
The Case for Learned Provenance Graph Storage Systems

Hailun Ding
Rutgers University

Juan Zhai
Rutgers University

Dong Deng
Rutgers University

Shiqing Ma
Rutgers University

Abstract
Cyberattacks are becoming more frequent and sophisticated,
and investigating them becomes more challenging. Prove-
nance graphs are the primary data source to support forensics
analysis. Because of system complexity and long attack dura-
tion, provenance graphs can be huge, and efficiently storing
them remains a challenging problem. Existing works typically
use relational or graph databases to store provenance graphs.
These solutions suffer from high storage overhead and low
query efficiency. Recently, researchers leveraged Deep Neu-
ral Networks (DNNs) in storage system design and achieved
promising results. We observe that DNNs can embed given in-
puts as context-aware numerical vector representations, which
are compact and support parallel query operations. In this
paper, we propose to learn a DNN as the storage system for
provenance graphs to achieve storage and query efficiency. We
also present novel designs that leverage domain knowledge
to reduce provenance data redundancy and build fast-query
processing with indexes. We built a prototype LEONARD and
evaluated it on 12 datasets. Compared with the relational
database Quickstep and the graph database Neo4j, LEONARD
reduced the space overhead by up to 25.90x and boosted up
to 99.6% query executions.

1 Introduction

In the past years, an uptick in cybercrime has emerged. The
number of cybercrime in 2021 increased by 600%, and the
estimated annual damage hits 6 trillion dollars [55]. In this
single year, several severe attacks, e.g., Kaseya ransomware at-
tack [57] (compromising up to 1,500 companies, $70 million
loss), Saudi Aramco data breach [58] (sensitive data and tech-
nical specification leakage, $50 million payment), Accellion
FTA data breach [56] (impacting over 100 organizations over
the world), Pulse Secure VPN zero-day attack [15] (breach
of undisclosed defense firms and government organization in
the U.S. and Europe), Solarwinds supply chain attack [50]
(the most significant cyberattack against the U.S. government

ever), happened. On the other hand, attack investigation is
becoming more and more challenging [35]. It takes 228 days
to identify an attack and 80 days to contain an attack. In indus-
tries that face more attacks, such as healthcare, the detection
of an attack takes 329 days on average [35]. Even worse, the
dwell-time, i.e., the time an attack remains undetected, can be
longer than a year [19], leading to millions of dollars in costs.
The increasing number of attacks, the difficulty of identifying
and containing attacks, and the long dwell-time call for us
to rethink the security infrastructure to support effective and
efficient security investigation.

1.1 Background & Existing Work

Attack Investigation. Attack investigation is one of the foren-
sic investigation tasks, which typically leverages provenance
graphs. Specifically, a provenance graph is a directed graph
with nodes representing system objects (e.g., files, sockets)
and system subjects (i.e., processes), and edges denoting
causal relationships. At system runtime, provenance track-
ers [6, 40, 44, 47, 48, 49, 54, 64] collect the provenance of
system objects and subjects. Investigation systems can auto-
matically build provenance graphs by analyzing the causal
relationships among them (Step A in Figure 1). To ensure
the data integrity, provenance trackers can only append new
data but cannot modify existing data. During the investiga-
tion, analysts can leverage the generated graphs to locate
the root cause and understand the ramifications of an at-
tack [6, 26, 27, 29, 32, 40, 45, 46, 51, 53, 54, 73]. Typically,
investigators query the graph to extract related information
based on standard algorithms. For example, to locate the
root cause of an attack, investigators perform backtrack-
ing (Step B in Figure 1) to extract all system events that
are causally related to the given symptom event (colored
Payload in Figure 1) before it happens. Compared with sys-
tem call sequence methods [20, 62, 65, 70, 71], provenance
graphs provide a more intuitive way to present the detailed
historical information of system execution and yield better
results [11, 39, 68, 69, 73].

System log

1. Firefox requests abb.com

2. Firefox reads 100.jpg

3. Firefox forks Firefox1

4. Firefox1 writes Payload

5. Payload instaniate Payload

B. BacktracingA. Abstraction

Firefox

Firefox1

Firefox

Firefox1

Payload Payload

Firefox

Firefox1

abb.com 100.jpg

Payload Payload

abb.com

System Logs Querying ResultsProvenance Graph

Figure 1: Example of Generating and Querying a Provenance Graph
(Oval: files; Rectangle: processes; Colored vertex: attack symptoms).
By backward tracing from an attack symptom process Payload, we
can find the root cause of the attack.

Provenance graphs used in forensic tasks can be large
[28, 43, 72], and the reason is two-fold. First, modern soft-
ware systems are complex, which naturally leads to large
provenance graphs. For example, though loading a complex
webpage such as CNN in Firefox only takes a few seconds,
it issues nearly 22,000 system calls, which touch and create
thousands of nodes and edges in the provenance graph. As
another example, reports show that browsers like Firefox can
have around 10 GB of data per day written to the SSD even if
the computer is idle with nothing but a few browser connec-
tions [63]. Second, the complexity of attacks (measured by
victim target organizations and length of lifecycles) requires
reviewing large-scale provenance graphs. For example, the
2020 U.S. federal government data breach attack affected
over 10 U.S. national departments and nearly 20 private sec-
tors [17], which made it the most significant attack against the
U.S. government. The attack lasted for at least nine months
without being noticed. Investigating such attacks requires in-
specting massive data from various organizations and periods.

Existing Provenance Storage Systems. Existing methods
either reduce the size of the graph itself (i.e., graph redundancy
removal, storing less data) or utilize a better encoding (i.e.,
using fewer bits to store the same amount of data) to solve the
high storage problem. As summarized in Table 1, graph redun-
dancy removal methods remove the graph content or modify
the graph structure to reduce the redundancy and save space.
Encoding-based methods focus on the next stage (i.e., storing
the provenance graphs in a more efficient format). The two
methods are complementary to each other. LogGC [43], Xu
et al. [72], and NodeMerge [66] remove unnecessary compo-
nents in the provenance graph as long as they do not affect the
provenance of attack system activities (e.g., repeated nodes
and edges), which is lossy. SEAL [18] removes “unnecessary“
information and provides a schema to recover them, achieving
lossless decompression. The storage efficiency of these meth-
ods depends on the redundancy they identify. Because they do
not change the storage format, whether they support queries
or not relies on the storage format. Encoding-based compres-
sion methods optimize the storage format and also provide
support for queries. Gzip [25], which compresses the whole

graph as a single file, provides limited support for queries via
utilities like zcat, zgrep, zless, and zdiff. These tools are
mostly designed for string operations and have poor support
for querying graph structures.

Modern provenance analysis solutions store provenance
graphs in databases. For example, SPADE [22] supports using
different databases to store provenance graphs. Different from
existing graph reduction methods that focus on data reduc-
tion, databases support data storage and query [38]. These
two types of methods are compatible and complementary to
each other. Figure 2 simplifies and illustrates how relational
databases and graph databases store the provenance graph.
In Figure 2, we show a simplified provenance graph. A rela-
tional database first flattens it to vertices and edges (Step 1).
It extracts the identifier and all properties associated with one
vertex/edge and then uses a JSON format to represent the
graph. The database stores the graph with two tables, i.e., ver-
tex table and edge table, using the identifier as the primary key.
The vertex table contains the information of a single system
object or subject, such as the vertex type and metadata besides
its identifier. Similarly, an entry in the edge table denotes the
source and sink of one edge with vertex identifiers and related
metadata (e.g., the Type field, which indicates what relation
these two vertices have).

Analysts can query these tables to fetch vertices and edges
using standard SQL language and compose the provenance
graph (Step 2). As an example starting from symptom object
V1 (e.g., a malicious process detected by antivirus software),
analysts first get its information from the vertex table (e.g.,
PID is 50). Then, they backtrack its source by querying the
edge table and get to know that the source is V2 in the vertex
table. This iterative process continues until reaching the end
of the dependency chain (no more back edges from the edge
table). The final results consist of vertices V1 and V2, and the
edge E1, indicating that the attack process V1 is affected by
V2 according to the activity in E1.

Limitations of Existing Methods. Using relational databases
to store provenance graphs is not storage efficient because
the large graphs contain much redundant information [16,
18, 66], leading to high space overhead. Moreover, relational
databases do not support graph queries well because they
have a poor performance in representing relations among
data points [10] and involve massive I/O operations during
the query process. As shown in the previous backward trac-
ing example, it requires querying and joining the vertex and
edge tables iteratively to search the relations. The number
of queries equals the longest path length of all shortest paths
between any vertex and the symptom vertex. Larger graphs
also lead to heavier I/O operations.

Graph databases (e.g., Neo4j [1]) and query language (e.g.,
Cypher [21] and Gremlin [61]) provide better support in stor-
ing and querying graphs. As illustrated in Figure 2, graph
databases store individual nodes and edges in the graph struc-
ture. We can execute queries directly on the graph without

Table 1: Comparison of Provenance Graph Compression Methods

Features Graph Redundancy Removal Optimized Encoding-based Storage

LogGC [43] Xu et al. [72] NodeMerge [66] SEAL [18] Gzip Databases [1, 52] LEONARD

Compression Type Lossy Lossy Lossy Lossless Lossless Lossless Lossless
Storage Costs High High Low Low Low High Very Low
Query Support Depending on low-level storage systems No Yes Yes

(e) Querying Results(a) Provenance Graph （d) Graph Database

(b) Relational Database

③

Querying

(c) Querying Results

②

Querying

data.txtPayload
Instantiate

Payload
Read

data.txtPayload
Instantiate

Payload
Read

data.txtPayload
Instantiate

Payload
Read

Vertex Table Edge Table

V1
V2

payload
payload File

Process 50
None

V3 data.txt File None

E1

E2

V2

V1 V3

V1 Instantiate

Read

①
Storage

payload Payload
Instantiate

payload Payload
Instantiate

Vertex Table

Edge Table

V1

V2

payload

payload File

Process 50

None

E1 V2 V1 Instantiate

data.txt

Payload

Instantiate

Read

Payload

data.txt

Payload

Instantiate

Read

Payload

V3: Name:data.txt,

Type:File

E1: From:V2, To:V1,

Type:Instantiate

V3: Name:data.txt,

Type:File

E1: From:V2, To:V1,

Type:Instantiate

Vid Name Type Pid Eid From To Type
Eid From To Type

Vid Name Type Pid

Figure 2: Storage and Querying of Different Databases. In the upper part of the figure, the relational database stores each edge and each node
as a separate piece of data in different tables. When investigating the attack, the relational database needs to join and union the tables iteratively.
Unlike relational databases that store provenance graphs as tables, in the lower half of the figure, graph databases directly store provenance
graphs as graph structures.

table join operations, making it more intuitive and efficient.
Even though graph databases provide better representation for
graphs, they are not optimal in storage and query efficiency.
The main reason is that graph databases store raw graphs. Be-
cause these graphs are huge, such graph storage and querying
lead to high space and I/O overhead.

1.2 Proposed Solution

DNN and DNN-based Storage Systems. In recent years,
DNNs have achieved excellent results in helping design stor-
age systems. A DNN is a layered function that can describe
complex data distributions. By using gradient descent meth-
ods to optimize the parameters of the DNN, we can learn the
data distribution and use the learned DNN to predict the data
distribution. According to the universal approximate theory, a
neural network with one hidden layer can approximate any
continuous function of the input in a specific range [14, 31].
DNNs can represent a complex data distribution (e.g., a text
file) with a highly compact numerical vector and make predic-
tions based on given contexts (i.e., queries), which makes it
suitable for many components in storage systems. Kraska et
al. [41] replaced the B+ Tree index with a DNN and achieved
higher query throughput and a smaller index size. Ilkhechi et
al. [37], proposed to store tabular data in vector formats and
showed great storage efficiency.

To the best of our knowledge, AI-based graph storage sys-

tems remain unexplored. Note that DNNs can be Turing-
complete and are capable of expressing complex logic. Using
an AI model as the storage system has unique benefits. First,
compared with traditional logic-based systems, DNNs can
learn a more compact data representation [16, 37], which re-
duces the storage size for the same data. Thus, AI-based stor-
age can be storage efficient. Second, querying DNNs has bet-
ter performance than logic-based systems. Processing small-
sized data (vectors rather than graphs) avoids frequent I/O
operations for data movements between different storage de-
vices (e.g., memory and disks). Modern AI models like DNNs
naturally support batch queries (i.e., parallelism), which can
boost system performance. Operations (e.g., matching) on
vectors are more lightweight than string or graph operations.
Moreover, the learned vectors embed contexts, making the
query more efficient. For example, a linear classifier can test
whether a word exists in a sentence or not by only querying the
[CLS] vector from BERT. Similarly, the vector representation
of an edge can reflect the information of its connected vertices.
This further speeds up many operations, e.g., edge/vertex fil-
tering and matching. Lastly, the learned vector representation
is naturally obfuscated, making it harder to interpret leaked
data. Motivated by this, we designed the first AI-based stor-
age system LEONARD, for provenance graphs. The basic idea
of LEONARD is converting provenance graph into numeri-
cal vectors and then store them using DNNs. LEONARD also
supports queries to interact with humans.

Challenges. Using DNNs to store provenance graphs has
many challenges. First, existing work [16, 37] shows that stor-
ing texts and tabular data in DNN compressed formats are
feasible, but how to adapt this knowledge to graph structures
is unknown. From the AI perspective, texts and tabular data
are in DNN model’s Euclidean space while graphs are not,
making it harder to train. Thus, how to process the graph
structure data and design a proper AI model to train remains
challenging. Moreover, using DNNs as a storage system is
new, and how to interact with these systems has not been well-
explored. For example, traditional solutions optimize query
executions via indexes, which provides shortcuts to data ac-
cess and dramatically improves the performance [67]. The
index is essential for efficient query processing. How to design
similar mechanisms remains to be explored. Lastly, prove-
nance graphs have domain-specific characteristics, and how
to leverage them in system design is unknown. For example,
provenance graphs are redundant, e.g., paths sharing prefix
directories. Leveraging the domain knowledge can benefit the
system’s effectiveness and efficiency.

In this paper, we present LEONARD, a novel DNN-based
provenance graph storage system. LEONARD first flattens
graphs into vertices and edges to avoid training models on
complex graph structures and leverages domain knowledge
to reduce the redundancy in vertices and edges. Then, we
build indexes for vertices and edges to support efficient query
execution. Afterward, we use a DNN model to memorize
the details of vertices and edges. To alleviate the problem
of model misprediction, we leverage a calibration table that
records fixes to guarantee lossless data storage. LEONARD
provides interfaces that allow users to query and interact with
the data. We evaluated LEONARD on 12 datasets. The experi-
ment results show that compared with the relational database
Quickstep and the graph database Neo4j, LEONARD can re-
duce the storage overhead by up to 25.90 times and boost
the execution of up to 99.6% queries. LEONARD takes more
time than other baseline systems. This is acceptable because
LEONARD targets storing provenance graphs that are append-
only and cold-data. In typical scenarios, provenance data will
be locally stored in databases like Redis as hot data for other
applications (e.g., auditing) and pushed to LEONARD for long-
term storage (typically once per auditor business cycle). The
update operations are append-only writes without modifica-
tions to ensure data integrity. As the only reliable source of
many security analysis tasks, provenance data is essential.
Compared with the cost of storing graphs and support for typ-
ical usage patterns (write-once-read-multiple times), the cost
is acceptable. We also want to mention that LEONARD is not
a general database due to its high overhead and envision that
LEONARD potentially can be used as a general graph database
with the development of AI acceleration techniques.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to propose

the idea of using DNNs as provenance graph storage
systems. We present several novel designs to realize this
idea, including domain-specific graph reduction, index
construction, and misprediction calibration. The design
overcomes the limitations of existing solutions and pro-
vides high storage and query efficiency.

• We built a prototype LEONARD and evaluated it on
12 datasets. Our results show that compared with rela-
tional database Quickstep and graph database Neo4j,
LEONARD respectively takes 17.43 and 25.90 times
less storage space on average, and is faster than other
databases on 95.2% and 99.6% queries. Our code is
available at https://github.com/dhl123/Leonard.

2 Design

The workflow of LEONARD is shown in Figure 3. It consists
of three major components: data preparation (§2.1), model
training and calibration (§2.2), and query engine (§2.3). Af-
ter receiving the provenance graph, LEONARD flattens the
graph and conducts the preprocessing to prepare the data
for training (Component A). Specifically, LEONARD converts
vertices and edges in the graph into individual records (similar
as 1 in Figure 2). This flattening makes it more flexible to
extend the graph with new logs. It also converts graphs to
Euclidean space, which is easier to train. Then, LEONARD
conducts content reduction to remove redundancies caused
by monotonous values and repeated long strings in records
(A.2). This step helps reduce the storage space. Afterward, we
perform content indexing to support fast data querying (A.3).
The second component is to train the DNN model and cal-
ibrate model mispredictions (Component B). In LEONARD,
we use LSTM models because, after data preparation, the data
is in Euclidean space and has a similar structure to Natural
Language Processing (NLP) tasks. Considering that texts for
each node/edge are not long and large models require much
space to store, we use lightweight LSTM models rather than
Transformer-based models that are harder to train. In case of
prediction errors, we create a calibration table to record and
fix them when needed. The final artifacts of our storage sys-
tem contain the reference table, the content index, the DNN
model, and the calibration table. Given user queries, the query
engine can leverage these files to rebuild the provenance graph
(Component C). The engine provides needed primitives to
interact with the stored information. A complete example of
this process is presented in §A.2.

Scope and Assumptions. LEONARD targets forensics sce-
narios where analyzing the data happens after the attack is
discovered. Due to the long dwell-time, the data has been
stored for a long time and the data size is large. In such cold
data scenarios, data storage overhead is more of a concern
than processing them for storage. LEONARD can store large-
scale provenance graphs with minimal space and efficient

https://github.com/dhl123/Leonard

operations on the stored graphs. We assume the integrity of
the source (i.e., provenance graph) is guaranteed. LEONARD
ensures the integrity of stored data during its processing and
supports necessary query operations on provenance graphs.
As a storage system, LEONARD does not make assumptions
about the data content.

2.1 Data Preparation
Raw provenance graphs have low information density. Storing
them in the graph format is storage inefficient and makes
it hard to support fast querying. LEONARD processes these
graphs to reduce redundancies and prepares them for DNN
training. This section explains how LEONARD does this.

2.1.1 Step 1: Graph Decoupling

First, LEONARD decouples the graph connection into vertex
records and edge records (A.1 in Figure 3). Graph decoupling
is a standard processing inspired by how relational databases
store provenance graphs (Figure 2). The main reason we de-
couple the graph is to break the graph structures and flatten
them. This decoupling makes our system scalable to larger
graphs and converting graphs to sequential data in the Eu-
clidean space, which allows us to leverage existing DNN
solutions such as LSTM.

2.1.2 Step 2: Redundant Content Removal

The second step is to remove redundant contents (Step A.2).
Specifically, there are two main types of redundant contents
in such records: monotonous values and redundant strings.

•Monotonous Values Reduction. In the edge and vertex
records, some fields have monotonous values. For example,
provenance graphs typically represent events that happen
within a continuous period, and timestamps of events grow
monotonically. Most timestamps have identical prefix digits.
For example, in UNIX timestamp, the first a few digits repre-
sent the year, month, and day. The prefix digits of records on
the same day are the same, leading to high redundancy. For
such monotonous values, LEONARD replaces them with base
plus offset formats to save space. For example, if the times-
tamp of an edge is 159.83 and the base timestamp is 159.0,
LEONARD replaces 159.83 with 0.83 (159.83−159.0). We
want to point out that numbers like timestamps are stored as
the floating-point type in traditional databases, making such
reduction less useful. By contrast, DNNs do not have data
types, and in LEONARD, all numbers are characters. Thus,
reducing such monotonous values is helpful in LEONARD.

LEONARD can automatically discover monotonous values
and reduce them. It works by first scanning all properties
and directly testing if the value change is monotonous. If
so, it will automatically pick the minimum value as the base.
The reference table will keep records of these rules. When

returning results to users, it will automatically do the reverse
computation to get the original value (in the query engine).

• Redundant Strings Reduction. Provenance graphs also
contain many redundant strings, such as keywords of entities,
process names, and paths. Replacing them with short anno-
tations is a typical method of reducing such redundancy. For
example, Gzip replaces repeated strings after their first occur-
rence with an annotation. The annotation will include infor-
mation to reference its last appearance. LEONARD solves this
problem by replacing repeated strings with shorter numerical
values. Specifically, for each field in the edges and vertices,
LEONARD counts the frequency of all values and then sorts
them. Similar to Huffman encoding [34], LEONARD replaces
values with higher frequency by shorter numerical codes. For
example, for the field of type, Process and IP Address are
the most frequent strings. LEONARD respectively assigns 0
and 1 to them. Notice that our reduction performs on individ-
ual fields instead of the entire content because provenance
graphs are well-structured. Such fine-grained reduction can
give us better results without confusing users.

2.1.3 Step 3: Content Indexing

A key to support efficient querying is building indexes [67]. In-
spired by this idea, we propose to build indexes in LEONARD.
Forensic analysis frequently accesses both vertices and edges,
and we build indexes for both. The format of node index is
{c : k}where c contains frequently used information of a node,
e.g., file name, and k is an input string to the DNN model that
can get all information related to the node, i.e., a prompt. For
edges, we use {(s, t) : k} as our indexes, where s and t respec-
tively represent the source and destination of this edge and k
is the prompt (the indexes are necessary IDs to support effi-
cient queries). In general, storing the ids of records as indexes
is enough to support all queries (when querying with some
specific information like PID, we can decompress each record
and find the matched node). Adding some more indexes, such
as PID, can accelerate the querying by making the identifica-
tion process faster. When executing queries, LEONARD first
checks indexes to locate strings and then queries the DNN to
get detailed information. More details are in §2.2 and §2.3.

2.2 Model Training & Calibration
As discussed before, the DNN in LEONARD is a storage sys-
tem that is similar to a database: when the user inputs a search
query token r, the DNN predicts a string that contains all
related information. It is a typical sequence-to-sequence task
in natural language processing (NLP), such as code comple-
tion, text generation, and machine translation. We can use
autoregressive language models to solve this problem [7, 59].

In LEONARD, we use LSTM models. In data preparation,
LEONARD converts provenance graphs into sequential data.
Compared with large sequential models such as Transformers,

A. Data Preparation

C. Query Engine
Engine

Calibration TableReference Table

R(r1): baseTS=159.0
R(s1): Process=0
R(s2): IP address=1

Indexes

{s.exe: v3}
{(v3, v1), e2}
...

Results

Analysts

Queries

IndexesProvenance Graph

e1
e2

e3

Firefox

s.exe
a.com

e1
e2

e3

Firefox

s.exe
a.com

#vertex indexes
vertex info, key id

{Firefox: v1}
{a.com: v2}
{s.exe: v3}

edge indexes
(src, dst), key id

{(v1, v2), e1}
{(v3, v1), e2}
{(v3, v2), e3}

reduced vertices
v1: Firefox, 0, 50
v2: a.com, 1
v3: s.exe, 0, 100

reduced Edges
e1: v1, v2, 0
e2: v3, v1, 0.4
e3: v3, v2, 0.83

Reduced Graph

name, type, pid
v1: Firefox, process, 50
v2: a.com, IP Address
v3: s.exe, process, 100

src, dst, timestamp
e1: v1, v2, 159.0
e2: v3, v1, 159.40
e3: v3, v2, 159.83

Vertices

Edges

DNN

vertices and edges
v1: Firefox, process, 50
v2: a.com, IP Address
...
e3: v3, v2, 159.83

B. Training & Calibration

Calibration
TableDNN

vertex Ids
v1, v2, v3,
edge ids
e1, e2, e3

Indexes

vertices and edges
v1: Firefox, 1, 50...
e1: v1, v2, 0...

Mispredicted
Results

Interface
ngetd()...

Training

DNN

vertices and edges
v1: Firefox, 0, 50...
e1: v1, v2, 0...

Reduced Graph

vertices and edges
v1: Firefox, 0, 50...
e1: v1, v2, 0...

Reduced Graph Training Loss

Training

DNN

vertices and edges
v1: Firefox, 0, 50...
e1: v1, v2, 0...

Reduced Graph Training Loss

monotonous value
 reduction rules
 R(r1): baseTS=159.0

Reference Table

A.3
Content

Indexing

A.2
Content

Reduction

A.1
Graph

Decoupling # redundant string
 reduction rules
 R(s1): Process=0
 R(s2): IP address=1

Figure 3: Overview of LEONARD. LEONARD prepares the graph data (Component A) by decoupling the graph into text representation (A.1)
and compressing the redundancies in the graph (A.2). Then, LEONARD creates indexes. When training and calibrating the system (Component
B), LEONARD trains a DNN model to memorize the data also vertices and edges, and uses a calibration table to store mispredictions. LEONARD

provides user interfaces to process general queries (Component C) and return the results.

LSTM models are smaller and can reduce the final storage
overhead (models are part of the compressed artifact). Also,
LSTM models are easier to train compared with Transformers.
• Training. To train this LSTM model, we first embed all ver-
tex/edge records (records of the reduced graph after A.2) into
numerical vectors by directly using the char2vec method [9].
LSTM models will memorize the numerical representation of
such records. Then, we extract a reference token k for each
record. Notice that this token has to be unique. Otherwise,
it will confuse the model. Luckily, all records in provenance
graphs can be well separated. Otherwise, the graph construc-
tion phase should merge them already. Training in LEONARD
is just like training other sequence-to-sequence models: we
use the token k to predict the first character and use k and all
existing characters to predict the next one. During training,
we use the cross-entropy loss. We also leverage beam search
to increase its handling of long sequences. We stop the model
training when the training accuracy stabilizes, which is a com-
mon practice in machine learning community. All techniques
are standard in NLP.
• Handling Mispredictions. In practice, training a model
with high training accuracy for a single file requires an exces-
sively large model to memorize the data (which takes much
space to store) and more training epochs (causing high time
costs). To alleviate this problem, we use a calibration table.
Each record in the table has a (k, [p : c]) format, where k
is the reference token, p is the position offset, and c is the
correct character. Namely, after training LEONARD on prove-
nance graphs, LEONARD makes predictions for each charac-

ter of the graph and memorizes correct characters for each
misprediction in the calibration table (the prediction results
can be obtained from the last epoch of training without in-
troducing additional scanning). For example, when storing
a vertex vector <v1: Firefox, 0, 50> in Step B of Fig-
ure 3, LEONARD predicts each character in the vector and
obtains <v1: Firefox, 1, 50>. LEONARD compare the
predicted vector with the original one, find the mispredic-
tion pair (v1,[9,0]) (the ninth character of v1 should be 0)
and stores the pair in the calibration table. Notice that this
calibration table is also part of the final artifacts and affects
the storage efficiency. The more accurate the model is, the
smaller the calibration size is, and vice versa. In all scenar-
ios, we can use the calibration table to fix all mispredictions
on the data1 and guarantee the integrity by design. Existing
compression techniques like Gzip can further compress the
calibration table. According to §3, the size of calibration ta-
bles is not significant. For a 6.49 GB log file, the calibration
table is 90.47 MB.

Model Reusing and Ensembling. LEONARD can be more
efficient by using transfer learning. We adapt fine-tuning that
initializes a model with well-trained weights, allowing faster
training convergence. Our results in Figure 11 show that this
method speed up the training by 15 times. LEONARD handles
new data by ensemble models. That is, LEONARD caches
new data until it is large enough or a data cycle is completed.
Then, LEONARD trains a new model with the cached data and

1Notice that in our task, the training and test data are the same.

updates the system by integrating the new indexes, calibration
tables, and trained models.

2.3 Query Engine
We provide primitives for queries in LEONARD (§A.1). For
a given query, LEONARD first parses it to get the target ver-
tex/edge (e.g., s.exe in Figure 3). Then, it searches the cor-
responding index to look for keys and asks the DNN to make
predictions on the key. After getting prediction results, it
leverages the calibration table to fix mispredicted charac-
ters. This process gets the reduced graph information. Lastly,
LEONARD decodes the result to recover original information
by reversely applying the rules in the reference table. A de-
tailed algorithm is provided in §A.1.

3 Evaluation

We first introduce our experiment setup (§3.1). Then, we
evaluate the costs of storing provenance graphs (§3.2) and
querying (§3.3). Moreover, we include an ablation study to
understand how LEONARD perform under different settings
(§3.4). Finally, we give a case study to show the integrity
of data stored in LEONARD and demonstrate how LEONARD
support provenance-based forensics analysis (§3.6).

3.1 Experiment Setup
LEONARD is implemented in python 3.6.9 using Keras
2.4.3 [12] with TensorFlow 2.4.1 [4] as the backend. All
experiments are done in a Ubuntu 18.04 machine equipped
with an RTX 6000 GPU, 64 CPUs, and 376 GB memory.
Datasets and Model Settings. Our datasets consist of 12
provenance graphs from five publicly available log files (i.e.,
T1 to T5) collected by the trace group in transparent comput-
ing engagement #51 and seven Linux log files collected by
ourselves on an Ubuntu 16.04 machine (i.e., L1 to L7). The
details are included in §A.3. Specifically, graph sizes in L1
to L7 grow almost linearly to show how their performance
changes when the size of the provenance graph increases.

If not specified, we use the LSTM [30] model described
in §A.3 as the default model. The default training settings for
trace datasets are batch size 4096, learning rate 0.001, and
maximal training epoch 5. The default maximal epoch for the
Linux datasets is 15, considering the sizes of Linux datasets
are much smaller than trace datasets. Other settings of Linux
datasets are the same as those of trace datasets.

3.2 Storing Provenance Graphs
Disk Usage. We evaluate the disk usage of LEONARD and
compare LEONARD with Quickstep, compressed Quickstep

1https://github.com/darpa-i2o/Transparent-Computing

T1 T2 T3 T4 T50

2000

4000

6000

8000

Si
ze

 (M
B)

Leonard
Quickstep
C_Quickstep
Quickstep_Pre
Neo4j
Neo4j_Pre

(a) Disk Usage of Storage.

T1 T2 T3 T4 T50

50

100

150

200

250

Si
ze

 (M
B)

Model
Reference Table

Graph Indexes
Calibration Table

(b) Disk Usage of LEONARD.

T1 T2 T3 T4 T50

100

200

300

400

500

Ti
m

e
Co

st
 (M

in
ut

es
)

Leonard
C_Quickstep
Neo4j

(c) Time Costs of Storage.

T1 T2 T3 T4 T50

100

200

300

400

500

Ti
m

e
Co

st
 (M

in
ut

e)

Preprocessing
Training
Calibration

(d) Time Cost of LEONARD.

Figure 4: Disk Usage and Time Costs of Storing Graphs with Dif-
ferent Systems (C_Quickstep and Pre are shorts for compressed
quickstep databases and the preprocessing)

(we use its built-in compression tools), Quickstep with pre-
processing (i.e., we integrate preprocessing in LEONARD),
Neo4j and Neo4j with preprocessing. The total disk usage
of LEONARD includes the costs of storing reference tables,
indexes, DNN models, and calibration tables. For databases,
we measure the total size of all data volumes used to store the
graph and omit the log files to ensure the fairness of compari-
son. The overall disk space used by LEONARD and databases
trace datasets are in Figure 4(a). The disk space used to store
each component of LEONARD is shown in Figure 4(b). The
x-axis of each figure shows the dataset names, and the y-axis
is the space used to store provenance graphs.

From Figure 4(a), we observe that LEONARD always re-
quires less space to store the same provenance graphs com-
pared to other databases. Compared with Neo4j, Neo4j with
preprocessing, Quickstep, compressed Quickstep and Quick-
step with preprocessing, LEONARD only uses 3.85%, 17.11%,
5.74%, 21.07% and 10.62% space, respectively. Compared
to databases without compression, the preprocessing opti-
mizes redundant fields such as repeated strings. Compared
with databases that use preprocessing or similar compression
techniques, LEONARD further uses DNNs, removes statistical
redundancy, which outperforms them.

When looking into the disk usage of each component (Fig-
ure 4(b)), we find that the cost of storing DNN models is the
lowest (0.15 MB on average), and the cost of storing calibra-
tion tables is the highest (97.87 MB on average) across all
datasets. The size of the model file is small because a tiny
model is sufficient to fit a large dataset, as also demonstrated
by previous work [16, 24]. The cost for storing calibration
tables is high due to the mispredictions made on huge datasets.
For example, considering the vast size (e.g., 6.57 GB on aver-
age) of the trace datasets, recording only 1% mispredictions
could take up a lot of space.
Time Costs. We evaluate the time costs of storing provenance
graphs with LEONARD and compare the costs with those of

databases (implemented in SPADE [22]). Figure 4(c) demon-
strates the total time costs of LEONARD and baselines. The
time costs of each step in LEONARD are shown in Figure 4(d).
In each figure, the x-axis shows the dataset names. The y-axis
represents the time cost of storing graphs. Since the time costs
of preprocessing are proved to be impervious in Figure 4(d),
we do not additionally show the costs of databases with pre-
processing. Moreover, because the time costs of the Quickstep
databases are relatively low compared with other systems (the
costs of Quickstep databases are from 1.35 to 2.18 minutes
on different datasets), we do not show them in the figure.

From Figure 4(c), we observe that the time cost of Quick-
step is the lowest among all databases (1.39 minutes on av-
erage). Quickstep with compression requires a longer time
than the original Quickstep databases, but the difference
in time costs is insignificant (the difference is 0.70 min-
utes on average). Applying compression in Quickstep is
not time-consuming because the compression performs tra-
ditional character-matching, which does not need any train-
ing. The time cost of LEONARD is the highest compared
to all databases. The reason is that LEONARD is a training-
based method. LEONARD spends much time on training the
DNN model and generating the calibration table, as shown
in Figure 4(d). The high time costs are essentially caused by
the low efficiency of existing model training and inference
frameworks. Adopting advanced technology and using power-
ful machines can decrease the costs. Moreover, as discussed
in §3.2, LEONARD only uses 7.89% space of exiting systems
when storing provenance graphs. Considering the provenance
graph-based attack investigation is a write once and long-term
storage task, reducing space overhead is more significant.

3.3 Querying Provenance Graphs

To understand the costs of querying with LEONARD, we mea-
sure the time costs of different queries with LEONARD and
compare the results with those of other systems. We use de-
fault settings discussed in §3.1 for LEONARD. Different con-
figurations may affect the efficiency of LEONARD, and we
include a detailed discussion in §3.4. We measure the query-
ing costs of LEONARD on trace datasets (from T1 to T5),
which is a common practice [18, 33]. We first randomly se-
lect 100 nodes from the provenance graph in each dataset
as the starting points of queries. Then, we search their de-
scendant graphs and measure the time costs of this process.
Because LEONARD has a decompression process, we mea-
sure the total time costs, the time costs of searching graphs,
and decompression costs for each query. To avoid the fig-
ure becoming over-complicated, we only show the results of
LEONARD, Neo4j, and Quickstep. Querying results on com-
pressed Quickstep databases are included in Appendix §A.4.
Moreover, analysts do not expect the system to return a huge
graph that is not readable [5, 29, 45]. Following previous
works [45], we stop the searching and return the results when

0 20 40 60 80 100
Start Nodes

0.0

2.0

4.0

6.0

8.0

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(a) Comparison results on T1

0 20 40 60 80 100
Start Nodes

0.0

2.0

4.0

6.0

Ti
m

e
Co

st
 (M

in
ut

es
)

Search Decompression

(b) Querying with LEONARD on T1

0 20 40 60 80 100
Start Nodes

0.0

1.0

2.0

3.0

4.0

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(c) Comparison results on T2

0 20 40 60 80 100
Start Nodes

0.0

0.5

1.0

1.5

2.0

Ti
m

e
Co

st
 (M

in
ut

es
)

Search Decompression

(d) Querying with LEONARD on T2

0 20 40 60 80 100
Start Nodes

0.0

10.0

20.0

30.0

40.0

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(e) Comparison results on T3.

0 20 40 60 80 100
Start Nodes

0.0

5.0

10.0

15.0

20.0

Ti
m

e
Co

st
 (M

in
ut

es
)

Search Decompression

(f) Querying with LEONARD on T3

0 20 40 60 80 100
Start Nodes

0.0

2.0

4.0

6.0

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(g) Comparison results on T4

0 20 40 60 80 100
Start Nodes

0.0

1.0

2.0

3.0

4.0

Ti
m

e
Co

st
 (M

in
ut

es
)

Search Decompression

(h) Querying with LEONARD on T4

0 20 40 60 80 100
Start Nodes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(i) Comparison results on T5

0 20 40 60 80 100
Start Nodes

0.0

1.0

2.0

3.0

4.0

5.0
Ti

m
e

Co
st

 (M
in

ut
es

)
Search Decompression

(j) Querying with LEONARD on T5

T1 T2 T3 T4 T50.0

0.2

0.4

0.6

0.8

Ra
tio

Neo4j Quickstep

(k) Ratio of Better Performance

T1 T2 T3 T4 T50

5

10

15

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(l) Average Time Costs of Systems

Figure 5: Time Costs of Queries. (a), (c), (e), (g) and (i) show
the costs on different datasets. Bars represent the costs of different
systems and they are overlapped. (b), (d), (f), (h) and (j) show the
time costs of querying in LEONARD. The costs of searching and
decompression are not overlapped in these figures. The height of
each bar is the total costs of queries. (k) and (l) are statistical results
that show the average ratio (time costs of LEONARD over the costs
of other systems) and average costs of each system.

the number of returned records (i.e., number of edges and
vertices) is larger than a threshold (i.e., 4096) to obtain the
events that are most related to the attack. The impacts of using
different thresholds in querying are evaluated in §3.4.

Results and Analysis. Figure 5(a) to Figure 5(j) show the
time costs of queries on trace datasets (T1 to T5). For each
dataset, we use one figure to show the total time costs of
each query in different systems and one figure to show the
time costs of searching and decompression of LEONARD. In
these figures, the x-axis shows dataset names and the y-axis
measures the time costs on a minute scale. Figure 5(k) is the
statistical comparison results of LEONARD with databases.
The y-axis shows the average ratio defined as querying costs
of LEONARD over the querying costs of databases. Fig-
ure 5(l) demonstrates the average time costs of querying with
LEONARD and databases on each dataset.

The results in Figure 5(l) show that LEONARD is more
time-effecient. The time costs of LEONARD are only 43.09%,
34.70%, 45.00%, 27.45%, and 35.62% of Neo4j on differ-
ent datasets, respectively. The costs of LEONARD are only
55.80%, 52.19%, 54.33%, 48.99% and 71.11% of Quickstep.
When comparing existing databases in Figure 5(l) and Fig-
ure 5(k), the time costs of Neo4j databases are slightly higher
than Quickstep databases. Because it uses two tables in the
relational database to store simple graph structure and graph
details. When querying, we only search the simple graph struc-
ture. However, during the query process in graph database,
we need to search the entire graph database and check each
record, yielding heavier overhead than relational databases.
Therefore, the time cost of Neo4j is higher than Quickstep.

The main factors affecting searching are the raw graph
size and the graph complexity. When the size of the graph or
the complexity of the graph increases, searching takes more
time. As shown in Figure 5(l) and Table 3, the querying costs
on T3 is the highest because the graph in T3 is the largest
among all datasets. Also, we inspect the dataset and find
that the graph in T3 dataset mainly consists of three large
components. Two of them are from long-running Firefox
processes, and the other is from the sshd process. Searching
on such complicated graph components consumes much time
on searching the related events and sorting their importance
values. The factor that affects the time costs of decompression
is the returned graph size. When the returned graph is larger,
the number of decompressed records increases, and the time
costs of decompression increase. Detailed analysis and results
are included in §3.4.5.

3.4 Ablation Study

3.4.1 Provenance Graph Size.

To understand how the performance of LEONARD and other
systems changes when the provenance graph size increases,
we evaluate LEONARD and databases on Linux datasets,

L1 L2 L3 L4 L5 L6 L70

100

200

300

400

Si
ze

(M
B)

Leonard
Quickstep
C_Quickstep

Quickstep_Pre
Neo4j
Neo4j_Pre

(a) Disk Usage of Storing Graphs

L1 L2 L3 L4 L5 L6 L70.0

2.5

5.0

7.5

10.0

Si
ze

 (M
B)

Model
Graph Indexes
Reference Table
Calibration Table

(b) Disk Usage of LEONARD

L1 L2 L3 L4 L5 L6 L70

10

20

30

40

50

Ti
m

e
Co

st
 (M

in
ut

es
)

Leonard
C_Quickstep
Neo4j

(c) Time Costs of Storage

L1 L2 L3 L4 L5 L6 L70

10

20

30

40

50

Ti
m

e
Co

st
 (M

in
ut

e)

Preprocessing
Training
Calibration

(d) Time Cost of LEONARD

Figure 6: Disk Usage and Time Costs on Linux Datasets

where the size of logs and provenance graphs increases almost
linearly between each dataset. Specifically, we measure the
disk usage and time costs of storing provenance graphs. The
results are shown in Figure 6.

From Figure 6(a), we observe that the disk usage of all
systems increases when the provenance graph size increases.
Among all systems, Neo4j grows fastest and LEONARD grows
slowest. The results further demonstrate the advantage of
LEONARD. Moreover, Figure 6(b) shows the increased costs
of LEONARD are mainly caused by storing the calibration
table. On average, LEONARD uses 5.24 MB to store the cali-
bration table. For other components (i.e., model file, indexes
and reference table), the costs are 0.18 MB, 0.57 MB and
0.76 MB. This is because calibration tables need to record
mispredictions continuously, but other components may not
need to do much modification.

When looking into the time costs of storing graphs (Fig-
ure 6(c), i.e., the costs of Quickstep databases are from 2.89
to 14.00 seconds), we find that the time cost also increases
linearly in each system. When checking costs of each step in
LEONARD (Figure 6(d)), the main costs are from the model
training, which is different from the results on trace datasets.
This is because we have different training settings for Linux
and trace datasets. Since Linux datasets are smaller than trace
datasets, we train the model for more epochs on Linux datasets
to make the model overfit the data (15 epochs for Linux
datasets and five epochs for trace datasets). The different
configuration makes the costs of training on Linux datasets
more significant than other components.

3.4.2 Impacts of Individual Component in LEONARD.

LEONARD consists of two components: the preprocessing for
removing redundancies and DNN compression for further
optimization. To understand the impacts of each component,
we evaluate the effectiveness and the efficiency of preprocess-
ing, DNN compression, and their combination (LEONARD)
in isolation. Specifically, we include the original size, the size

T1 T2 T3 T4 T50

500

1000

1500

2000

2500

3000

Si
ze

 (M
B)

Original
Preprocessing

DNN
Leonard

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Disk Usage on Trace Datasets

L1 L2 L3 L4 L5 L6 L70

20

40

60

80

100

120

Si
ze

(M
B)

Original
Preprocessing
DNN
Leonard

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ac
cu

ra
cy

(b) Disk Usage on Linux Datasets

T1 T2 T3 T4 T50

1000

2000

3000

4000

Ti
m

e
Co

st
s (

M
in

ut
es

)

Preprocessing DNN Leonard

(c) Time Costs on Trace Datasets

L1 L2 L3 L4 L5 L6 L70

50

100

150

200

Ti
m

e
(M

in
ut

es
)

Preprocessing
DNN
Leonard

(d) Time Costs on Linux Datasets

Figure 7: Storage and Time Costs of Individual Component

of using preprocessing, DNN compression, and combination
LEONARD to store the same provenance graphs from trace
datasets. We also collect the same results for Linux datasets
to show the impacts of different provenance graph sizes to
individual components. The results are shown in Figure 7. Fig-
ure 7(a) and Figure 7(c) show the disk usage and time costs for
storing graphs in trace datasets. Figure 7(b) and Figure 7(d)
present the results on Linux datasets.

From the disk size usage results on trace datasets (Fig-
ure 7(a)), we find that both preprocessing and DNN com-
pression can achieve good compression results. Combining
them and using LEONARD lead to optimal compression re-
sults. Specifically, the disk usage of using preprocessing,
DNN and LEONARD is 284.08 MB, 313.75 MB and 164.95
MB, respectively. For the time costs on trace datasets, pre-
processing is impervious. Because preprocessing consists of
purely string matching operations, it does not require train-
ing and is pretty fast. DNN compression and LEONARD are
more time-consuming than preprocessing because of the addi-
tional training process. When comparing DNN compression
with LEONARD, applying preprocessing in LEONARD signif-
icantly reduces the time costs.

When we inspect the impacts of provenance graph sizes on
each component in Figure 7(b) and Figure 7(d), the time costs
of all components increase almost linearly with the increase
of dataset sizes. Notice that Figure 7(b) shows that DNN com-
pression and LEONARD require similar space when storing
graphs. The reason is that even though the preprocessing in
LEONARD reduces the total size of processed data compared
to DNN compression, it corrupts some natural semantic in-
formation, leading to low accuracy. However, preprocessing
speeds up training as shown in Figure 7(d).

3.4.3 Different Models.

To measure the impacts of models, we consider two factors:
model architectures and model sizes. We design and evaluate
four different models, including two LSTM models (we use

1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
ze

 (M
B)

Model Size
Size of Other Components

(a) Disk Size Usage for Storage

1 2 3 40

10

20

30

40

50

Ti
m

e
Co

st
s (

M
in

ut
es

)

(b) Time Costs for Storage

Figure 8: Evaluation Results with Different Models

256 512 1024 2048 4096 819216384
32768

65536
Batch Size

10

20

30

40

Ti
m

e
Co

st
 (M

in
ut

es
)

Training
Storage

(a) Costs of Training and Storage.

256 512 1024 2048 4096 819216384
32768

65536
Batch Size

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Accuracy
Size

0.0

0.5

1.0

1.5

2.0

2.5

Si
ze

 (M
B)

(b) Model Accuracy and Disk Usage.

Figure 9: Evaluation Results with Different Batch Sizes.

M1 to refer to the small one and M2 to refer to the large one)
and two GRU models (M3 for the small one and M4 for the
large one), to help understand how different models affect
the performance of LEONARD. M1 is our default model. The
sizes of each model are 0.14 MB, 0.29 MB, 0.14 MB, and
1.52 MB. We measure the total size, model size, and time
costs of using different models to store the provenance graph
in L1. The results are summarized in Figure 8. The y-axis on
the left shows the total time costs used to store the graph and
the y-axis on the right reflects the disk usage.

The results show that using a small model to store the
provenance graph is faster than using a large model of its
kind. For example, the time costs of M1 are lower than M2.
This is because fewer parameters need to be trained in smaller
models, leading to faster training. Moreover, we observe that
using larger models can reduce the size of other components
(i.e., calibration tables) but increase the final size of storing
graphs. Because large models can learn more contextual data
information, achieving higher training accuracy and reduc-
ing the number of mispredictions. However, the size of the
model itself can be very large compared to the total size of
the graph, leading to high costs of storing the model and
graph. Therefore, choosing a model is a trade-off between
time costs, model size, and final disk usage. For our datasets,
a smaller model can achieve good results. We also observe
that, although the model size and final disk usage of small
models (M1 and M3) are similar, the time costs of M1 are
lower than the costs of M3.

3.4.4 Batch Size in Training.

To study the impacts of batch sizes on LEONARD, we use
different batch sizes from 256 to 65,536 to train DNN models
on the provenance graph in the L1 dataset. Then, we collect

0 2 4 6 8
Start Nodes

0.0

0.5

1.0

1.5

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(a) Costs with Threshold 512

0 2 4 6 8
Start Nodes

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(b) Costs with Threshold 1,024

0 2 4 6 8
Start Nodes

0

1

2

3

4

5

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(c) Costs with Threshold 2,048

0 2 4 6 8
Start Nodes

0

2

4

6

8

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(d) Costs with Threshold 4,096

0 2 4 6 8
Start Nodes

0

5

10

15

20

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(e) Costs with Threshold 8,192

0 2 4 6 8
Start Nodes

0

10

20

30

40

50

Ti
m

e
Co

st
s (

M
in

ut
es

)

Leonard Quickstep Neo4j

(f) Costs with Threshold 16,382

Figure 10: Efficiency of Querying with Different Thresholds

the time costs of model training, the time costs of storing
provenance graphs, the training accuracy, and the disk usage
of storing provenance graphs. We show the results in Figure 9.
Figure 9(a) shows the time costs of training models with
different batch sizes and the time costs of storing provenance
graphs. Figure 9(b) presents the model accuracy and the total
disk usage for storing the provenance graph.

Overall, the time costs of training and storing the graph
decrease when batch size increases, and the costs finally reach
the saturation points (when batch size is larger than 4,096).
The results reveal that increasing batch size could significantly
speed up the training process, but the improvement is not
linear. The training speed does not significantly increase after
a certain threshold. This finding is consistent with existing
work [23]. In addition, the training accuracy of models and
the disk usage for storage are insensitive to changes in the
batch size. Therefore, considering the time costs almost do
not decrease when the batch size is larger than 4,096, and the
final disk size for storage is stable, we set batch size 4,096 as
the default batch size for model training.

3.4.5 Threshold in Querying.

As mentioned in §3.3, we constrain the final graph size. We
evaluate the effects of different thresholds (i.e., graph size)
configured in the querying process by measuring the querying
costs on the graph with different threshold settings. Specif-
ically, to ensure the fairness of comparison, we choose ten
nodes from the T1 dataset and evaluate the costs of search-

ing their descendants with the threshold from 512 to 16,382.
We ensure that the number of descendants of each picked
start node is larger than the largest threshold of 16,382. The
results are shown in Figure 10. The time costs of different
systems are overlapped in these figures. From the result, we
observe that LEONARD always outperforms other systems
under different threshold settings, showing the efficiency of
LEONARD. Moreover, when the threshold increases, the time
costs of all systems increase. This is reasonable because we
need to search more events and sort their importance values,
which is more complicated.

3.4.6 CPU Performance.

We measured the performance of LEONARD model training
on CPU devices. The results are shown in Figure 11(a). The
x-axis shows the dataset names, and the y-axis demonstrates
the time costs. We observe that the costs of training on CPUs
takes 3.37x time than training on GPU. Considering the cold
data target scenario, running LEONARD on CPU is acceptable.

3.4.7 Model Reusing and Ensemble Methods.

As introduced in §2.2, LEONARD can reuse models by fine-
tuning to improve the efficiency on similar data distribution.
LEONARD can also apply ensemble methods to handle new
data efficiently. To show that, we evaluate the performance
of fine-tuning and ensemble methods. Specifically, we train
a model on a small dataset (L1) and fine-tune new models
on other datasets (L2 to L7). We show the final disk usage
(Figure 11(b)) and training time costs (Figure 11(c)). For the
ensemble method, we divide the T2 dataset into five parts
to emulate five caches arriving at different times. We first
train LEONARD on the first block of data and iteratively up-
date LEONARD by processing the subsequent four parts of
data. The results are shown in Figure 11(d), Figure 11(e)
and Figure 11(f), respectively.

We observe that fine-tuning significantly reduces the time
costs without affecting the final disk usage. The disk us-
age is only slightly higher than that of the original training.
But the training and total time costs are reduced to 11.62%
and 54.85% of original training, respectively. Therefore, fine-
tuning can reduce the overhead of LEONARD further.

We also find that applying ensemble methods to handle
new data can achieve similar effectiveness and efficiency as
the original training. Specifically, the disk usage of ensemble
methods is similar to the costs of original LEONARD. As we
use more models to store the data, the model size is larger.
Meanwhile, using more models to remember the same amount
of data decreases the misprediction rates, making the size
of the calibration table smaller. For the efficiency, the time
cost of storing the graph with ensemble methods is slightly
higher. As we need to manage data and different models, the
scheduling poses additional overhead. However, the overhead

L1 L2 L3 L4 L50

10

20

30

40

50

60

Ti
m

e
Co

st
 (M

in
ut

es
)

CPU Time
GPU Time

(a) Training (CPU)

L2 L3 L4 L5 L6 L70

2

4

6

8

10

12

Di
sk

 U
sa

ge
 (M

B)

Normal Training
Finetune

(b) Disk Usage (Finetune)

L2 L3 L4 L5 L6 L70

5

10

15

20

25

30

Ti
m

e
Co

st
 (M

in
ut

es
)

Normal Training
Finetune

(c) Training (Finetune)

Reference Indexes Model Calibration0

20

40

60

80

Di
sk

 U
sa

ge
 (M

B)

Normal Leonard
Emsemble Methods

(d) Disk Usage (Ensemble)

Preprocessing Training Calibration0

50

100

150

200

250

Ti
m

e
Co

st
 (M

in
ut

es
)

Normal Leonard
Emsemble Methods

(e) Storage (Ensemble)

0 20 40 60 80 1000.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
Co

st
s (

M
in

ut
es

)

Ensemble Methods Normal Leonard

(f) Querying (Ensemble)

Figure 11: Results of Model Reusing and Ensemble Methods

is small. Moreover, here we measure the total time costs for
all models. When processing multiple models in parallel and
measure the costs of each model, they will take less time. For
example, it takes only around 20% time when we handle the
five models with five different processes separately.

3.5 Software Version and Parallel Processing.
LEONARD is previously implemented in CUDA 11.0.0. To
show the effects of different software version and other pro-
cessing, we upgraded to CUDA 11.0.4 and observed better
performance. Also, when handling the calibration of large
datasets (i.e., trace datasets), LEONARD ran processes in par-
allel. We observe that parallel processing can lead to heavy
I/O overhead, and removing parallel handling can reduce the
time costs of calibration. To show this, we compare the time
cost differences. The results are shown in Figure 12. The
changes in training and calibration time costs are summa-
rized in Figure 12(a) to Figure 12(j). The querying costs are
included in Figure 12(k) and Figure 12(l). Specifically, Fig-
ure 12(l), Figure 12(b), Figure 12(e), and Figure 12(f) show
the changes of LEONARD on different datasets. Figure 12(d),
Figure 12(d), Figure 12(d), and Figure 12(d) show the perfor-
mance when only using DNN to store the graph. Figure 12(i)
and Figure 12(j) show the changes of using different batch
sizes in model training. Figure 12(k) and Figure 12(l) show
the average querying costs on five trace datasets and the costs
under different graph size constraints.

Training time decreases in all cases because the improved
latest CUDA has better support for GPU. We also notice that
the calibration costs keep unchanged on small Linux datasets
(the costs slightly increase in Figure 12(f)) and are decreased
on large trace datasets or pure DNN processing task. The
reason is that calibration of large datasets (trace dataset and
all datasets used by DNN) is time-consuming and imposes
heavy overhead on the system. Parallel processing does not
work for that cases because it causes resource competition.
Therefore, we removed such a setup of storing multiple large
datasets in parallel (consistent with settings on small Linux
datasets and also databases), reducing the overhead caused by
competing resources and achieving higher efficiency. For the
time cost, we observe that the cost of queries remains almost
unchanged since the querying was not running on CUDA, and
there is no competition issue.

We conclude that software versions and configurations can
affect the efficiency of LEONARD. Optimizing the code and

Table 2: Results of Forensics Analysis from 5 Start Nodes.

Queries LEONARD Databases Graph Match
Nodes # Edges # Nodes # Edges

1 1867 2231 1867 2231 ✓
2 1878 2219 1878 2219 ✓
3 1339 2759 1339 2759 ✓
4 1892 2206 1892 2206 ✓
5 938 3159 938 3159 ✓

improving the system could make LEONARD faster.

3.6 Integrity of Provenance Graphs
LEONARD is designed for effective storage and efficient in-
vestigation of provenance graphs. LEONARD guarantees the
integrity of stored data by design with the calibration mech-
anism. To explore whether LEONARD supports forensics
analysis based on the provenance graph, we check whether
LEONARD can return the same query results as databases.
Specifically, we show the number of nodes and edges for the
first five queries on the T1 dataset conducted in Figure 5. No-
tice that we stop the searching when the number of edges and
nodes is larger than the threshold of 4,096. LEONARD can
still search for new events (the event can contain 1 or 2 unvis-
ited nodes). Therefore, the final number of the result could
be up to 4,098. Table 2 summarizes the results, including the
number of nodes and edges of the obtained descendant graphs
using databases and LEONARD (from columns 2 to 5 in Ta-
ble 2). As the table indicates, LEONARD can return the same
graphs as databases and support the forensics analysis. The
results show that LEONARD can support forensic analysis.
Due to the page limits, the complete results of 500 queries on
T1 to T5 datasets are in our project page2.

4 Discussion and Future Work

LEONARD is a storage system, and it is complimentary with
provenance data/graph compression and reduction [18, 42,
43, 66]. In the best case (the model accuracy is 100%), the
model memorizes all the data without mispredictions. The
storage costs are the costs of storing a small model and some
indexes. In the worst case (the accuracy of model prediction
is 0), LEONARD stores the raw data, i.e., databases with no

2https://anonymous.4open.science/r/query_result-5468/README.md

T1 T2 T3 T4 T50

50

100

150

200

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(a) Training (Trace)

L1 L2 L3 L4 L5 L6 L7
0

5

10

15

20

25

30

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(b) Training (Linux)

T1 T2 T3 T4 T5
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(c) DNN Training (Trace)

L1 L2 L3 L4 L5 L6 L70

50

100

150

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(d) DNN Training (Linux)

T1 T2 T3 T4 T50

100

200

300

400

500

600

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(e) Calibration (Trace)

L1 L2 L3 L4 L5 L6 L7
0

5

10

15

20

25

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(f) Calibration (Linux)

T1 T2 T3 T4 T5
0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(g) Calibration (Trace)

L1 L2 L3 L4 L5 L6 L70

20

40

60

80

100

120
Ti

m
e

Co
st

 (M
in

ut
es

)
old
new

(h) Calibration (Linux)

256 512 1024 2048 4096 8192 16384
32768

65536
Batch Size

0

10

20

30

40

50

60

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(i) Training (Batchsize)

256 512 1024 2048 4096 8192 16384
32768

65536
Batch Size

0

1

2

3

4

5

Ti
m

e
Co

st
 (M

in
ut

es
)

old
new

(j) Calibration (Batchsize)

T1 T2 T3 T4 T5
Datasets

0

2

4

6

8

10

Ti
m

e
Co

st
 (M

in
ut

es
)

old new

(k) Querying (Trace)

512 1024 2048 4096 8192 16384
Batch Size

0

2

4

6

8

10

Ti
m

e
Co

st
 (M

in
ut

es
)

old new

(l) Querying (Threshold)

Figure 12: Comparison of Time Costs. We show the changes on model training, model calibration, and querying. Figure 12(a) to Figure 12(d)
show changes on training time costs. Figure 12(e) to Figure 12(h) show time costs on calibration. Figure 12(i) and Figure 12(j) show the costs
under different batch size settings. Figure 12(k) and Figure 12(l) demonstrate the costs on querying. The x-axis shows the dataset names or
different settings. y-aixs shows the time costs.

compression. LEONARD spends much time on storing the
data caused by slow model inference, which can be allevi-
ated by DNN acceleration techniques (e.g., AI chips like
NVIDIA H100 tensor core GPUs are reportedly 4.5x faster
than previous-generation GPUs [8]. TensorRT can achieve 6X
faster inference and JAX on the GPU [3] is about 30x faster
than numpy on GPU [2]).

LEONARD lacks many database features, such as transac-
tions. It does not guarantee the ACID (atomicity, consistency,
isolation, durability) of a sequence of operations. LEONARD
targets a typical write once read multiple times task. In our sce-
nario, the provenance graph itself should not be changed due
to integrity requirements. Without multiple writers, there is
no need to support transactions. When writing to the database,
we always verify the correctness and completeness of the op-
eration. Returned results are correct as long as the execution
integrity is maintained. LEONARD can also be extended to
other similar scenarios.

Extending LEONARD to general data is non-trivial and
raises new challenges, including reducing improving the effi-
ciency, supporting for complex data operations, and redesign
for domain-specific data reduction. The time costs of stor-
age is high and the update operation in LEONARD is ineffi-
cient (the model will be re-trained whenever the stored data
changes). Provenance graph data is append-only thus does
not need to be updated. However, the inefficient update op-
eration is a problem in other scenarios, such as storing user
relation graphs in recommendation systems. When applying
to different data, the reduction rules in the preprocessing also
need to be redesigned.

5 Related Work

Intrusion Detection. Many intrusion detection methods use
predefined normal behavior patterns to detect attacks. Some
work defines the normal behavior of processes with a se-
quence of system calls [20, 70, 71]. Along this line of work,

Tandon et al. [65] and Sekar et al. [62] propose to use ad-
ditional syscall information and sequence information, such
as arguments in syscalls and loop structure, to improve the
detection. Provenance graphs provide a more intuitive way to
present the detailed historical information of system execution
by converting system calls to a connected graph, reducing the
false positives in detection. NoDoze [29] analysis historical
logs and gives rarely occurring events high anomaly values.
Then, it updates the anomaly values of each event based on its
casually related events in the provenance graph to get a more
accurate estimation. Different from NoDoze, Unicorn [26]
does not give events anomaly values. It learns and defines
several event sequences in the benign provenance graph as
normal behavior models to detect abnormal behaviors.
Attack Investigation. Besides intrusion detection, many
works apply provenance graphs to investigate attacks [6,
54, 74]. Backtracing the provenance graph from an attack
symptom can help analysts understand the root cause of
the attack [40] and forward-searching to find the conse-
quences [45]. Besides NoDoze and other works [53] try to
understand the attack from system logs, UIScope [73] anal-
ysis attacks in GUI applications with causality analysis on
both UI elements/events. CLARION [11], PRovINTENT [68],
PicoSDN [69] and Prov-Trust [39] provide solutions to gener-
ate provenance graphs for microservice deployments, intent-
based networking, software-defined networking attacks and
SGX-based systems, respectively. We notice that most of the
existing work based on provenance graphs requires the system
to collect the provenance graph and system logs for a long
time, resulting in very high storage overhead.
Provenance Graph Compression. Existing work removes
redundant edges and nodes in the graph to reduce storage over-
head. LogGC [43] finds that temporary files are usually iso-
lated in the provenance graph. Therefore, they can be garbage
collected. Lee et al. [42] propose to use execution partition
to simplify the causalities in long-running processes. Pro-
tracer [49] further reduces both the runtime overhead and stor-

age overhead. Although these lossy compression methods can
compress logs and graphs, they are designed for specific tasks
and lose important information. Recently, researchers focused
on lossless compression for provenance graphs. SEAL [18]
merges repeated fields of events and reduces the costs of stor-
ing timestamps. LEONARD does not only reduce the content
redundancies such as repeated field but also reduces the cor-
relation redundancies with DNN models. Moreover, existing
graph compression methods try to compress the graph during
the collection. LEONARD focuses on a different stage, i.e., the
storage process; they are compatible. In the provenance graph
collection, graph compression methods identify and remove
useless elements of the graph for specific tasks. Then, they
can use LEONARD or databases to store compressed graphs.

Database Compression. We also notice that there are
some compression methods designed for databases [13, 60].
Databases that store the data in a column-oriented way can
potentially be compressed [36, 52]. In this work, we explored
the compression with Quickstep [52]. Applying compression
on databases can reduce the time costs of reading operations
because smaller amounts of data need to be moved from disk
to memory. However, applying compression requires addi-
tional time for decompression. We investigate more effective
compression and storage methods for provenance graphs by
fully understanding the redundancies in the graph.

6 Conclusion

In this paper, we present a novel research system LEONARD,
which uses Deep Neural Networks (DNNs) as the provenance
graph storage system. It features high storage efficiency and
query efficiency. Compared with existing solutions based on
relational databases and graph databases, it learns a compact
data representation and supports parallel data querying, in-
curring less storage and runtime overhead. Our evaluation
of 12 datasets shows promising results, reducing the space
overhead by 25.90 times and boosting up to 99.6% queries.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments. This material is based upon work supported by the
National Science Foundation under Grant No. 2152908, No.
2212629, and No. 2238847.

References
[1] Neo4j graph database platform. https://neo4j.com/, 2021.
[2] Jax reference documentation. https://jax.readthedocs.io/en/latest/,

2022.
[3] Nvidia tensorrt. https://developer.nvidia.com/tensorrt, 2022.
[4] Martín Abadi and Paul Barham et al. Tensorflow: A system for large-scale

machine learning. In USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2016.

[5] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay
Celik, Xiangyu Zhang, and Dongyan Xu. Atlas: A sequence-based learning
approach for attack investigation. In USENIX Security Symposium, 2021.

[6] Adam Bates, Dave Tian, Kevin R. B. Butler, and Thomas Moyer. Trustworthy
whole-system provenance for the linux kernel. In USENIX Security, 2015.

[7] Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei Wang, Songfang Huang, Fei
Huang, and Luo Si. Palm: Pre-training an autoencoding&autoregressive language
model for context-conditioned generation. arXiv:2004.07159, 2020.

[8] NVIDIA Blog. Nvidia hopper sweeps ai inference benchmarks in mlperf de-
but. https://blogs.nvidia.com/blog/2022/09/08/hopper-mlperf-inf
erence/, 2022.

[9] Kris Cao and Marek Rei. A joint model for word embedding and word morphol-
ogy. In Proceedings of the 1st Workshop on Representation Learning for NLP,
Rep4NLP@ACL, 2016.

[10] Suganya Chandrababu and Dhundy R. Bastola. Comparative analysis of graph
and relational databases using herbmicrobedb. In IEEE International Conference
on Healthcare Informatics Workshops, ICHI Workshops, 2018.

[11] Xutong Chen, Hassaan Irshad, Yan Chen, Ashish Gehani, and Vinod Yegneswaran.
Clarion: Sound and clear provenance tracking for microservice deployments. In
USENIX Security, 2021.

[12] François Chollet et al. Process monitor. https://keras.io, 2015.
[13] Gordon V. Cormack. Data compression on a database system. Commun. ACM,

28(12):1336–1342, 1985.
[14] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty

of Sciences, Etvs Lornd University, Hungary, 24(48):7, 2001.
[15] Cve.mitre.org. Cve - cve-2021-22893. https://cve.mitre.org/cgi-bin/c

vename.cgi?name=CVE-2021-22893, 2022.
[16] Hailun Ding, Shenao Yan, Juan Zhai, and Shiqing Ma. ELISE: A storage efficient

logging system powered by redundancy reduction and representation learning. In
USENIX Security Symposium, 2021.

[17] En.Wikipedia.Org. 2020 united states federal government data breach.
https://en.wikipedia.org/wiki/2020_United_States_federal_gove
rnment_data_breach, 2021.

[18] Peng Fei, Zhou Li, Zhiying Wang, Xiao Yu, Ding Li, and Kangkook Jee. Seal:
Storage-efficient causality analysis on enterprise logs with query-friendly com-
pression. In USENIX Security Symposium, 2021.

[19] Fireeye. [report] m-trends. https://content.fireeye.com/m-trends/rp
t-m-trends-2021, 2021.

[20] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
A sense of self for unix processes. In IEEE Symposium on Security and Privacy,
SP, 1996.

[21] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. Cypher: An evolving query language for property graphs. In SIG-
MOD, 2018.

[22] Ashish Gehani and Dawood Tariq. SPADE: support for provenance auditing
in distributed environments. In ACM/IFIP/USENIX International Middleware
Conference, volume 7662 of Lecture Notes in Computer Science, pages 101–120.
Springer, 2012.

[23] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami,
Kai Rothauge, Michael W. Mahoney, and Joseph Gonzalez. On the computational
inefficiency of large batch sizes for stochastic gradient descent. 2018.

[24] Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Deepzip:
Lossless data compression using recurrent neural networks. In Data Compression
Conference, DCC, 2019.

[25] Gzip.Org. The gzip home page. https://www.gzip.org/., 2021.
[26] Xueyuan Han, Thomas F. J.-M. Pasquier, Adam Bates, James Mickens, and

Margo I. Seltzer. Unicorn: Runtime provenance-based detector for advanced
persistent threats. In NDSS, 2020.

[27] Xueyuan Han, Thomas F. J.-M. Pasquier, and Margo I. Seltzer. Provenance-based
intrusion detection: Opportunities and challenges. In USENIX Workshop on the
Theory and Practice of Provenance, 2018.

[28] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance analysis
for endpoint detection and response systems. In IEEE Symposium on Security
and Privacy, SP, 2020.

[29] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. Nodoze: Combatting threat alert fatigue with
automated provenance triage. In NDSS, 2019.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

[31] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[32] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R. Sekar, Scott D. Stoller, and V. N. Venkatakrishnan. SLEUTH: real-
time attack scenario reconstruction from COTS audit data. In USENIX Security
Symposium, 2017.

[33] Md Nahid Hossain, Sanaz Sheikhi, and R. Sekar. Combating dependence explo-
sion in forensic analysis using alternative tag propagation semantics. In IEEE
Symposium on Security and Privacy, SP, 2020.

[34] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[35] Ibm.Com. Cost of a data breach report 2021. https://www.ibm.com/securi
ty/data-breach, 2021.

https://neo4j.com/
https://jax.readthedocs.io/en/latest/
https://developer.nvidia.com/tensorrt
https://blogs.nvidia.com/blog/2022/09/08/hopper-mlperf-inference/
https://blogs.nvidia.com/blog/2022/09/08/hopper-mlperf-inference/
https://keras.io
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22893
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22893
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://content.fireeye.com/m-trends/rpt-m-trends-2021
https://content.fireeye.com/m-trends/rpt-m-trends-2021
https://www.gzip.org/.
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach

[36] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,
and Martin L. Kersten. Monetdb: Two decades of research in column-oriented
database architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[37] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Çetintemel. Deepsqueeze: Deep semantic compression for tabular
data. In SIGMOD, 2020.

[38] Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jaron Mink, Noor
Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan. Sok: History is a vast
early warning system: Auditing the provenance of system intrusions. In IEEE
Symposium on Security and Privacy, 2022.

[39] Nesrine Kaaniche, Sana Belguith, Maryline Laurent, Ashish Gehani, and Giovanni
Russello. In International Joint Conference on e-Business and Telecommunica-
tions, ICETE, 2020.

[40] Samuel T. King and Peter M. Chen. Backtracking intrusions. In SOSP, 2003.
[41] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The

case for learned index structures. In SIGMOD, 2018.
[42] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack prove-

nance via binary-based execution partition. In NDSS, 2013.
[43] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting

audit log. In ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2013.

[44] Linux.Die.Net. Auditd. https://linux.die.net/man/8/auditd, 2021.
[45] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-

wan Rhee, and Prateek Mittal. Towards a timely causality analysis for enterprise
security. In NDSS, 2018.

[46] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. Accurate, low cost and instrumentation-free security audit
logging for windows. In Annual Computer Security Applications Conference,
2015.

[47] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang,
Gabriela F. Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and
Somesh Jha. Kernel-supported cost-effective audit logging for causality tracking.
In USENIX ATC, 2018.

[48] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. MPI: multiple perspective attack investigation with semantic aware execution
partitioning. In USENIX Security Symposium, 2017.

[49] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: Towards practical
provenance tracing by alternating between logging and tainting. In NDSS, 2016.

[50] Mandiant.com. Highly evasive attacker leverages solarwinds supply chain
to compromise multiple global victims with sunburst backdoor | mandiant.
https://www.mandiant.com/resources/evasive-attacker-leverag
es-solarwinds-supply-chain-compromises-with-sunburst-backdoor,
2022.

[51] Sadegh Momeni Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V. N.
Venkatakrishnan. HOLMES: real-time APT detection through correlation of
suspicious information flows. In IEEE Symposium on Security and Privacy, 2019.

[52] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep: A data
platform based on the scaling-up approach. VLDB Endow., 11(6):663–676, 2018.

[53] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. HERCULE: attack story
reconstruction via community discovery on correlated log graph. In Annual
Conference on Computer Security Applications, ACSAC, 2016.

[54] Devin J. Pohly, Stephen E. McLaughlin, Patrick D. McDaniel, and Kevin R. B.
Butler. Hi-fi: collecting high-fidelity whole-system provenance. In Annual
Computer Security Applications Conference, ACSAC, 2012.

[55] PurpleSec. 2021 cyber security statistics trends & data. https://purplesec.
us/resources/cyber-security-statistics/#Cyberattacks, 2021.

[56] PurpleSec. 2021 accellion data breach: What happened & who was impacted?
https://purplesec.us/accellion-data-breach-explained/, 2022.

[57] PurpleSec. Kaseya ransomware attack explained: What you need to know.
https://purplesec.us/kaseya-ransomware-attack-explained/, 2022.

[58] PurpleSec. Saudi aramco $50 million data breach explained. https://purple
sec.us/saudi-aramco-data-breach-explained/, 2022.

[59] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. 2018.

[60] Gautam Ray, Jayant R. Haritsa, and S. Seshadri. Database compression: A
performance enhancement tool. In COMAD, 1995.

[61] Marko A. Rodriguez. The gremlin graph traversal machine and language (invited
talk). In Symposium on Database Programming Languages, 2015.

[62] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In IEEE Symposium on
Security and Privacy, 2001.

[63] Servethehome. Firefox is eating your ssd - here is how to fix
it. https://www.servethehome.com/firefox-is-eating-your-ssd-her
e-is-how-to-fix-it/, 2016.

[64] Windows Sysinternals. Process monitor. https://docs.microsoft.com/e
n-us/sysinternals/downloads/procmon, 2021.

[65] Gaurav Tandon and Philip K. Chan. On the learning of system call attributes for
host-based anomaly detection. Int. J. Artif. Intell. Tools, 2006.

[66] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng Xiao,
Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. Nodemerge: Tem-
plate based efficient data reduction for big-data causality analysis. In SIGSAC
Conference on Computer and Communications Security, CCS, 2018.

[67] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large
graphs. In SIGMOD, 2007.

[68] Benjamin E. Ujcich, Adam Bates, and William H. Sanders. Provenance for
intent-based networking. In IEEE Conference on Network Softwarization, 2020.

[69] Benjamin E. Ujcich, Samuel Jero, Richard Skowyra, Adam Bates, William H.
Sanders, and Hamed Okhravi. Causal analysis for software-defined networking
attacks. In USENIX Security, 2021.

[70] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection using variable-
length audit trail patterns. In Recent Advances in Intrusion Detection, Third
International Workshop, RAID, 2000.

[71] Andreas Wespi, Hervé Debar, Marc Dacier, and Mehdi Nassehi. Fixed- vs.
variable-length patterns for detecting suspicious process behavior. J. Comput.
Secur., 2000.

[72] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity data reduction
for big data security dependency analyses. In ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[73] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and Yan Chen. Uis-
cope: Accurate, instrumentation-free, and visible attack investigation for GUI
applications. In NDSS, 2020.

[74] Le Yu, Shiqing Ma, Zhuo Zhang, Guanhong Tao, Xiangyu Zhang, Dongyan Xu,
Vincent E. Urias, Han Wei Lin, Gabriela F. Ciocarlie, Vinod Yegneswaran, and
Ashish Gehani. Alchemist: Fusing application and audit logs for precise attack
provenance without instrumentation. In 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The
Internet Society, 2021.

A Appendix

A.1 Primitives of LEONARD

We provide a list of basic query primitives of LEONARD
in List 1. Some of them are simple, e.g., ngetd() and
edgetd() get detailed node and edge information, re-
spectively. Others implement common functionalities, e.g.,
bgetn() and bgete() perform backward tracking from a
given node or an edge.

Example: Backward tracking with constrained depth. We
show how to use the given primitives to perform backward
tracking in algorithm 1. Notice that typical provenance graphs
are large, and we limit the search depth by using an input pa-
rameter Md . In the beginning, we first initialize our search
depth to be 0 (line 1). Then, we start our search by initializing
the graph (lines 2 and 3). Specifically, we first get detailed
information on node m, the attack symptom object, and then
add it to the graph with an unvisited flag. The main body of
this backward tracking algorithm is a loop (lines 4 to 15),
which performs a BFS (Breadth-first search). For each unvis-
ited node in the graph (line 5), we first get all its pre-nodes
and incoming edges (line 6). For each node, we get its infor-
mation, mark it as unvisited and then add it to the graph (lines
7 to 10). For each edge, we get its information and add it to
the graph (line 12). After visiting all nodes and edges, we
mark the current node n as seen (line 14) and move to the
next depth by increasing it by 1 (line 16). When we reach
the maximal depth, we return the graph G. Notice that this
example is simplified to demonstrate how to interact with
LEONARD via its query engine primitives. Many details are

https://linux.die.net/man/8/auditd
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://purplesec.us/resources/cyber-security-statistics/#Cyberattacks
https://purplesec.us/resources/cyber-security-statistics/#Cyberattacks
https://purplesec.us/accellion-data-breach-explained/
https://purplesec.us/accellion-data-breach-explained/
https://purplesec.us/kaseya-ransomware-attack-explained/
https://purplesec.us/kaseya-ransomware-attack-explained/
https://purplesec.us/saudi-aramco-data-breach-explained/
https://purplesec.us/saudi-aramco-data-breach-explained/
https://www.servethehome.com/firefox-is-eating-your-ssd-here-is-how-to-fix-it/
https://www.servethehome.com/firefox-is-eating-your-ssd-here-is-how-to-fix-it/
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

1 # Get source vertices and edges of a given node n

2 # Parameter: n, a given vertex/node

3 # Return: list of vertices and edges pointing to n

4 def bgetn (n)

5 # Get edges of a given edge e (backward)

6 # Parameter: e, a given edge

7 # Return: list of vertices and edges pointing to e

8 def bgete (e)

9 # Get outgoing vertices of a given node n

10 # Parameter: n, a given vertex/node

11 # Return: a list of vertices start from n

12 def fgetn (n)

13 # Get edges of a given node n (forward)

14 # Parameter: n, a given vertex/node

15 # Return: a list of edges start from n

16 def fgete (n)

17 # Get detailed informaion for node n

18 # Parameter: n, a given vertex/node

19 # Return: detailed information of n from the DNN

20 def ngetd (n)

21 # Get detailed informaion for edge e

22 # Parameter: e, a given edge

23 # Return: detailed information of e from the DNN

24 def egetd (e)

Listing 1: Primitives of Query Engine

omitted, such as maintaining the visited status using queues,
handling loops in the provenance graphs, etc.

A.2 LEONARD Running Example

In this section, we show how LEONARD works by using a
simplified example of a single event: Firefox writes data
to a file a.txt at 155. Later, analysts backtrack from the
file a.txt and try to find out which process wrote to the
file. Figure 13 shows the process of building the storage,
and Figure 14 shows the query execution. We refer to these
two graphs in the following sections if not specified.

A.2.1 Building Storage

Input: The input to LEONARD is a provenance graph (1 in
Figure 13). In this graph, rectangles denote processes, and
ovals denote files. The edge represents the write operation,
the direction follows the information flow, and its annotation
shows its timestamp.
Step 1: Decoupling. LEONARD first decouples the graph and
converts each edge/vertex to a textual representation, repre-
sented in JSON format (2). Every edge and vertex will con-
tain a unique identifier, content values (i.e., Firefox, a.txt,
and (E0, E1)), types (e.g., Process, File, and Write),
and necessary annotations (e.g., timestamp). Here, we use

Algorithm 1: Backward Tracking from Symptoms
Input: m: symptom events (e.g., malware); Md : the

maximal search depth.
Output: G: graph, Ge and Gv are edges and vertices.

1 d← 0;
2 m.visited← f alse; m← ngetd (m);
3 Gv←{m};
4 while (d ≤Md) do
5 for (n in [n in Gv if n.visited = f alse]) do
6 N, E← bgetn (n);
7 for (v in N) do
8 v← ngetd (v); v.visited← f alse;
9 Gv← Gv∪ v

10 end
11 for (e in E) do
12 e← egetd (e); Ge← Ge∪ e
13 end
14 n.visited = true
15 end
16 d← d +1
17 end
18 return Ge, Gv

(source, destination) to denote an edge using its source
and destination identifiers.
Step 2: Content Reduction. There are two types of reduc-
tions. First, for monotonous values, such as timestamps (155),
LEONARD replaces them by using the base and offset. Rule
2 in the reference table records such reductions and the base
value. Thus, the timestamp in E0 is replaced by 5, according
to this rule. Second, for redundant values, LEONARD replaces
them with shorter numerical values. In this case, File is re-
placed by 0, Write is replaced by 1, and Process is replaced
by 2. The serial number of the rule represents the order of
application. For example, R0 is applied before R1. In Step B
of Figure 13, we use arrows to show how individual entries
in the JSON entry are converted to a reduced version and 4
shows the rules we used.
Step 3: Content Indexing. LEONARD builds both vertex
and edge indexes, as shown in 5 and 7 , respectively. Our
indexes are secondary indexes containing the content values
of vertexes and types of edges, which are neither ordering nor
key fields. We chose such indexes because they are the most
frequently used fields during the investigation. To simplify
our design, we just use the unique identifier as the prompt
(i.e., k in index {c,k}, it is an input to the DNN model that can
recover all information of a node) when building the indexes.
For the vertex index, we have two entries <V0, 0, a.txt,
0> and <V1, 0, 0, 2> as shown in 6 . Recall that its format
is {c,k}, where c is the content and k is prompt. Here, we
have two entries. V0 is the main indexing for the vertex V0,
and a.txt is the secondary index. Similarly, the edge index

contains one entry, where (V1, V0) denotes the edge source
and destination and E0 is the prompt.
Step 4: Training and Calibration. LEONARD uses a DNN
model (8) to memorize all the graph data, and when needed,
we feed a prompt (i.e., an identifier) to the model and get com-
plete vertex/edge information. This is a text-completion task,
where the model tries to complete a sentence (i.e., the whole
vertex/edge entry) for given words (i.e., prompt). LEONARD
vectorizes all data by char2vec [9] and then trains the model
by using next-character prediction, a typical method for such
NLP tasks. When the model stabilizes, the accuracy can still
be lower than 100%. For our example, the ninth value in entry
V1 is wrong. We record such entries in the calibration table
(9), which contains the position 9 and the ground truth 0.

A.2.2 Query Execution

The querying execution (described in algorithm 1) consists of
two kinds of primitives. Searching primitives such as fgetn()
used to tracing the graph from a given vertex or edge, and
recovery primitives like ngetd() used to recover the graph
details. In this section, we show an example of each kind.
Specifically, we illustrate how to use fgetn() to track all
descendant nodes from a node named as Firefox and use
ngetd() to recover its details by the given identifier V1.
•fgetn(Value: Firefox). fget in fgetn indicates the
searching direction is Forward and n implies the beginning
of searching is a node. Value: Firefox shows the sec-
ondary index is Value, and the concrete value is Firefox
(translated to 0 according to the reference table). When search-
ing, LEONARD first searches the vertex indexes, finds the ver-
tex whose value is Firefox, and obtains the identifier (V1 in
the example). Then, LEONARD searches edges starting from
V1 and continue the searching process until no new entries
can be added. Finally, LEONARD returns the identifiers of all
obtained vertices and edges (3).
•ngetd(V1). The input V1 is an identifier of a vertex, which
is usually obtained in searching primitives. Firstly, LEONARD
converts V1 to a vector <9, 1> by char2vec as the input of
the DNN model. The model predicts the following charac-
ters of V1, and the calibration table revises the mispredictions
during this process. As shown by the example, the model out-
puts <[9, 1], 0, 1, 2>, the ninth character then is revised
as 0 by the calibration table, and the final output is revised
to <[9, 1], 0, 0, 2>. LEONARD converts the numerical
outputs as text representation by using vec2char (a reverse
of char2vec) and gets <V1, 0, 0, 2>. LEONARD further
searches the keys represented by the first 0 and get the keys
<Value, Type>. LEONARD then translates frequent word
codes to concrete words and obtains <V1, Value: Firefox,
Type: Process> by using the reference table. For example,
0 is identified as the value of field Value and maps to the
concrete string Firefox. Finally, LEONARD outputs the re-
covered vertex (6).

Table 3: Overview of Datasets

Name Collector Log Size Graph Size # Edges # Vertices

L1 Auditd 200 MB 17.95 MB 70,746 46,951
L2 Auditd 400 MB 35.97 MB 141,773 94,131
L3 Auditd 600 MB 53.44 MB 209,001 139,017
L4 Auditd 800 MB 69.69 MB 271,947 182,651
L5 Auditd 1,000 MB 89.40 MB 348,090 235,592
L6 Auditd 1,200 MB 104.86 MB 407,871 276,809
L7 Auditd 1,400 MB 122.22 MB 475,251 322,970
T1 DTrace 6.49 GB 1.42 GB 3,838,235 2,104,167
T2 DTrace 6.48 GB 1.30 GB 3,502,032 2,101,552
T3 DTrace 6.83 GB 2.23 GB 5,188,353 2,615,885
T4 DTrace 6.49 GB 1.62 GB 4,123,248 2,392,776
T5 DTrace 6.56 GB 1.29 GB 3,626,617 1,822,855

A.3 Datasets and Models

The details of our datasets are listed in Table 3. The trace
datasets from the trace group (referred to as character T plus
indexes, e.g., T1) are collected by DTrace on the Linux system
and wildly used to evaluate forensics analysis applications.
Since each log file provided by the transparent computing
program is compressed into a binary file, we show the sizes
of datasets after decompression in the third column of Table 3.
The raw size of the graph (in text format) is shown in the
fourth column. Other Linux datasets (whose names are the
character L plus the index of the dataset, e.g., L1) are used
to evaluate how LEONARD and other systems perform when
dataset size increases. When collecting them, we run several
popular applications on an Ubuntu 16.04 experiment machine,
including office software suites, browsers, etc. We use SPADE
(an open-sourced provenance collection system) and built-in
Linux auditd to collect the log file, generate the provenance
graph and store the graph in databases. Specifically, we moni-
tor system calls, processes (by default, all processes), specific
files (e.g., /etc/passwd) and user account information (i.e.,
euid). We collect a 1400 MB log file and split it into files of
different sizes (from 200 MB to 1400 MB). A smaller file is
a subset of a larger file (e.g., L1 is a subset of L2). Since we
collect the log files on the same machine and the workloads
are consistent. As shown in Table 3, the number of edges and
vertices of graphs grows almost linearly with the log size.

The model we used are shown in Figure 15. The LSTM
model has four layers, including two LSTM layers and two
dense layers. Each LSTM layer contains 32 units. The input
S = {s1,s2, . . . ,sL} is the text of an index, i.e., k in §2.1.3. The
model iteratively predicts the next character of S and finally
recovers the details of a vertex/edge.

A.4 Querying on Compressed Databases

Compared with original databases, compressed Quickstep
databases apply optimizations to reduce disk usage. To under-
stand how these optimizations affect the querying results of
databases, we measure the time costs of 500 queries (same

Event: Write,
TimeStamp: “155”

Value: Firefox
Type: Process

Value: a.txt
Type: File

ID: V0
Value: a.txt
Type: File

ID: E0
Value: (V1, V0)
Type: Write
TS: 155

ID: V1
Value: Firefox
Type: Process

V0, 0
a.txt
0

E0, 1
(V1, V0)
1
5

R5: <ID:id, Value:v,Type:t> -> <id,0>

R0: <Type: File> -> <Type: 0>

V1, 0
0
2

R5: <ID:id, Value:v,Type:t> -> <id,0>
R3: <Value: Firefox> -> < Value: 0>
R4: <Type: Process> -> <Type: 2>

R6: <ID:id, Value:v,Type:t,TS:ts> -> <id,1>

R1: <Type: Write> -> <Type: 1>
R2: <TS: ts> -> <${TS: ts-base}> #base=150

V0, 0, a.txt, 0

E0, 1, (V1, V0), 1, 5

V1, 0, 0, 2

Vertex Index (c:k)->(value:id)

‘a.txt : V0
‘0’ : V1

Edge Index ((s,d):k)->(value:id)
(V1, V0) : E0

char2vec

Record : Position : Ground Truth Char
V1 : 9 : 0

A. Decoupling C. Indexing D. Training and CalibrationB. Content Removal

①

<[9, 0],0, [3, 4, 5, 6, 5], 0>

<[10,0],1, ([9,1],[9,0]),1,5>

<[9, 1],0, 0, 2>

Figure 13: Storage Example.

(II)

(V)
fgetn(Value: Firefox)

<V0>,
<V1>,

<E0>

Vertex Index (c:k)->(value:id)
‘0’ : V1

R3: <Value:Firefox>->< Value: 0>

Edge Index ((s,d):k)->(value:id)
(V1, V0) : E0

Forward(V1)

B. ngetd()

Value

[9, 1]

‘0’

<[9, 1], 0, 1, 2>

<[9, 1], 0, 0, 2>
Record : Position : Char

V1 : 9 : 0

Searching Results Output

Recovery Input Prediction & Calibration Results Translation Results Output

① Searching Inputs

ngetd(V1) char2vec: V1->[9, 1] Name: Firefox
Type: Process

#Reference Table
R5:<id,0>-><ID:id, Value:v,Type:t>
R3:<Value: 0> -><Value: Firefox>
R4: <Type: 2>-><Type: Process>

V1,Value,Type
Firefox
Process

V1, 0
0
2

vec2char

A. fgetn()
New Results? No

Yes, Forward

(I)

(I)

(II)
(III)

(IV)

Figure 14: Querying Example.

}

LSTM Layer

LSTM Layer

Fully Connected Layer + Relu

Fully Connected Layer + Relu

}

Figure 15: Model Architecture

queries in §3.3) on original Quickstep databases and com-
pressed ones. The parameters used for the evaluation are the
same as those used in Figure 5, and we show the results in Fig-
ure 16. Figure 16(a) to Figure 16(e) show the results of each
queries on different provenance graphs. Figure 16(f) demon-
strates the average time costs of using original databases and
compressed databases on different datasets.

The results show that the compressed Quickstep databases
always spend more time than original ones. This is because
the built-in optimization techniques require extra time to de-
compress the data. Even though applying database compres-
sion reduces disk usage, it increases the time cost of queries.

0 20 40 60 80 100
Start Nodes

0

5

10

15

20

Ti
m

e
Co

st
s (

M
in

ut
es

)

C_Quickstep Quickstep

(a) Time Costs on T1

0 20 40 60 80 100
Start Nodes

0

1

2

3

4

5

Ti
m

e
Co

st
s (

M
in

ut
es

)

C_Quickstep Quickstep

(b) Time Costs on T2

0 20 40 60 80 100
Start Nodes

0

10

20

30

40

50

Ti
m

e
Co

st
s (

M
in

ut
es

)

C_Quickstep Quickstep

(c) Time Costs on T3

0 20 40 60 80 100
Start Nodes

0

2

4

6

8

10

Ti
m

e
Co

st
s (

M
in

ut
es

)

C_Quickstep Quickstep

(d) Time Costs on T4

0 20 40 60 80 100
Start Nodes

0

2

4

6

8

10

12

Ti
m

e
Co

st
s (

M
in

ut
es

)

C_Quickstep Quickstep

(e) Time Costs on T5

T1 T2 T3 T4 T5
Datasets

0

5

10

15

20

Ti
m

e
Co

st
s (

M
in

ut
es

)

Quickstep C_Quickstep

(f) Time Costs Comparison

Figure 16: Querying with Compressed Quickstep Databases

	Introduction
	Background & Existing Work
	Proposed Solution

	Design
	Data Preparation
	Step 1: Graph Decoupling
	Step 2: Redundant Content Removal
	Step 3: Content Indexing

	Model Training & Calibration
	Query Engine

	Evaluation
	Experiment Setup
	Storing Provenance Graphs
	Querying Provenance Graphs
	Ablation Study
	Provenance Graph Size.
	Impacts of Individual Component in Leonard.
	Different Models.
	Batch Size in Training.
	Threshold in Querying.
	CPU Performance.
	Model Reusing and Ensemble Methods.

	Software Version and Parallel Processing.
	Integrity of Provenance Graphs

	Discussion and Future Work
	Related Work
	Conclusion
	Appendix
	Primitives of Leonard
	Leonard Running Example
	Building Storage
	Query Execution

	Datasets and Models
	Querying on Compressed Databases

