. Section 2.3). Otherwise, given the dynamic
taint analysis and comparison to the DCFG, A identi-
fies the tainted basic blocks which prevent a successful
execution of the naive imitation.

Step 4 : Patch identifier Given the detected beneficiary ac-
counts and tainted smart contracts, A proceeds to identify
all smart contracts that need to be replaced.

Step 5 : Smart contract synthesis A synthesizes scai by
copying bytecode from scvi . A may need to amend the
bytecode of scai to ensure that txc can execute txv’s logic
and collect the produced financial revenue.

Step 6 : Validation A deploys scai locally and executes txc
to validate if the attack is profitable. If profitable, A
deploys scai on-chain and issues txc, front-running txv.

4 APE Details

In this section, we present the design details of APE and
discuss the technical limitations.

4.1 Step 1 : Dynamic Control-Flow Graph

A smart contract control-flow graph (CFG) [1] is a graph
representation of the contract bytecode. In a CFG, each node
denotes a basic block, a linear sequence of instructions. Nodes
are connected by directed edges, representing the code jumps
in the control flow. For EVM bytecode, two opcodes, JUMP
and JUMPI, control the execution path of code blocks. JUMP is
an unconditional jump to the destination taken from the stack,
while JUMPI is a conditional jump. A CFG only includes static
information about a contract, while a DCFG is a specialized
CFG with dynamic information taken from a given execution.

Dynamic Control-Flow Graph Construction in APE. A
executes txv locally to build a DCFG, representing the execu-
tion details of txv. To reason about the control flow of txv, A
records the condition value of every JUMPI, as necessary for
the dynamic taint analysis (step 3 , cf. Section 4.3). By captur-
ing the opcodes for contract calls (i.e., CALL, DELEGATECALL,
STATICCALL, and CALLCODE), A identifies invocations across
contracts. The constructed DCFG thus tracks the execution of

all smart contracts invoked in txv. The constructed DCFG cap-
tures the concrete execution of txv rather than the complete
representation of scvi . That is helpful in this work’s context
because the unexecuted basic blocks remain irrelevant to imi-
tating the victim transaction. Therefore, the resulting scai (cf.
step 5 , Section 4.5) will likely have fewer opcodes than scvi

and hence reduce the attack cost.

4.2 Step 2 : Profitability Analyzer
The profitability analyzer aims to filter out victim transactions
which are unlikely to be profitable. Intuitively, an APE attempt
is profitable if the adversarial revenue (measured in E) is
greater than the required transaction fees (cf. Definition 4.1).

Definition 4.1 (Profitable Condition). Given a blockchain
state S, an APE attack is profitable for A iff BalEA(S

′)−
BalEA(S) > 0, where S′ is the blockchain state after the at-
tack transaction is applied.

In the simplest scenario, A can infer the profitability of im-
itating txv by examining the balance change of the transaction
sender. However, the victim may transfer the revenue of txv to
another smart contract under its control, instead of transferring
to the sender account. Therefore, imitating txv is profitable
only if A captures the beneficiary recipient. To determine the
profitability, it is thus necessary for the A to identify the profit
of every account involved in the execution of txv. To this end,
A can extract the asset transfers from the DCFG constructed
in step 1 . This extraction is straightforward through analyz-
ing the EVM logs defined in asset implementation standards
(e.g., ERC20). We proceed to define a beneficiary account in
the execution of txv (cf. Definition 4.2).

Definition 4.2 (Beneficiary Account). All asset values are
denominated in E. An account a is considered a beneficiary
iff the amount that a receives is greater than the amount that
a pays out within the execution of txv.

We measure the profitability only in the native cryptocur-
rency E to normalize financial value comparisons. This im-
plies that A must exchange all received assets to E atomically
after imitating txv.

Imitating txv may yield a profit iff there exists a beneficiary
account in the execution of txv. Specifically, there are two
cases in which A does not abort the attack:

1. If the sender is a beneficiary account, other accounts are
irrelevant to the profitability analyzer.

2. Otherwise, if the sender is not a beneficiary account, the
collective profit of other beneficiary accounts, minus the
potential loss of the sender account must remain positive.

A then exports the beneficiary account to the patch identi-
fier (step 4) for further analysis (cf. Section 4.4). Note that
this methodology may introduce false positives because the

Table 2: Taint introduction rules. ORIGIN certainly introduces
an inconsistent value when executing txc, while the remaining
opcodes () might, or might not, impact txc’s execution.

Taint Source Description

ORIGIN txc sender address
CALLER Message caller address
ADDRESS Address of the executing contract
CODESIZE Length of the executing contract’s code
SELFBALANCE Balance of the executing contract
PC Program counter

profitability analyzer does not consider if a transaction is at-
tackable. For example, a transaction withdrawing assets from
a wallet contract to the transaction sender is classified as prof-
itable because the sender is a beneficiary account. However, it
is unavailing to imitate the withdrawal transaction. Such false
positives will be purged in the validation phase (step 6).

4.3 Step 3 : Dynamic Taint Analysis
Dynamic taint analysis [37] is a program analysis method,
which tracks information flow originating from taint sources
(e.g., untrusted input) as a program executes. Dynamic taint
analysis operates with a taint policy explicitly determining
(i) what instructions introduce new taint, (ii) how taint propa-
gates, and (iii) how tainted values are checked [50].

Dynamic Taint Analysis in APE. A proceeds to execute an
imitation transaction txc copied from txv. The execution of
txc may fail, if txc contains inconsistencies (e.g., a different
transaction sender) when compared to txv’s execution (cf. Sec-
tion 2.4). Therefore, when executing txc, A applies dynamic
taint analysis to track where and how txc’s execution fails. A
considers opcodes, which may trigger inconsistent execution
values, as taint sources and tracks their taint propagation. We
outline the taint analysis policy of APE in the following.

Taint Introduction We inspect all EVM opcodes and iden-
tify those which may introduce inconsistencies (cf. Ta-
ble 2). For example, ORIGIN (the transaction sender ad-
dress) certainly produces an inconsistent value because
txc is issued from the adversarial, instead of the victim
address. The remaining opcodes might, or might not,
introduce inconsistencies during execution.

Taint Propagation When executing txc, the taint propagates
to the output of an arithmetic/logical operation, if at least
one input is tainted. Notably, a storage variable is tainted
if it is read from a tainted slot.5

Taint Checking Recall that we record the concrete value of
every JUMPI condition when building the DCFG of txv

5In the literature, this is referred to as a tainted address [37]. We, however,
use the term “tainted slot” in this work to distinguish from “contract address”.

PC: Disassembled Code

0xb0c: JUMPDEST
0xb0d: CALLER
0xb0e: PUSH20 0x53d8 ...0 d81
0xb23: EQ
0xb24: PUSH2 0xb2c
0xb27: JUMPI
0xb28: PUSH1 0x0
0xb2a: DUP1
0xb2b: REVERT

(a) Caller authentication bytecode snippet.

Tainted Variable

Destination

Condition

Introduce
taint

stack

(b) Taint propagation visualization.

Figure 4: Taint propagation of the imitation transaction in the
motivating example (cf. Figure 2, Section 2.4). CALLER intro-
duces a tainted value, which propagates to a JUMPI condition.

in step 1 (cf. Section 4.1). Given the tainted execu-
tion trace of txc, we compare if every tainted JUMPI is
identical to the value recorded for txv. This concrete com-
parison allows identifying how inconsistencies between
txv and txc interrupt the execution of txc.

We proceed to define a tainted basic block (cf. Definition 4.3)
and tainted contract (cf. Definition 4.4).

Definition 4.3 (Tainted Basic Block). A basic block is tainted
iff (i) the basic block contains a JUMPI opcode with a tainted
condition value, and (ii) the condition values are different in
the executions of txc and txv.

Definition 4.4 (Tainted Contract). A smart contract ˆscvi is
tainted iff the contract contains at least one tainted basic block.

If there is no tainted basic block, the execution of txv and
txc remain identical. Therefore, APE is then equivalent to the
naive imitation attack (i.e., A can imitate txv by only issuing
txc and omits step 4 , 5). However, if there exists a tainted
basic block, the execution of txc differs from txv. To copy the
execution of txv, A replaces tainted contracts with adversarial
contracts, retaining the identical execution logic to txv.

Adversary

Contract Tainted Contract

Transaction Call into hard-
coded in

Transaction Sender

Contract Adversarial Contract

Imitation
Transaction

Call into hard-
coded in

Figure 5: The invocation to the tainted contract ŝcvi is hard-
coded in the contract scv j . To perform APE, A needs to replace
both ŝcvi and scv j .

Taint Propagation Example. In Figure 4, we showcase how
the dynamic taint analysis tracks the execution of txc in the
motivating example (cf. Figure 2, Section 2.4), given an adver-
sarial address 0xab..cd. Following the execution, the taint
propagates from CALLER to the condition value of JUMPI (cf.
PC 0xb27, Figure 4). Furthermore, the condition value is
False, which is different from the execution of txv. There-
fore, A understands that the customized liquidation contract
is tainted, and that it needs to be replaced.

4.4 Step 4 : Patch Identifier
Recall that tainted basic blocks avoid txc to successfully exe-
cute. Hence, A attempts to replace the tainted contracts ŝcvi

with scai . A moreover needs to replace the beneficiary account
identified in step 2 so as to collect the financial revenue gen-
erated in txc. The patch identifier aims to detect all contracts
out of {scvi} that need to be patched and replaced to suc-
cessfully imitate txv. Depending on whether an invocation to
ŝcvi occurs from a transaction or from a contract, A needs to
distinguish the following two cases. We use scvi to denote a
contract that must be patched and replaced.

Invocation from a transaction When txv is invoking ŝcvi ,
A should modify the to address of txc from ŝcvi to scai .

Invocation from a contract If the invocation to a tainted
contract ŝcvi is hard-coded (bytecode or storage) in a
caller contract scv j (cf. Figure 5), A should replace both
ŝcvi and scv j to patch the hard-coded statement. This is
necessary, even if scv j is not tainted. The above patching
procedure may apply iteratively to subsequently hard-
coded contract invocations.

4.5 Step 5 : Smart Contract Synthesis
A proceeds to synthesize adversarial contract(s) to replace
every scvi detected by the patch identifier (cf. Section 4.4).
On a high level, to synthesize scai , A copies bytecode from
scvi with the following amendments.

For a tainted contract ŝcvi , A amends every tainted basic
block to ensure that scai follows the same code path as ŝcvi ,

1 contract Vault {
2 function withdraw(bytes32 hash , uint8 v,
3 bytes32 r, bytes32 s
4) external {
5 address signer = ecrecover(hash , v, r, s);
6 if (msg.sender == signer) {
7 msg.sender.transfer(
8 address(this).balance);
9 }

10 }
11 }

Listing 1: Any account, providing an ECDSA signature signed
by its private key, is allowed to withdraw assets from Vault.

despite possible inconsistent JUMPI conditions. Specifically,
A (i) replaces JUMPI with JUMP, leading to an unconditional
jump, or, (ii) removes JUMPI, leading to no jump. If the invo-
cation to ŝcvi is hard-coded in scv j (cf. Figure 5), A needs to
modify sca j to redirect the contract invocation from sca j to
scai . In addition, because every newly deployed adversarial
contract has an empty storage, scai may load an inconsistent
value from its storage while txc executes. A hence further
modifies scai to recover the storage loading.

The aforementioned amendments ensure that txc has the
same execution path (code blocks and contracts) as txv, but
do not guarantee that A receives the generated revenue. For
example, the revenue generated in txv may be sent to an ac-
count av, which is hard-coded in scvi . The synthesized scai

copies the bytecode from scvi and may follow the same as-
set transfer (i.e., to av instead of an account controlled by
A). Therefore, to capture the generated revenue, A needs to
redirect the relevant asset transfers through modifying EVM
memory on the fly and injecting a revenue collection logic to
scai . Eventually, given the patched bytecode, A updates jump
destinations following the code size changes.

4.6 Step 6 : Validation

Finally, APE locally validates txc prior to the transaction being
mined. APE could fail for two reasons: either (i) the execution
may fail, or (ii) the financial revenue cannot cover the cost of
deploying adversarial contracts and executing txc.

To perform a concrete validation of the attack, a mining
adversary deploys every scai and executes txc on the latest
blockchain state locally. A converts all received tokens to E
to check if txc yields a profit. txc can only yield a profit, if the
revenue in E covers all transaction fees including the smart
contract(s) deployment fees. Recall that the adversarial con-
tract(s) deployment, imitation execution, and asset exchange
can be completed within one attack transaction. If the valida-
tion succeeds, A includes the attack transaction, which front-
runs txv, in the next block. Otherwise, the attack is aborted,
and A bears no expenditure, i.e., APE is risk-free.

4.7 Limitations
APE’s design and implementation entails a number of lim-
itations. For instance, we assume that the adversary has a
sufficient amount of upfront assets required to execute APE
successfully. Given the widespread access to flash loans, up-
front capital requirements are solved [47].

APE is not applicable when sophisticated semantic rea-
soning is necessary. We present an illustrative example in
Listing 1, where the contract Vault allows the withdrawal of
assets by any account that provides a valid ECDSA signature
(v,r,s) signed by its private key. The design of Vault ren-
ders a withdraw transaction vulnerable to imitation attacks
because of this anyone-can-withdraw logic. Nonetheless, for
the adversary to execute the attack automatically, it would
require the automation of semantic comprehension and signa-
ture generation, which APE does not support.

Moreover, APE cannot imitate non-atomic strategies, i.e.,
spanning over multiple independent blockchain transactions.
For example, given an asset exchange victim transaction, a
sandwich attacker [61] may create two adversarial transac-
tions, extracting profit from the victim. The goal of APE is not
to generate such an attack. However, if a sandwich adversary
creates an atomic sandwich transaction wrapping the victim
exchange, APE can successfully challenge this transaction.

In our work, we assume that the victim is not aware of
an APE adversary, and the APE attack strategy in particular.
If a victim is aware of APE, then the victim could redesign
its smart contract to harden its transactions against an APE
adversary. The attack approach presented in this paper works
well in practice, as we show in Section 5. We outline possible
counter-attack strategies in Section 7.

5 APE Historical Evaluation

Implementation. We implement APE in 6,582 lines of Golang
code. Further details can be found in Appendix B.

We proceed to evaluate how the APE imitation attack could
have performed over a timeframe of one year (from the 1st
of August, 2021 to the 31st of July, 2022)6 on Ethereum
and BSC, the top two smart contract-enabled blockchains
by market capitalization at the time of writing. We evaluate
in total 431,416,565 and 2,366,970,381 past transactions on
Ethereum and BSC respectively.

5.1 Methodology and Setup
We consider every past transaction as a potential victim trans-
action on which we apply the APE pipeline. If the attack suc-
ceeds, we save the associated synthesized smart contract(s),
along with the yielded revenue and execution costs (e.g., gas
cost for contract deployment and imitation transaction). If no

6Ethereum block 12936340 to 15253305 and BSC block 9643812
to 20045094 .

https://etherscan.io/block/12936340
https://etherscan.io/block/15253305
https://bscscan.com/block/9643812
https://bscscan.com/block/20045094

contract replacement is required, APE falls back to the naive
imitation attack, which we present separately as a baseline.

While a full archive node can provide the blockchain state
at any past block, it does not directly allow the execution of
arbitrary transactions on an arbitrary past blockchain state.
We therefore implement an emulator for both Ethereum and
BSC by customizing go-ethereum and bsc EVM accordingly.
The emulator fetches historical states from an archive node
and returns the execution result of any given transaction. We
perform the experiments on Ubuntu 20.04.3 LTS, with an
AMD 3990X (64 cores), 256GB RAM and 8TB NVMe SSD.

5.2 Evaluation Results
On Ethereum, from a total of 431,416,565 potential victim
transactions mined on-chain, we identify 43,979 (0.0102%)
vulnerable to the naive imitation attack (cf. Table 3). APE
successfully attacks 26,127 (0.0061%) victim transactions,
which involves replacing 665 unique smart contracts.

From the 2,366,970,381 BSC transactions, we discover
that the naive imitation is applicable to 516,128 (0.0218%)
victim transactions, while APE captures 52,799 (0.0022%)
additional transactions, involving 1,193 unique contracts.

Table 3: Overall attack statistics representing the successfully
attacked transactions and unique victim contracts.

Chain Attack Transactions Contracts Overall Profit (USD) Average Profit (USD)

Ethereum Naive 43,979 NA 13.87M 315.48±4.73K
APE 26,127 665 135.08M 5.17K±227.22K

BSC Naive 516,128 NA 13.25M 25.67±1.78K
APE 52,799 1,193 29.45M 557.75±55.88K

Attack Profit To reasonably measure the attack profit, we
need to consider the transaction fee cost required by the con-
tract deployment and imitation transaction. Because block
space is limited (e.g., by the Ethereum block gas limit), when
performing an APE attack, we need to capture the opportunity
cost of a miner’s forgoing transaction fees when not including
a victim transaction. We therefore quantify such an opportu-
nity cost with the transaction fee of APE’s victim transaction.
The profit is converted to USD with the ETH (BNB) price at
the time of each victim transaction. Note that ETH (BNB) is
the native cryptocurrency on Ethereum (BSC).

We present the accumulative profit of APE in Figure 6.
On Ethereum, when compared to the naive imitation, APE
could have increased the imitation attack profit by 973.6%.
Specifically, we find that APE (including the naive imitation
attack) generates in total a profit of 148.96M USD, while
the accumulative profit of the naive imitation attack over the
same timeframe only amounts to 13.87M USD. Quantifying
the required upfront capital for the imitation attacks, we find
that 99.31% of the successful attacks require less than 5 ETH
(including transaction fees).

Aug 2021

Sept 2021

Oct 2021

Nov 2021

Dec 2021

Jan 2022

Feb 2022

Mar 2022

Apr 2022

May 2022

Jun 2022

Jul 2022

Aug 2022

0

30M

60M

90M

120M

150M

A
cc

um
ul

at
iv

e
Pr

of
it

(U
SD

) Ethereum

Naive Imitation
Ape (including Naive)

Aug 2021

Sept 2021

Oct 2021

Nov 2021

Dec 2021

Jan 2022

Feb 2022

Mar 2022

Apr 2022

May 2022

Jun 2022

Jul 2022

Aug 2022

Time

0

10M

20M

30M

40M

50M

A
cc

um
ul

at
iv

e
Pr

of
it

(U
SD

) BSC

Naive Imitation
Ape (including Naive)

Figure 6: From the 1st of August, 2021 to the 31st of
July, 2022, the total imitation attack profit (including APE
and the naive imitation) on Ethereum reaches 148.96M USD,
while the accumulative profit of APE is 135.08M USD. On
BSC, APE and the naive imitation generate 29.45M USD
and 13.25M USD respectively.

On BSC, the naive imitation attack profit accumulates
to 13.25M USD, while APE contributes an additional profit
of 29.45M USD (+222.3%). 99.48% of the BSC imitation
attacks require an upfront capital less than 5 BNB.

We notice that APE captures an order of magnitude higher
average profit compared to the naive imitation (cf. Table 3).
To further understand the transactions vulnerable to APE, we
provide an analysis in Section 5.3.

Gas Consumption APE introduces additional gas costs be-
cause the adversary may need to deploy adversarial contracts.
We identify two gas-related constraints by which an attack is
bound. The revenue from the attack must cover the gas ex-
penditures, and, the gas used to deploy and execute the attack
transactions should remain below the block gas limit.

On Ethereum, we find that APE costs 0.98M±0.74M gas
on average, while the naive imitation costs 0.45M±0.50M
gas (cf. Figure 7). As a reference, at the time of writing,
Ethereum applies a dynamic block gas limit with an average
of 29.77M. The maximal gas consumption of APE on the
identified historical transactions is 23.11M, which is below
the average Ethereum block gas limit. On average, the adver-
sarial contract deployment amounts to 48.42% of the attack
gas consumption.

On average, BSC has a higher block gas limit (82.66M)

https://github.com/ethereum/go-ethereum
https://github.com/bnb-chain/bsc

0.1M 1M 10M 100M
0

2000

4000

6000

8000

10000

of

 Im
ita

tio
n

A
tta

ck
s

29.77M

Ethereum

Ape
Naive
Average Block Gas Limit

0.1M 1M 10M 100M

Gas Consumption

0

20000

40000

60000

80000

of

 Im
ita

tio
n

A
tta

ck
s

82.66M

BSC

Ape
Naive
Average Block Gas Limit

Figure 7: On average, APE on Ethereum costs 0.98M±0.74M
gas per attack, while a naive imitation attack
costs 0.45M±0.50M gas. The naive imitation attack
on BSC, however, has a higher average gas consumption
(1.74M±4.44B) than the APE attack (1.64M±0.64B).

than Ethereum, which allows more space for imitation at-
tacks. We observe that both APE (1.64M±0.64B) and the
naive imitation (1.74M±4.44B) have a higher average gas
consumption on BSC. The adversarial contract deployment
costs on average 53.04% of the APE gas consumption on
BSC. Contrary to Ethereum, the naive imitation on BSC has a
higher average gas consumption than APE. We therefore ana-
lyze the 82,192 naive imitation transactions which cost more
than 3M of gas. We identify in total 80,291 transactions that
are related to the gas token minting event.7 After removing
the 80,291 outliers, the average gas cost of the naive imitation
on BSC is 0.48M±0.55M.

Adversarial Contract On average, an APE attack requires
replacing 1.02±0.15 contracts on Ethereum and 1.05±0.23
contracts on BSC. We find that every synthesized adversar-
ial contract is on average 60.95±19.19% smaller (in bytes)
compared to the replaced victim contract (cf. Table 4). Be-
cause APE may expand victim contracts with synthesized
code, we also observe a negative reduction of −295.56%, a
worst-case increase of 295.56%. On BSC, the average con-
tract size reduction is 57.59±18.69%, with a maximum in-
crease of 613.33%.

7BSC EVM allows consuming gas to mint so-called gas tokens
(e.g., 0x6bdcc83369ac7f04f898b57330d6f496b0f018d53be9f8fa9f92e02acf
a1c07b), which are tradable, hence creating arbitrage opportunities.

Table 4: Adversarial contract statistics. APE creates at most
3 adversarial contracts on both Ethereum and BSC, with an
average of 1.02 and 1.05 respectively.

Mean Std. Max Min

Ethereum Adversarial Contract Number 1.02 0.15 3 1
Contract Size Reduction 60.16% 19.19% 98.63% −295.56%

BSC Adversarial Contract Number 1.05 0.23 3 1
Contract Size Reduction 57.59% 18.69% 99.46% −613.33%

Table 5: Transaction and profit distributions of the top-100
most rewarding APE victims on Ethereum and BSC. We fail
to classify 31 BSC victim transactions.

Category Ethereum BSC

transactions Profit (USD) transactions Profit (USD)

Arbitrage & Liquidation 55 8.66M 13 506.07K
Known DeFi Attacks 29 73.74M 40 22.39M

Known Vulnerabilities 2 795.86K – –
Newly Found Vulnerabilities 14 30.23M 16 1.30M

5.3 Historical Analysis
To distill insights from APE’s success, we manually investi-
gate the top-100 most rewarding APE victims on Ethereum
and BSC, capturing a profit of 113.43M USD (83.97%)
and 27.27M USD (92.60%) respectively. The overall trans-
action and profit distributions are presented in Table 5. We
proceed to outline the details of our findings.

Known DeFi Attacks and Vulnerabilities On Ethereum,
APE discovers 17 blackhat transactions and 12 proclaimed
whitehat transactions corresponding to 13 known DeFi at-
tacks, capturing a total profit of 73.74M USD. The most prof-
itable APE vulnerable transaction 0xcd7d..70fc is a DeFi
attack on the Popsicle Finance smart contracts, generating an
APE profit of 20.25M USD. Note that this APE profit is lower
than the reported attack profit, because we convert APE’s rev-
enue to ETH. An exchange that may incur excessive slippage,
particularly for higher amounts.

We detect two transactions that might be related to two
disclosed contract vulnerabilities. Transaction 0x2e7d..efea
and 0xe12a..755c, respectively involve the victim contracts
reported in Auctus ACOWriter vulnerability and BMIZapper
vulnerability. However, we could not find the contract opera-
tors disclosing public information about these transactions.

On BSC, APE captures 22 DeFi attacks involving 40 trans-
actions, generating a total imitation profit of 22.39M USD.

Details of the identified DeFi attacks and vulnerabilities
are outlined in Table 8 and 9, Appendix C. Note that for each
attack transaction, we check whether etherscan.io observes
the attack on the P2P network. If etherscan would not de-
tect the attack on the P2P network, the attack is likely being
propagated privately to miners (e.g., FaaS). We find that 10
of the 12 whitehat attack transactions (corresponding to six
attacks) are propagated to miners privately. Whitehat hackers

https://bscscan.com/tx/0x6bdcc83369ac7f04f898b57330d6f496b0f018d53be9f8fa9f92e02acfa1c07b
https://bscscan.com/tx/0x6bdcc83369ac7f04f898b57330d6f496b0f018d53be9f8fa9f92e02acfa1c07b
https://etherscan.io/tx/0xcd7dae143a4c0223349c16237ce4cd7696b1638d116a72755231ede872ab70fc
https://etherscan.io/tx/0x2e7d7e7a6eb157b98974c8687fbd848d0158d37edc1302ea08ee5ddb376befea
https://etherscan.io/tx/0xe12ae015c8023bbe6405662a3ddf5e8e106e7f6255e905b7312dcf65b27d755c
https://blog.auctus.org/action-required-critical-vulnerability-3d448d4d0dcb
https://twitter.com/peckshield/status/1509009746744983556
https://twitter.com/peckshield/status/1509009746744983556
https://etherscan.io/

1 contract Depositer {
2 address private owner;
3 function massDeposit(
4 VaultV0 vault , IERC20 token ,
5 address [] calldata lst ,
6 uint[] calldata amt
7) external {
8 token.approve(address(vault), 2 ** 256-1);
9 require(lst.length == amt.length);

10 for (uint i = 0; i < lst.length; i++) {
11 vault.depositOnBehalf(lst[i], amt[i]);
12 }
13 vault.setOwner(owner);
14 }
15 }

Listing 2: APE vulnerable Depositer contract, where anyone
can invoke the massDeposit() function and propose a vault
contract. Our evaluation shows that APE could have caused a
potential loss of 28.58M USD to this contract.

may perfer private communication channels for two purposes:
(i) to accelerate the whitehat transaction inclusion on-chain;
(ii) to mitigate the possibility of imitation attacks.

Newly Found Vulnerabilities APE uncovers five undis-
closed vulnerabilities. Among these vulnerabilities, the most
profitable one, named massDeposit, generates a total profit
of 28.58M USD and 759.54K USD on Ethereum and BSC
respectively. A case study of the massDeposit vulnerability is
presented in the following, while the details of other newly
found vulnerabilities are provided in Appendix C.

Responsible Disclosure. At the time of writing, all vulnera-
bilities discovered have no more active funds to be exploited.
Yet, new users may interact with such contracts unknowingly
despite the present danger. Therefore, we choose to attempt
to contact the vulnerable smart contracts through a dedicated
blockchain messaging service (Blockscan Chat by Etherscan).
Unfortunately, all the vulnerable contracts we identified ap-
pear to be anonymously deployed and there is no apparent
means to identify an entity or person behind these contracts.

massDeposit Case Study. The massDeposit vulnerability ex-
ists with a Depositer contract (0xe2c071e1E1957A62fDDf0
199018e061ebFD3ac2C) on Ethereum (cf. Listing 2).8 Within
our evaluation period, the Depositer contract received de-
posits worth 28.58M USD, later collected by a vault con-
tract. We find that the deposited funds could have been stolen
through an APE attack due to the following vulnerability
details. The massDeposit() function of the Depositor con-
tract takes as argument a vault, which is the contract receiv-
ing the totality of the Depositer contract’s funds (cf. Fig-
ure 8a). Anyone can call the function massDeposit(), and

8on BSC, we also discover a contract (0xA9F22770dbF9d19D49Bd63
ea918eE8c9c77dB016) with the identical vulnerable code, from which up
to 759.54K USD could have been exploited during our evaluation period.

(a) txv: vault collects assets from Depositer.

(b) txc: APE automatically synthesizes an adversarial vault, which
transfers collected assets to the adversarial account by the end of the
transaction.

Figure 8: The massDeposit vulnerability.

provide an arbitrary vault contract address. The vault con-
tract is then allowed to collect assets from the Depositer con-
tract. Eventually, Depositer invokes the setOwner() func-
tion of vault, attempting to configure the ownership of vault.
When observing such a massDeposit transaction, an APE at-
tacker A identifies vault as the beneficiary account. APE
then automatically synthesizes an adversarial contract to re-
place the vault contract (cf. Figure 8b). Recall that when
synthesizing a beneficiary contract, APE injects the logic to
transfer all collected assets to the adversarial account by the
end of the imitation transaction.Therefore, A extracts the as-
sets from Depositer after executing the imitation transaction.
It should be noted that, even without APE, an attacker can
manually craft an adversarial vault contract to maliciously
extract assets from Depositer. We hence classify this con-
tract design as a vulnerability.

6 APE Real-time Evaluation

Ideally, an APE-enabled miner attempts to identify in real-
time the optimal transaction order for its mined blocks. As
such, given a list of unconfirmed transactions, the miner could
apply every combination of transactions to identify APE’s
optimal revenue. However, exploring such combinations will
soon result in a combinatorial explosion.

Therefore, we shall come up with a more realistic, yet best-
effort solution for the miner’s transaction ordering. We can
borrow the widely adopted assumption [61], that transactions
are typically sorted by their fee amount within a blockchain
block. As such, in a fee-ordered list, we know for a victim
transaction vi, that the APE transaction should also be placed
at position i. While the EVM currently only supports the
sequential execution of transactions, promising efforts on
speculative parallel execution [10] could speed up the block
validation as well as the victim transaction identification in
APE. Such a parallel execution framework, however, is beyond
the scope of this work.

https://etherscan.io/address/0xe2c071e1e1957a62fddf0199018e061ebfd3ac2c#code
https://chat.blockscan.com/start
https://etherscan.io/address/0xe2c071e1E1957A62fDDf0199018e061ebFD3ac2C
https://etherscan.io/address/0xe2c071e1E1957A62fDDf0199018e061ebFD3ac2C
https://bscscan.com/address/0xA9F22770dbF9d19D49Bd63ea918eE8c9c77dB016
https://bscscan.com/address/0xA9F22770dbF9d19D49Bd63ea918eE8c9c77dB016

Algorithm 1: APE Real-time Evaluation.
Input: The current blockchain height h; the local memory

pool P .
1 Algorithm RealTimeApe(h, P):
2 S := blockchain state at height h
3 foreach txv in Sort(Filter(P)) do
4 Ape(S, txv) // Ape executes asynchronously
5 S := txv(S)
6 end
7 end
8

9 Function Ape(S, txv, h+1):
10 t0 := now()
11 Apply the APE pipeline (cf. Figure 3)
12 if txv is vulnerable on S then
13 t1 := now()
14 store txv, t0, t1, h+1
15 end
16 end
17

18 Function RealtimePerformanceMetrics(t0, t1, h+1):
19 t2 := block h+1 arrival time
20 single transaction performance := t1 − t0
21 mempool performance := t2 − t1
22 end

6.1 Methodology and Setup

To evaluate the real-time performance, we inject the APE logic
into an Ethereum (BSC) full node, referred to as an APE node.
The APE node listens to the Ethereum (BSC) P2P network
and operates APE on every potential victim transaction with-
out publishing the generated attack transaction. The repetitive
evaluation process takes the current blockchain height h and
the memory pool P as the input (cf. Algorithm 1). We first
rule out the illegitimate transactions (e.g., a transaction with
a wrong nonce number) from P and sort the resulting trans-
actions in a descending gas price order. We then sequentially
apply the sorted transactions on the current blockchain state.
Given each pair of intermediate state Si (after applying txi)
and following transaction txi+1, the APE node executes the
attack function Ape(Si, txi+1) asynchronously and continues
with the next pair (Si+1, txi+2) in a non-blocking manner. If
a transaction txv is attackable, we replace (i.e., “front-run”)
txv with the generated attack transaction. This pipeline corre-
sponds to an adversarial miner (i) selecting and sorting trans-
actions from its memory pool, (ii) applying every transaction
sequentially to construct the next block, and (iii) operating
the APE attack when applicable. The APE node repeats this
process and records the performance of the following metrics.

Metric 1 (Single transaction performance). The time it takes
APE to generate an attack given one victim transaction and
the corresponding blockchain state (cf. Algorithm 1).

Metric 2 (Mempool performance). Given the dynamic mem-
pool of transactions in real-time, the time from an APE attack
generation to the arrival of the next block, i.e., the target block
that should include txc (cf. Algorithm 1).

We execute the real-time evaluation with the same hard-
ware setup as Section 5 and a 10 Gbps Internet connection.
To swiftly capture pending transactions, we increase the APE
node’s maximum network peers from the default 50 to 500
for Ethereum and BSC. The APE node spawns 150 threads
executing the Ape function asynchronously (cf. Algorithm 1).

Weaker Threat Model Note that contrary to the threat
model in Section 3.1, in this section, we are not a miner.
We further do not have private peering agreements with FaaS
and may therefore not observe victim transactions that only
FaaS-enabled miners would receive. Compared to the previ-
ous threat model, our APE node’s adversarial capability in
observing victim transactions is hence weaker. Therefore, in
our real-time evaluation, we choose to focus on the compu-
tational real-time performance of APE in practice, ignoring
the potential financial profit that the APE node could have
generated under a weaker threat model. We expect weaker
threat models to earn an inferior profit and hence leave such
analysis to future work.

6.2 Computational Real-time Performance
Our real-time experiment for Ethereum captures 26 days of
data. During the experiment, the Ethereum APE node re-
ceives 17.86 unique transactions per second on average. We
detect in total 4,045 imitation opportunities, including 3,699
transactions vulnerable to the APE attack. The BSC real-time
evaluation spans 14 days. Our BSC APE node receives an
average of 57.31 unique transactions per second. We iden-
tify 489 naive and 784 APE opportunities on BSC.

Table 6 presents the single transaction performance (cf.
Metric 1) and the execution time breakdown. On average, it
takes 0.01±0.01 seconds to generate a naive imitation attack,
while generating an APE attack requires 0.07±0.10 seconds.

Table 6: Single transaction performance (Ethereum) of the
naive and APE imitation attack. Step 1 , 3 , and 6 account-
ing for 96.35% of the execution time of APE on average. APE
shows an equivalent single transaction performance on BSC.

Mean (s) Std. (s) Max (s) Min (s)

Step 1 DCFG 0.02 0.03 0.36 3×10−4

Step 2 Profitability Analyzer 2×10−3 5×10−3 0.10 2×10−5

Step 3 Dynamic Taint Analysis 0.04 0.06 1.39 3×10−4

Step 4 Patch Identifier 2×10−5 5×10−5 2×10−3 1×10−6

Step 5 Smart Contract Synthesis 5×10−4 2×10−3 0.09 2×10−5

Step 6 Validation 7×10−3 0.02 0.96 2×10−4

Overall time cost of APE 0.07 0.10 1.59 9×10−4

Overall time cost Naive Imitation 0.01 0.01 0.11 2×10−4

0 10 20 30 40 50 60
0

200

400

600

R
ea

lt
im

e
O

pp
or

tu
ni

tie
s Ethereum (pre PoS)

0 1 2 3 4 5 6

Time Until the Target Block Arrives (s)

0

50

100

150

200

R
ea

lt
im

e
O

pp
or

tu
ni

tie
s BSC

Figure 9: Distribution of the time duration from the attack
generation to the target block reception (cf. Metric 2). 99.68%
of the attacks on Ethereum and 99.49% of the attacks on BSC
are generated before our APE node receives the next block.
We notice that the time distribution on Ethereum resembles
an exponential distribution [15] because at the time of the
experiment Ethereum follows the Nakamoto consensus [4, 6],
while BSC has a less volatile block time interval.

The most time-consuming steps of APE are DCFG (step 1),
dynamic taint analysis (step 3), and validation (step 6),
accounting for 96.35% of the overall execution time.

We show the mempool performance (cf. Metric 2) in Fig-
ure 9. On Ethereum (BSC), 99.68% (99.49%) of the APE
attacks are generated before our APE node receives the target
block. The time duration from the attack generation to the tar-
get block reception is on average 12.56±12.55 (2.24±0.81)
seconds. Our evaluation results show the real-time property
of APE on Ethereum, with a block interval of 13.3 seconds,
and BSC, with a block interval of 3 seconds.

7 APE Countermeasures

The imitation attacks pose an imminent threat to the DeFi
ecosystem and its users. EVM-compatible blockchains rely on
miners to execute and validate every transaction. It is therefore
difficult to completely prevent a miner from inspecting and
imitating a victim transaction. We consider the following
countermeasures that possibly mitigate APE.

Imitation as a Defence Tool A possibly intuitive but effec-
tive alternative is to apply imitation as a defence mechanism.
Miners could for example resort to automated whitehat hack-
ing of DeFi attacks by simply imitating attacks and refunding
the proceeds to the victim. While miners are currently en-
trusted to secure the blockchain consensus, they can extend

that capacity to the application layer. A bug bounty could
incentivise the miners’ altruism. We, however, leave the ex-
ploration of a precise incentive structure to future work.

Breaking Atomicity Breaking the atomicity of a profitable
transaction can thwart APE, i.e., a user can split the logic of
its transaction into multiple independent transactions. APE
would then be incapable of capturing the entire logic from
any separate transaction and would be unable to mimic it.
Moreover, this defense can be implemented in a tool that
would take a single transaction as input and automatically
split it into multiple transactions with the same program logic.
The primary shortcoming of such approach is that it does not
apply to all cases (e.g., flash loan). Breaking the atomicity
may also introduce additional risks to users (e.g., a partial
arbitrage execution leads to a financial loss).

Front-running Mitigation As APE requires that the adver-
sary must be able to front-run a victim transaction, mitigat-
ing front-running can prevent an APE attack. The literature
explores a variety of front-running mitigation solutions for
the time-based transaction order-fairness [9, 27–29, 31, 58].
Although such fair ordering solutions could in principle mini-
mize the threat of APE, they require fundamental changes
in either the consensus or the application layer. In par-
ticular, [29] necessitates modifications to the underlying
blockchain, whereas [28, 58] introduce an additional permis-
sioned committee responsible for transaction ordering and
require a DeFi application redesign.

Code Obfuscation Mature blockchains and DeFi applica-
tions are not trivial to patch and redesign. There is a need for
lightweight workarounds until front-running is mitigated in a
more systematic manner. Consequently, one promising solu-
tion to the problem is to develop a bytecode-level obfuscation
technique. Although code obfuscation has been utilized as a
defense mechanism for decades [12, 24], it has not yet been
investigated as a countermeasure for smart contract attacks
and vulnerabilities. Control flow obfuscation approaches [41],
which aim to obscure the flow of a program to make it diffi-
cult for dynamic analysis to reason about the code, could be
applied. Recall that, to copy the execution path, APE modifies
the tainted basic blocks and hard-codes the code jumps (cf.
Section 4.5). If both the true and false branch of a tainted
basic block are visited in a victim transaction, synthesizing an
adversarial contract becomes difficult, because a hard-coded
jump can only visit one branch. An APE-specific obfusca-
tion scheme then could be designed so that hard-coded code
jumps would result in an infinite loop. Despite the fact that
the obfuscation techniques are easy to adopt and provide ba-
sic protection against APE, they still have limitations. The
primary issue is that sophisticated deobfuscation techniques
could be developed to bypass those defenses. An obfuscation

Table 7: Systematization of related work on automated smart contract exploitation.

Attack/
Exploit Generation Tool

Assumed Prior Knowledge
Contract Vulnerability Exploit Generation Practicality

Searchspace Unrestricted
From Vulnerability Patterns

Cross-Contract
Vulnerabilities

Synthesize
Transactions

Synthesize
Contracts

Real-Time
Capable (avg)

Application
Agnostic

Reward based exploit generation (the goal is to extract financial revenue, implicitly capturing vulnerabilities)

APE Exploit transaction (limited by txv)† (0.07 s)
Naive Imitation [46] Exploit transaction (limited by txv)† (0.01 s)

DEFIPOSER [60] DApp Model (limited by DApp models) (5.93 s)

Software pattern exploit generation (the goal is to match/find predefined known vulnerability patterns)

CONTRACTFUZZER [25] Patterns & Contract ABI
MYTHRIL [13] Patterns
TEETHER [30] Patterns
MAIAN [40] Patterns (10 s)
SOLAR [19] Patterns & Contract ABI (8 s)

†While not designed to discover new vulnerability patterns, Section 5.3 shows how light manual inspection of successful txc identifies new patterns.

defense would also result in more complex contracts, increas-
ing the execution and deployment gas costs. We leave the
complete design and evaluation for future work.

8 Related Work

Exploit Tool Systematization We systematize the closest
related work in Table 7, focussing on automated exploit gen-
eration tools. We distinguish among (i) tools that aim to ex-
tract financial value and capture vulnerabilities in that pro-
cess [46, 60], (ii) tools detecting pre-defined vulnerability
patterns within smart contracts [13, 19, 25, 30, 40].

For reward-based exploitation tools, we find that the naive
imitation method [46] outperforms APE in terms of real-time
performance due to the simplicity of the string replacing
approach. However, over the same evaluation timeframe (cf.
Section 5), APE captures higher financial gains and more DeFi
attacks compared to the naive method. DEFIPOSER [60] lever-
ages an SMT solver to identify profitable strategies that can
potentially unveil new vulnerability patterns. Nonetheless, the
effectiveness of DEFIPOSER relies on the precise modeling
of blockchain applications, which requires substantial manual
efforts. It is worth noting that the real-time performance of
DEFIPOSER hinges on the underlying SMT solver as well as
the complexity of the mathematical models.

Tools that detect pre-defined vulnerability patterns within
smart contracts take these patterns as input to conduct security
analyses. Therefore, such tools may not discover different,
or new vulnerability patterns. Yet, MAIAN and SOLAR, are
designed to be real-time capable. SOLAR is the only tool
prior to APE we are aware of which synthesizes contracts.
SOLAR, however, requires access to a smart contract’s ABI.
Recall that ABI’s may not be accessible for closed-source
smart contracts. To our understanding, SOLAR focuses on
vulnerabilities in a single contract and is therefore unlikely to
capture composable (i.e., cross-contract) DeFi attacks.

Smart Contract Attacks and Security Atzei et al. [3] pro-
vide a survey on attacks against smart contracts. Various pa-
pers focus on automatically finding exploits for vulnerable
smart contracts by detecting vulnerabilities and generating
malicious inputs [18, 30, 40]. Qin et al. [47] explore DeFi
attacks through flash loans. Wu et al. [55] propose a platform-
independent way to recover high-level DeFi semantics to
detect price manipulation attacks.

Static analysis tools [8, 21, 26, 51] such as Securify [52],
Slither [17], and Ethainter [7] detect specific vulnerabilities
in smart contracts. Typically such tools achieve completeness
but also report false positives. Another common approach to
detect smart contract vulnerabilities is to employ symbolic
execution [20,35,42]. Mythril [13] and Oyente [33] use SMT-
based symbolic execution to check EVM bytecode and simu-
late a virtual machine for execution-path exploration. Other
tools [23, 25, 39, 56, 57] employ fuzzing techniques to detect
various vulnerabilities. Instead of employing fuzzing, APE
instruments the EVM to dynamically analyze smart contracts
in one pass. Recently, bytecode rewriting for patching smart
contracts has been explored with SMARTSHIELD [59] and
sGuard [38]. EVMPATCH [48] can integrate many static anal-
ysis tools to detect vulnerabilities and automate the whole
lifecycle of deploying and managing an upgradeable contract.

9 Conclusion

The generalized blockchain imitation game is a new class of
attacks on smart contract blockchains. Such imitations could
be adopted for either selfish outcomes, e.g., a miner adopting
APE can appropriate millions of USD worth of DeFi attacks;
or, on a brighter note, miners could help defend the DeFi
ecosystem as whitehat hackers, by front-running attacks and
possibly refunding the resulting revenue to their victim. In
this work, we show that such imitation games are practical
and can yield significant value on Ethereum and BSC.

Acknowledgments

We thank the anonymous reviewers for the thorough reviews
and helpful suggestions that significantly strengthened the
paper. This work is partially supported by Lucerne University
of Applied Sciences and Arts, and the Algorand Centres of
Excellence programme managed by Algorand Foundation.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the institutes.

References
[1] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–

19, 1970.

[2] Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant
function market makers. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, pages 80–91, 2020.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts (sok). In International conference
on principles of security and trust, pages 164–186. Springer, 2017.

[4] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. Sok: Con-
sensus in the age of blockchains. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pages 183–198,
2019.

[5] Joseph Bonneau. Why buy when you can rent? In International
Conference on Financial Cryptography and Data Security, pages 19–
26. Springer, 2016.

[6] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A Kroll, and Edward W Felten. Sok: Research perspectives and
challenges for bitcoin and cryptocurrencies. In 2015 IEEE symposium
on security and privacy, pages 104–121. IEEE, 2015.

[7] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: A smart contract security analyzer for
composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 454–469, 2020.

[8] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. ArXiv, abs/1809.03981,
2018.

[9] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. Quick order
fairness. arXiv preprint arXiv:2112.06615, 2021.

[10] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou,
Yajin Zhou, and Xian Zhang. Forerunner: Constraint-based specula-
tive transaction execution for ethereum. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pages 570–
587, 2021.

[11] Jeremy Clark, Didem Demirag, and Seyedehmahsa Mahsa Moosavi.
Sok: Demystifying stablecoins. Communications of the ACM, Forth-
coming, 2019.

[12] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. http://www.cs.auckland.ac.nz/staff-cgi-
bin/mjd/csTRcgi.pl?serial, 01 1997.

[13] ConsenSys. Mythril. https://github.com/ConsenSys/mythril,
2017. Online; accessed 27 January 2022.

[14] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Fron-
trunning in decentralized exchanges, miner extractable value, and con-
sensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

[15] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE P2P 2013 Proceedings, pages 1–10.
IEEE, 2013.

[16] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok:
Transparent dishonesty: front-running attacks on blockchain. In Inter-
national Conference on Financial Cryptography and Data Security,
pages 170–189. Springer, 2019.

[17] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE, 2019.

[18] Yu Feng, Emina Torlak, and Rastislav Bodik. Precise attack synthesis
for smart contracts. arXiv preprint arXiv:1902.06067, 2019.

[19] Yu Feng, Emina Torlak, and Rastislav Bodik. Summary-based symbolic
evaluation for smart contracts. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1141–
1152. IEEE, 2020.

[20] Joel Frank, Cornelius Aschermann, and Thorsten Holz. {ETHBMC}:
A bounded model checker for smart contracts. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages 2757–2774, 2020.

[21] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: Surviving out-of-gas con-
ditions in ethereum smart contracts. Proceedings of the ACM on Pro-
gramming Languages, 2(OOPSLA):1–27, 2018.

[22] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smarag-
dakis. Elipmoc: Advanced decompilation of ethereum smart contracts.
Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022.

[23] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
Echidna: effective, usable, and fast fuzzing for smart contracts. In
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 557–560, 2020.

[24] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti
Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen.
Diversification and obfuscation techniques for software security: A
systematic literature review. Information and Software Technology,
104:72–93, 2018.

[25] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages
259–269. IEEE, 2018.

[26] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:
Analyzing safety of smart contracts. In Ndss, pages 1–12, 2018.

[27] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair con-
sensus in the permissionless setting. IACR Cryptol. ePrint Arch.,
2021:139, 2021.

[28] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram
Kannan. Themis: Fast, strong order-fairness in byzantine consensus.
Cryptology ePrint Archive, 2021.

[29] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
fairness for byzantine consensus. In Annual International Cryptology
Conference, pages 451–480. Springer, 2020.

[30] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1317–1333, 2018.

[31] Klaus Kursawe. Wendy grows up: More order fairness. In International
Conference on Financial Cryptography and Data Security, pages 191–
196. Springer, 2021.

[32] Michael Lewis. Flash boys: a Wall Street revolt. WW Norton &
Company, 2014.

[33] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security,
pages 254–269, 2016.

https://github.com/ConsenSys/mythril

[34] Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. Sok: A classification
framework for stablecoin designs. In International Conference on
Financial Cryptography and Data Security, pages 174–197. Springer,
2020.

[35] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Man-
ticore: A user-friendly symbolic execution framework for binaries and
smart contracts. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1186–1189. IEEE,
2019.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2008. https://bitcoin.org/bitcoin.pdf.

[37] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In NDSS, volume 5, pages 3–4. Citeseer, 2005.

[38] Tai D Nguyen, Long H Pham, and Jun Sun. Sguard: Towards fixing
vulnerable smart contracts automatically. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1215–1229. IEEE, 2021.

[39] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran
Minh. sfuzz: An efficient adaptive fuzzer for solidity smart contracts.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pages 778–788, 2020.

[40] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. Finding the greedy, prodigal, and suicidal contracts at
scale. In Proceedings of the 34th Annual Computer Security Applica-
tions Conference, pages 653–663, 2018.

[41] Andre Pawlowski, Moritz Contag, and Thorsten Holz. Probfuscation:
an obfuscation approach using probabilistic control flows. In Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 165–185. Springer, 2016.

[42] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 1661–
1677. IEEE, 2020.

[43] Kaihua Qin, Jens Ernstberger, Liyi Zhou, Philipp Jovanovic, and Arthur
Gervais. Mitigating decentralized finance liquidations with reversible
call options. In International Conference on Financial Cryptography
and Data Security. Springer, 2023.

[44] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and
Arthur Gervais. Cefi vs. defi–comparing centralized to decentralized
finance. In 2021 Crypto Valley Conference on Blockchain Technology
(CVCBT). IEEE, 2021.

[45] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur
Gervais. An empirical study of defi liquidations: Incentives, risks, and
instabilities. In Proceedings of the 21st ACM Internet Measurement
Conference, page 336–350. ACM, 2021.

[46] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain
extractable value: How dark is the forest? In 2022 IEEE Symposium
on Security and Privacy (SP), pages 198–214. IEEE, 2022.

[47] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. At-
tacking the defi ecosystem with flash loans for fun and profit. In In-
ternational Conference on Financial Cryptography and Data Security,
pages 3–32. Springer, 2021.

[48] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi.
Evmpatch: timely and automated patching of ethereum smart contracts.
In 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[49] Fred B Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, 1990.

[50] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In 2010 IEEE
symposium on Security and privacy, pages 317–331. IEEE, 2010.

[51] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain, pages 9–16, 2018.

[52] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Buenzli, and Martin Vechev. Securify: Practical security anal-
ysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 67–82,
2018.

[53] Zhipeng Wang, Kaihua Qin, Duc Vu Minh, and Arthur Gervais. Spec-
ulative multipliers on defi: Quantifying on-chain leverage risks. In
International Conference on Financial Cryptography and Data Secu-
rity. Springer, 2022.

[54] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[55] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang
Yuan, Qinming He, and Kui Ren. Defiranger: Detecting price manipu-
lation attacks on defi applications. arXiv preprint arXiv:2104.15068,
2021.

[56] Valentin Wüstholz and Maria Christakis. Harvey: A greybox fuzzer
for smart contracts. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1398–1409, 2020.

[57] Valentin Wüstholz and Maria Christakis. Targeted greybox fuzzing
with static lookahead analysis. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pages 789–800. IEEE,
2020.

[58] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo
Alvisi. Byzantine ordered consensus without byzantine oligarchy. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 633–649, 2020.

[59] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu.
Smartshield: Automatic smart contract protection made easy. In 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 23–34. IEEE, 2020.

[60] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur
Gervais. On the just-in-time discovery of profit-generating transactions
in defi protocols. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 919–936, 2021.

[61] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur
Gervais. High-frequency trading on decentralized on-chain exchanges.
In 2021 IEEE Symposium on Security and Privacy (SP), pages 428–445.
IEEE, 2021.

[62] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng
Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and
Arthur Gervais. Sok: Decentralized finance (defi) attacks. Cryptology
ePrint Archive, 2022.

A Naive Imitation Attack Example

In this section, we show a real-world Ethereum transaction,9

which is vulnerable to the naive imitation attack (cf. Listing 3).
This transaction invokes the function increaseAllowance
of an ERC20 token contract GANGSINU10 and mints one
quadrillion of the GANGSINU token to the transaction sender.

9Transaction hash: 0xe58214cfb38650089ce6bace5669a58e03557935ab
8480467ae511df69ca40db.

10Address: 0x9796Bcece6b6032deB6f097b6F1cc180aE974feC.

https://bitcoin.org/bitcoin.pdf
https://etherscan.io/tx/0xe58214cfb38650089ce6bace5669a58e03557935ab8480467ae511df69ca40db
https://etherscan.io/tx/0xe58214cfb38650089ce6bace5669a58e03557935ab8480467ae511df69ca40db
https://etherscan.io/address/0x9796Bcece6b6032deB6f097b6F1cc180aE974feC

1 contract GANGSINU {
2 function increaseAllowance(
3 address spender ,
4 uint256 addedValue
5) public virtual returns (bool) {
6 _approve(
7 _msgSender (),
8 spender ,
9 _allowances[_msgSender ()][spender] +

addedValue
10);
11 _mint(spender , addedValue);
12 return true;
13 }
14 }

Listing 3: Solidity code snippet of
contract 0x9796Bcece6b6032deB6f097b6F1cc180aE974feC.
The function increaseAllowance allows minting an
arbitrary amount of the GANGSINU token to the spender
address.

At the time of this transaction, one quadrillion of GANGSINU
could be exchanged to 36.6 ETH on Uniswap.11 Note that
the function increaseAllowance allows any address to mint
an arbitrary amount of GANGSINU. When observing this
transaction, a transaction imitation attacker could have called
the same contract, front-run the transaction, and atomically
exchanged the one quadrillion of GANGSINU to ETH on
Uniswap, receiving a revenue of 36.6 ETH.

B Implementation Details

Code Details While step 2 and 6 are reasonably straight-
forward, the remaining steps make up for the bulk of the en-
gineering effort. More specifically, step 1 requires building
and storing relevant dynamic information while concretely
executing a transaction. The goal of step 3 is to discover all
tainted blocks within one execution, as in to enable APE’s
real-time property. This constraint implies that we do not
explore fuzzing or other iterative techniques. The challenge
we have to overcome in step 3 , is that when executing txc, a
tainted basic block often leads to a different execution path
from txv, resulting in an early termination, or failure (e.g.,
STOP and REVERT). This implies that given multiple tainted
basic blocks executed in sequence, a tainted basic block bbi
may hinder the detection of a subsequent tainted basic block
bbi+ j. We hence instrument the EVM to allow manipulating
the stack and forcing txc to follow txv’s execution path. In
step 5 , we amend the bytecode of synthesized contracts to
recover storage variables, redirect contract invocations, and
fix jump destinations (cf. Section 4.5).

11Address: 0xAf852a23ee89999787146f8b4B440380E5Fac414.

Table 8: Ethereum DeFi attacks and contract vulnerabilities
identified by APE from the top-100 profitable victim transac-
tions (ordered by USD profit).

Date
(Block Number)

APE Profit
(USD) Description

Observed
on P2P

Aug-03-2021 (12955063) 20.25M ⋆ Popsicle Finance ✔
Dec-15-2021 (13810360) 19.70M massDeposit ✔
Dec-11-2021 (13786402) 19.12M ⋆ Sorbet Finance ✘
Apr-30-2022 (14684307) 9.71M ⋆ Saddle Finance ✔
Aug-10-2021 (12995895) 5.69M ⋆ Punk Protocol ✔
Apr-30-2022 (14684434) 4.01M ⋆ Saddle Finance ✘
Oct-14-2021 (13417956) 3.58M ⋆ Indexed Finance ✔
Nov-27-2021 (13695970) 2.04M ⋆ dYdX deposit vulnerability ✘
Dec-17-2021 (13822426) 2.02M massDeposit ✔
Dec-15-2021 (13810426) 1.94M massDeposit ✔
Dec-15-2021 (13810215) 1.80M massDeposit ✔
Apr-30-2022 (14684518) 1.58M ⋆ Saddle Finance ✔
Dec-15-2021 (13810374) 1.51M massDeposit ✔
Jun-16-2022 (14972419) 1.08M ⋆ Inverse Finance ✔
Sep-15-2021 (13229001) 1.07M ⋆ NowSwap ✔
Dec-15-2021 (13810401) 990.50K massDeposit ✔
Jan-19-2022 (14037237) 862.22K ⋆ Multichain vulnerability ✘
Mar-26-2022 (14460636) 717.80K Auctus ✔
Jul-28-2022 (15233205) 695.63K Unautheticated Asset Redemption ✘
Mar-27-2022 (14465382) 657.98K ⋆ Revest Finance ✘
Jan-22-2022 (14052155) 519.69K ⋆ Multichain vulnerability ✔
Nov-27-2021 (13696312) 495.51K ⋆ dYdX deposit vulnerability ✔
Aug-30-2021 (13124663) 461.29K ⋆ Cream Finance ✔
Dec-15-2021 (13810162) 442.15K massDeposit ✔
Sep-14-2021 (13222312) 433.75K Faulty Authentication ✔
Aug-30-2021 (13124635) 392.94K ⋆ Cream Finance ✔
Aug-30-2021 (13124729) 374.93K ⋆ Cream Finance ✔
Feb-19-2022 (14234350) 270.39K ⋆ RigoBlock ✘
Aug-30-2021 (13124682) 262.65K ⋆ Cream Finance ✘
Aug-30-2021 (13124700) 238.17K ⋆ Cream Finance ✘
Oct-14-2021 (13418167) 215.28K Faulty Authentication ✔
Nov-26-2021 (13687922) 208.02K ⋆ Visor Finance ✔
Dec-15-2021 (13810232) 173.32K massDeposit ✔
Jan-21-2022 (14051020) 134.90K ⋆ Multichain vulnerability ✔
Aug-31-2021 (13130729) 128.90K Faulty Authentication ✔
Aug-30-2021 (13124591) 116.95K ⋆ Cream Finance ✔
Jan-19-2022 (14036895) 111.10K ⋆ Multichain vulnerability ✘
Dec-22-2021 (13857734) 109.62K Faulty Authentication ✘
Mar-27-2022 (14465427) 108.96K ⋆ Revest Finance ✘
Jan-21-2022 (14046993) 99.84K ⋆ Multichain vulnerability ✘
Jan-18-2022 (14031416) 80.08K ⋆ Multichain vulnerability ✘
Dec-12-2021 (13791112) 79.28K ⋆ Sorbet Finance vulnerability ✘
Dec-12-2021 (13791101) 79.26K ⋆ Sorbet Finance vulnerability ✘
Apr-13-2022 (14575370) 78.05K BasketDAO ✘
Jan-10-2022 (13975768) 72.84K Faulty Authentication ✘

⋆ — Known DeFi Attacks — Known Vulnerabilities
⋆ — Known whitehat DeFi Attacks — Newly Found Vulnerabilities

Early abort Recall that in step 4 , A identifies all smart
contracts that need to be replaced, i.e., scvi (cf. Section 4.4).
We notice that the replacement of an asset contract (e.g.,
USDC) creates a new asset with the same contract code but
a different financial value. A can abort APE, if at least one
of scvi is such an asset contract. Note that this “early abort”
is optional because A can attempt to replace every scvi and
validate the profitability in step 6 . To increase our evaluation
efficiency, we choose to abort APE once step 4 detects an
asset contract.

Multiple methods may allow to determine whether a con-
tract is an asset contract. Instead of maintaining an asset
contract dictionary, we apply a more practical method in our
evaluation. We identify unique EVM logs (i.e., events) while
executing txv. We observe that most asset contract imple-
mentations follow a particular asset standard (e.g., ERC20).

https://etherscan.io/address/0x9796Bcece6b6032deB6f097b6F1cc180aE974feC#code
https://etherscan.io/address/0xAf852a23ee89999787146f8b4B440380E5Fac414
https://etherscan.io/tx/0xcd7dae143a4c0223349c16237ce4cd7696b1638d116a72755231ede872ab70fc
https://etherscan.io/tx/0x840e7bca49fd3999a3ec40a98915c726c9518d90469f5f3253eadb83d03168d8
https://etherscan.io/tx/0x90a5d10ca9092a82464fd87efb1a7ed06c0d0420fde0cbb20af6e7ec9046c303
https://etherscan.io/tx/0x2b023d65485c4bb68d781960c2196588d03b871dc9eb1c054f596b7ca6f7da56
https://etherscan.io/tx/0x597d11c05563611cb4ad4ed4c57ca53bbe3b7d3fefc37d1ef0724ad58904742b
https://etherscan.io/tx/0x9549c0cb48ec5a5a2c4703cbbbbea5638028b2d8c8adc103220ef1c7fe5e99a3
https://etherscan.io/tx/0xbde4521c5ac08d0033019993b0e7e1d29b1457e80e7743d318a3c27649ca4417
https://etherscan.io/tx/0x8233d0e7185a3bc7f4c3b19fa00d0ffe751f07b723dc3f6aa7e06c68401b6dd7
https://etherscan.io/tx/0xa89d226e2b9e57a1bec3609b562693e5ebb23cd636a11dca8b43d2359feef341
https://etherscan.io/tx/0xce4d7553fe87c8d029e37c3143f49bb550b60c93ec5591be95d2b6011713248b
https://etherscan.io/tx/0xc939074c9b4d5f67ae69b66d29b591255603a53af54b65d4f1c3fac60b565c10
https://etherscan.io/tx/0xe7e0474793aad11875c131ebd7582c8b73499dd3c5a473b59e6762d4e373d7b8
https://etherscan.io/tx/0xc2317677605feac7133db5c2ffe9cbce18c09c882b66e0c9c91c0083f6b30d6c
https://etherscan.io/tx/0x958236266991bc3fe3b77feaacea120f172c0708ad01c7a715b255f218f9313c
https://etherscan.io/tx/0xf3158a7ea59586c5570f5532c22e2582ee9adba2408eabe61622595197c50713
https://etherscan.io/tx/0x900bebffb5bae5c1fb857dc2adeb7556d1da6d86675c3120e26c379e706ccb14
https://etherscan.io/tx/0xe50ed602bd916fc304d53c4fed236698b71691a95774ff0aeeb74b699c6227f7
https://etherscan.io/tx/0x2e7d7e7a6eb157b98974c8687fbd848d0158d37edc1302ea08ee5ddb376befea
https://etherscan.io/tx/0xa2704042b30a13b4d3c1b32fe11a523b78b47f0e8a5826931f397eaf2aa73ede
https://etherscan.io/tx/0x613b2de3bb9043884a219296eeb1ada8c47b5a0262b9c68ca06ffd2de3a5d9f5
https://etherscan.io/tx/0xd59f1c77cad53d32024cde1a4e430f8ad268974febc107ec03f049ba0a4cf048
https://etherscan.io/tx/0x33d0895cdf98bfc3d516b2e7a0de11014f254ec4f2861113d4afe85304bf1cd6
https://etherscan.io/tx/0x55692ccc8ccf81b155044ed4109155ec7714dfae541fe4c4be23da8b18240248
https://etherscan.io/tx/0xf8248bb59b8d749d7fed9fd4ec624aed0bcd67d5ec6992bc00d5991892ebac86
https://etherscan.io/tx/0xee9c92684464c5435243ad8fd4e048a9af2ce7338194ec68b4f610d72c0cae6c
https://etherscan.io/tx/0x77e2d72bd9d94f20b051f0a629a79e9a316b3ee3c6bf7495236f43bc24d379d8
https://etherscan.io/tx/0x8b4ec34be08527e549b7fc4863f23ca8a9c65824ac62a4327bd803f8cbb83fc2
https://etherscan.io/tx/0x3cd444604bfde45430ebbae516eac33a454fb6481e9f7ed2d9c4474d6c55bb49
https://etherscan.io/tx/0x51fd83401f2be2e16fed9c02c7f7df683e1f0c4bcc7cdccf58a1d810824c4992
https://etherscan.io/tx/0xf5a3225fd62ed183af9df48dd9b725727f8975d251165b40972cf54b3198fd70
https://etherscan.io/tx/0x6e5ad9ee58813c8e37aeeed62596124a189d1daff1f9101c565a20f4e24eb363
https://etherscan.io/tx/0xca68269685524d3818c98cb588c00a215fcc8a15c739c0a4468e078b3f3f3a7a
https://etherscan.io/tx/0xcd43b44826ed94ac969691d71e1eb60613c133905e609397f6d9433bc889eeb4
https://etherscan.io/tx/0x640a215ac2dc32d33f0100a64424f3c2261e678a126d37a5e436209182740e49
https://etherscan.io/tx/0x4543c28c2ee41a8648d3cec96b25ca3e5be0ca78c7aec7f314601a486db5e4ee
https://etherscan.io/tx/0x0016745693d68d734faa408b94cdf2d6c95f511b50f47b03909dc599c1dd9ff6
https://etherscan.io/tx/0x2db9a6a51604e2be8b2c3469773afb201f0b48a318fb7e5f5e49175e818df5ba
https://etherscan.io/tx/0xea8759bc81333e0b7904d104e9cf2f83b0df772fafe733ac7647d042d72112eb
https://etherscan.io/tx/0x19b10c6d38f0b911fdc0e722d681a70a56699d70559eefef3d4d6fe88276c813
https://etherscan.io/tx/0x986ef252ddaed537df325efa31221dd0b0908da002dd040b799336a3a81df67c
https://etherscan.io/tx/0x9600fea499fdbb708d1669b725eb693e08371a883d01054e66cfca13ff925f35
https://etherscan.io/tx/0x226247274854dc77f11602bd11a092674a47103d5455ce6e39785228aad21c5f
https://etherscan.io/tx/0xe0166e0c8f9815db39f7bbc7432afe0eb1b6489a1cfbdfdc42c226e6a8f31b9b
https://etherscan.io/tx/0xe12ae015c8023bbe6405662a3ddf5e8e106e7f6255e905b7312dcf65b27d755c
https://etherscan.io/tx/0x2bf2a3ccfba747f042f38ad3ae40903fa5620db3913452dda5a149526b532d00

Table 9: BSC DeFi attacks and contract vulnerabilities identi-
fied by APE from the top-100 profitable victim transactions
(ordered by USD profit).

Date (Block Number) APE Profit (USD) Description

Apr-12-2022 (16886439) 11.52M ⋆ Elephant Money
Aug-16-2021 (10087724) 5.17M ⋆ XSURGE
Dec-01-2021 (13099703) 1.06M ⋆ CollectCoin
Apr-09-2022 (16798807) 561.43K ⋆ Gymdefi
Mar-20-2022 (16221156) 494.18K ⋆ TTS DAO
Jan-17-2022 (14433926) 460.99K ⋆ Crypto Burgers
Jan-07-2022 (14161877) 368.61K massDeposit
Nov-23-2021 (12886417) 340.51K ⋆ Ploutoz Finance
Dec-14-2021 (13478895) 326.92K massDeposit
Jan-17-2022 (14433715) 289.23K ⋆ Crypto Burgers
Oct-01-2021 (11406815) 270.06K ⋆ Twindex
Aug-16-2021 (10090827) 244.50K ⋆ XSURGE
Oct-02-2021 (11410860) 237.55K ⋆ Twindex
Apr-29-2022 (17361160) 219.37K ⋆ Legend LFW
Nov-20-2021 (12795006) 147.39K Faulty Authentication
Jun-01-2022 (18305386) 142.22K ⋆ CoFiXProtocol
Oct-04-2021 (11469791) 127.29K ⋆ WEDEX
Aug-16-2021 (10090725) 125.40K ⋆ XSURGE
Aug-12-2021 (9969958) 99.72K ⋆ Maze Protocol
Aug-12-2021 (9969953) 99.68K ⋆ Maze Protocol
Aug-12-2021 (9970577) 99.62K ⋆ Maze Protocol
Feb-07-2022 (15053929) 80.49K ⋆ EarnHub
Nov-20-2021 (12810507) 70.50K ⋆ Formation.fi
Feb-07-2022 (15053947) 68.86K ⋆ EarnHub
May-07-2022 (17602189) 68.28K Unautheticated Minting
Jan-16-2022 (14429051) 64.54K ⋆ Brokoli Network
Nov-26-2021 (12961048) 64.39K Faulty Authentication
Feb-07-2022 (15053947) 51.58K ⋆ EarnHub
Aug-12-2021 (9969776) 49.90K ⋆ Maze Protocol
Aug-12-2021 (9969782) 49.88K ⋆ Maze Protocol
Dec-05-2021 (13216927) 49.04K Unautheticated Asset Redemption
Dec-05-2021 (13216684) 46.73K Unautheticated Asset Redemption
Mar-13-2022 (16015031) 45.19K ⋆ Paraluni
Dec-05-2021 (13216787) 44.50K Unautheticated Asset Redemption
Mar-20-2022 (16221176) 40.91K ⋆ TTS DAO
Feb-18-2022 (15369735) 37.90K Unverified Stake
Jan-20-2022 (14534738) 35.04K ⋆ AstroBirdz
Feb-07-2022 (15053951) 35.00K ⋆ EarnHub
Nov-13-2021 (12621548) 33.21K ⋆ Welnance
Oct-06-2021 (11530941) 31.32K ⋆ Welnance
Dec-14-2021 (13479338) 29.15K massDeposit
May-07-2022 (17607316) 28.97K ⋆ bistroo
Aug-16-2021 (10090919) 28.76K ⋆ XSURGE
Dec-05-2021 (13216448) 26.80K Unautheticated Asset Redemption
Jan-18-2022 (14478911) 26.04K ⋆ Crosswise
Sep-20-2021 (11086847) 25.06K Faulty Authentication
Dec-14-2021 (13478986) 22.81K massDeposit
Feb-07-2022 (15053956) 19.98K ⋆ EarnHub
Nov-24-2021 (12909045) 19.83K ⋆ Ploutoz Finance
Jul-13-2022 (19523981) 18.95K ⋆ SpaceGodzilla
Feb-18-2022 (15369807) 16.14K Unverified Stake
Feb-07-2022 (15053961) 14.29K ⋆ EarnHub
Nov-13-2021 (12622514) 13.03K ⋆ Welnance
Mar-26-2022 (16405137) 12.21K Faulty Authentication
Dec-14-2021 (13478639) 12.06K massDeposit
Jun-20-2022 (18854194) 11.85K ⋆ Whale Finance

⋆ — Known DeFi Attacks — Newly Found Vulnerabilities

Whenever an asset contract receives an incoming invocation,
the contract generates an event, identifiable by a unique hash
value. For example, to identify ERC20 contracts, A checks
if an event matches an ERC20 event. If there is a match, the
contract generating such event is classified as an ERC20 con-
tract. Our method therefore generalizes to any other asset
standards, avoiding to regularly maintain a list of potential as-
set contracts. Note, however, that this method assumes that an
adversary does not emit dummy events because the adversary
could otherwise evade APE’s attack.

C Evaluation Analysis

Table 8 and 9 list the DeFi attacks and contract vulnerabil-
ities identified by APE from the top-100 profitable victim
transactions on Ethereum and BSC respectively.

We proceed to outline the newly found vulnerabilities.

Unverified Stake The unverified stake vulnerability exists
with an asset staking contract (0x1E97D2363c6261D0ca4
B182c7C670499afB93c73) on BSC. The contract allows a
user to stake asset without checking the financial value of the
staked asset. An attacker hence can stake self-created assets
(essentially a self-deployed smart contract) and immediately
unstake with other valuable assets from the staking contract,
yielding a profit.

Unauthenticated Minting A token contract (0x0fa73D350
E5e5bf63863f49Bb4bA3e87A20c93Fb) on BSC allows any
account to mint an arbitrary amount of tokens and sell the
minted tokens to profit.

Unauthenticated Asset Redemption Contracts outlined in
Table 10 allow any account to redeem assets controlled by the
contracts.

Table 10: APE identifies two smart contracts with the unau-
thenticated asset redemption vulnerability.

Chain Contract Address

Ethereum 0xbE5002A6b631570b0970838dcad7dc0AA2525282
BSC 0x521ef54063148E5F15F18B9631426175ceE23DE2

Faulty Authentication We moreover identify eight vulner-
able contracts (cf. Table 11) that are closed-source. By ana-
lyzing the corresponding transaction trace, we find that the
vulnerabilities fall into the faulty authentication category (i.e.,
assets controlled by a vulnerable contract can be transferred
without an authentication).

Table 11: APE identifies eight closed-source smart contracts
with the faulty authentication vulnerability.

Chain Contract Address

Ethereum

0x37F4Bf68Bb295986d8a19E25528C441b5B4d4902
0xf517A01CE955472d90cD0A8403629a46D7374E31
0x35ba14eA6935cCbedCD745Ed9096709D3e14D7b3
0x44cCdCD59984848a749e9f999B08F2b68153e123

BSC

0xA6a2158F14F10B2288c914eE03710a5eB2bd3d7b
0x47E5a87C15a316040d34d1af075c8Dc6bC0e63c7
0xaFe1b53405667D098EC7b60C3794418E14A8fd21
0x60093848a99e0589cdec170C941B6Def5BAc9b95

https://bscscan.com/tx/0xec317deb2f3efdc1dbf7ed5d3902cdf2c33ae512151646383a8cf8cbcd3d4577
https://bscscan.com/tx/0x7e2a6ec08464e8e0118368cb933dc64ed9ce36445ecf9c49cacb970ea78531d2
https://bscscan.com/tx/0x85778af13373250cd7d2a09903128c086e76bbbb5adc61b3df74ae8b126abfd8
https://bscscan.com/tx/0xa5b0246f2f8d238bb56c0ddb500b04bbe0c30db650e06a41e00b6a0fff11a7e5
https://bscscan.com/tx/0x518411e06e276ad576ee52b8631b5bcc91bbf280aa3edf79e58017b3cecb0a8b
https://bscscan.com/tx/0xf8faed035c747331c623d40906d0142925829f6202013976c1ec8afc9eadb99a
https://bscscan.com/tx/0xa3d5b29a4447319e43424c9e1548d42a4f29498a7cda8af0461ab7a32a087a27
https://bscscan.com/tx/0x7fe46c2746855dd57e18f4d33522849ff192e4e26c74835799ba8dab89099457
https://bscscan.com/tx/0x9f4247837100201d8af77238f5b08c9bc572c5d42427e6b66898641e86c0e236
https://bscscan.com/tx/0x56aece43604bde95aa27abc07c225288541cf07ac2c5bf5085fc8b82f905d474
https://bscscan.com/tx/0x24180e59f48bb6291213c3960ad516c23701e9d501fd6105f4087789f0a8d74a
https://bscscan.com/tx/0x4d691249665f8bfe18b89a5b7cb9133cc85afd68e7f9b3b876d9542067bc3dc9
https://bscscan.com/tx/0x153a0d0376579dab66e067f3c655506793e0373b4c39eaab6144f083dc7b1bd6
https://bscscan.com/tx/0x8e47bdfbf0ba217498beb985418d1e79c35d6404b031748933e0c26bcf3bf68a
https://bscscan.com/tx/0xe887550858dc34fe36432103883a8396550e5d24c443d518fa0a7486d7fb9e0c
https://bscscan.com/tx/0x927723660249253399e54c192a5f989ceacf46fbb967ab364d4405155539bec8
https://bscscan.com/tx/0x61a7b8e5dc62f7dfdc61a95e924d28aad50776033b34e4c26e98600b2f630faf
https://bscscan.com/tx/0x8c93d6e5d6b3ec7478b4195123a696dbc82a3441be090e048fe4b33a242ef09d
https://bscscan.com/tx/0x550b4403f240ea60ccc0ab2b7b92b362ad7f15a6dcb66748c92f9549dcee0095
https://bscscan.com/tx/0xb0a0a995e1c29d8889f69561e6c4af1a71bd85514f32ae693725684f840c6711
https://bscscan.com/tx/0x82083aa9f0bbd80c2d0d2116b71ba76791977133ef5a6a1ecdc69ce9e21848c9
https://bscscan.com/tx/0xe7c726ff4cfbf18e05d9189ffc180eb33107d898469b25613ef457a0e139da34
https://bscscan.com/tx/0xc860af83fd1d82b9fcfcfcee1621613ffa3cb90f50b616f0126d810d6fb9b70e
https://bscscan.com/tx/0xb041b2ba13f7c8d155b2986a1c2329251ac98d6bde194546031ad929eab05e06
https://bscscan.com/tx/0x3a44e0e1b6ec970d0d1c82b8d9d7da2f7a5f556c8df8b80dcf1da9e58ced9801
https://bscscan.com/tx/0x750a17071f8d39cc8f75ba0492af7508d4a8498b55d294ac4df2ca583611c000
https://bscscan.com/tx/0xf29a43eee8ecb84badac7c4a4a6c558504e7d946797d218cc41fff582b6b45cd
https://bscscan.com/tx/0xb041b2ba13f7c8d155b2986a1c2329251ac98d6bde194546031ad929eab05e06
https://bscscan.com/tx/0x6970c70f473486b83d2ac0e034337236a28a2c1c76c5c8453fee68b65bc84b8d
https://bscscan.com/tx/0x900da25f42802bde9e4db1c39a6d51d80f21fb366c31774fd9b3a53eb41f0a03
https://bscscan.com/tx/0x8bdeac2148d11e0091168ac9dd5480f01047a9a4df205fe701902895934d08b6
https://bscscan.com/tx/0xd9e3972c3db69fa2947707641785671182aaa78ac15ae37eb1ac9522cea4e03c
https://bscscan.com/tx/0xbfec34cbb7ec8b6ad337c3213e8efd0a1aade4bfb6ae769f77b5e8b338ce8163
https://bscscan.com/tx/0xa32d92705d086bc56f9de7b4c1914a1fae9a5a3b3b1c9e6f41a44fae15d4ea81
https://bscscan.com/tx/0x8256763e6dfd688ed27e337613aad0ce0c6dfe1e8543cf98406b8eea1b395130
https://bscscan.com/tx/0x7b04f8add8752504388f81a2fa59356e16f72228074933e1c8e8ea100536ac17
https://bscscan.com/tx/0xfb166ed65b53b408662655bd876e5c23eb9347ab12ecfe68b3ed82114caed906
https://bscscan.com/tx/0x40e69064c70d7db8b2dcbad441da9a06a507f8f90959da3c2583242f89e01d3c
https://bscscan.com/tx/0x8e5fa0f5408e305f118c4b1af9d39614362674964bdba8d76ed85e31eb321955
https://bscscan.com/tx/0x7c5de9f5bc8b3f725b9511eba0e18a7f8410b9b6379f142be6660770714a6475
https://bscscan.com/tx/0xbf2dfd03637a10cd8dafb7ca58f968397bcaf7c7ffa21b7887fdde32c5fa4f96
https://bscscan.com/tx/0x8c96b3314e30cf62bdfd4f94df38a2f040e171e849208b328dcd4ac2cdbcb748
https://bscscan.com/tx/0x797b3c58d68e6961d34c6d2d1e34933679a1ccd4d81541869495a9d57c0ab357
https://bscscan.com/tx/0x60cb3a91d657f4d13c55fd8a4a4ac66e9526d2b728429da2b5728c53336768dc
https://bscscan.com/tx/0xa22f03a42a9265813e2490ba1595634e25c001e4ac66f2e91cba96e627c9e077
https://bscscan.com/tx/0x380356c98cf71e9d8f9301d139af29357c3b5ceeec8a6985ce17208ca8234797
https://bscscan.com/tx/0x5fb267c3ce9d86d3246b1894dd1c975c165949e5e3503a7bec21f291adff1eda
https://bscscan.com/tx/0x211666221cb39cb66bd09682d7a96200627a61424b340a672957018fb81820ec
https://bscscan.com/tx/0x42a7bfe1484705e9016fe6ae6c0cd6d711d0392e910506e6f419086add771367
https://bscscan.com/tx/0x7f183df11f1a0225b5eb5bb2296b5dc51c0f3570e8cc15f0754de8e6f8b4cca4
https://bscscan.com/tx/0x432180c4c02ecdcce834570416cff730d6a11fa61e43891f253e4a490cbe6bb9
https://bscscan.com/tx/0x326e78ace30f4bb554871b39a5f5040aa7bc700aa7b62da90698184095582555
https://bscscan.com/tx/0xf7a9c59953763a57f412b2e45455e70192b44356c602f7c79ddbfa9cb05f440b
https://bscscan.com/tx/0x819d3e5f597fa85d53a4f11d598071aca5af3de10f9da25f5ac672801ea7bc98
https://bscscan.com/tx/0x28972a0481f062dc64de8ec61dc4ca8a485192dbd9b80918bd02e5b86748c4b1
https://bscscan.com/tx/0x9f5b02cb1ce2d75ba457a2d152d89b6d3932ff057c03739a0071fb816e0ebab3
https://www.4byte.directory/
https://www.4byte.directory/
https://bscscan.com/address/0x1E97D2363c6261D0ca4B182c7C670499afB93c73
https://bscscan.com/address/0x1E97D2363c6261D0ca4B182c7C670499afB93c73
https://bscscan.com/address/0x0fa73D350E5e5bf63863f49Bb4bA3e87A20c93Fb
https://bscscan.com/address/0x0fa73D350E5e5bf63863f49Bb4bA3e87A20c93Fb
https://etherscan.io/address/0xbe5002a6b631570b0970838dcad7dc0aa2525282
https://bscscan.com/address/0x521ef54063148e5f15f18b9631426175cee23de2
https://etherscan.io/address/0x37f4bf68bb295986d8a19e25528c441b5b4d4902
https://etherscan.io/address/0xf517a01ce955472d90cd0a8403629a46d7374e31
https://etherscan.io/address/0x35ba14ea6935ccbedcd745ed9096709d3e14d7b3
https://etherscan.io/address/0x44cCdCD59984848a749e9f999B08F2b68153e123
https://bscscan.com/address/0xa6a2158f14f10b2288c914ee03710a5eb2bd3d7b
https://bscscan.com/address/0x47e5a87c15a316040d34d1af075c8dc6bc0e63c7
https://bscscan.com/address/0xafe1b53405667d098ec7b60c3794418e14a8fd21
https://bscscan.com/address/0x60093848a99e0589cdec170c941b6def5bac9b95

	Introduction
	Background
	Blockchain and Smart Contract
	Blockchain Extractable Value
	Naive Transaction Imitation Attack
	Motivating Examples

	Ape Overview
	Preliminary Models
	Attack Overview

	Ape Details
	Step 1: Dynamic Control-Flow Graph
	Step 2: Profitability Analyzer
	Step 3: Dynamic Taint Analysis
	Step 4: Patch Identifier
	Step 5: Smart Contract Synthesis
	Step 6: Validation
	Limitations

	Ape Historical Evaluation
	Methodology and Setup
	Evaluation Results
	Historical Analysis

	Ape Real-time Evaluation
	Methodology and Setup
	Computational Real-time Performance

	Ape Countermeasures
	Related Work
	Conclusion
	Naive Imitation Attack Example
	Implementation Details
	Evaluation Analysis

