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Abstract
Homomorphic encryption (HE) is a promising technology for
protecting data in use, with considerable progress in recent
years towards attaining practical runtime performance. How-
ever, the high storage overhead associated with HE remains an
obstacle to its large-scale adoption. In this work we propose
a new storage solution in the two-server model resolving the
high storage overhead associated with HE, while preserving
rigorous data confidentiality. We empirically evaluated our
solution in a proof-of-concept system running on AWS EC2
instances with AWS S3 storage, demonstrating storage size
with zero overhead over storing AES ciphertexts, and 10µs
amortized end-to-end runtime. In addition, we performed ex-
periments on multiple clouds, i.e., where each server resides
on a different cloud, exhibiting similar results. As a central
tool we introduce the first perfect secret sharing scheme with
fast homomorphic reconstruction over the reals; this may be
of independent interest.

1 Introduction

The privacy and safety of individuals and organizations are
threatened by the ubiquity of data collected by products and
services as part of the so-called AI revolution. Data collecting
companies are driven to address this threat to avoid reputa-
tional damage in case of a data breach and to comply with
privacy regulations such as GDPR [4] and CCPA [18]. A
promising approach for enhancing data protection is to use
secure computation (MPC) [36, 60] and homomorphic en-
cryption (HE) [31,55] that support data protection at all times,
not only at rest and in transit, but also for data in use. The
HE approach is particularly appealing due to its compati-
bility with existing dataflow. It supports computations over
encrypted data by stand-alone servers (computing server)
requiring no interaction, and the complexity of all other par-
ties, if any exists, is independent of the complexity of the
evaluated function (unlike in MPC). Indeed there has been
much progress towards attaining practical runtime for HE-
based solutions, e.g., for privacy preserving machine learning

(PPML) [6,7,13,14,24,34,35,38,39,42,43,48,54,56]. These
solutions often operate over massive datasets (e.g., in training
machine learning models) that must be stored in HE-encrypted
form. More generally, as HE-based solutions are becoming
faster and faster (due to improvements in schemes, algorithms
and hardware), more data is likely to be HE-encrypted and
stored.

The high storage overhead associated with HE encryption
however is a significant obstacle preventing large-scale adop-
tion. Concretely, storing HE ciphertexts of state-of-the-art HE
schemes and implementations (e.g., the CKKS scheme [23] in
Microsoft’s SEAL library [57]) incurs a 10× to 104× blowup
in storage size compared to storing the data in cleartext or en-
crypted using standard schemes such as AES. The blowup rate
depends on the number of data items packed in each cipher-
text. The 10× blowup occurs at maximal packing capacity,
which is not always applicable. For example, packing cannot
be fully utilized if data must be encrypted in a streaming fash-
ion, or arrives from distinct sources with few data items each,
or the computation is not suitable for entry-wise vector op-
erations as supported on packed data. Furthermore, although
storage costs are rapidly declining, for some of the use cases
being proposed for HE, such as secure computation within
an enterprise, the relevant storage is entire enterprise-level
datalakes at petabyte scale or more. At such scale, even the
low-end of 10× blowup in storage cost is clearly unacceptable
from both a financial and operational perspective.

The question initiating this research is therefore:
Can the high storage overhead of HE be eliminated?

1.1 Our Contribution

This work affirmatively resolves the above question by propos-
ing: (1) A new storage solution in the two-server model elim-
inating the high storage overhead associated with HE. (2)
A proof-of-concept system, named CSHER, demonstrating
the appealing storage-size and runtime performance attained
by our solution. (3) As a central tool we introduce the first
perfect secret sharing scheme supporting fast homomorphic



reconstruction over the reals.

Contribution 1: Compact storage with HE-retrieval. We
present a new storage and retrieval solution that supports re-
trieving data in HE-encrypted form without revealing any
information about the underlying data (HE-retrieval), while
producing storage of size as small as when storing data en-
crypted by standard encryption schemes such as AES (com-
pact storage) and maintaining fast end-to-end storage and
retrieval runtime, only twice the time of directly storing and
retrieving HE ciphertexts. Our solution is generic and can
be instantiated with any public key HE scheme supporting
additive homomorphism, where the plaintext addition may be
over a finite ring as in Paillier [53] and BGV [17] or over the
reals as in CKKS [23].

Our solution consists of two protocols, store and retrieve.
Store is a non-interactive protocol allowing multiple data pro-
ducers to upload data to a common storage platform (e.g., a
datalake on AWS S3), where data can be uploaded in blocks
or one-by-one, possibly over time and interleaved with re-
trieval queries. Retrieve is a single-round interactive protocol
between the computing server that obtains as output the HE
encrypted data and an auxiliary service that has no output. Se-
curity holds in the two-server model, i.e., when the computing
server and auxiliary service are non-colluding. In this model
we guarantee correctness against semi-honest adversaries and
privacy against malicious ones.

Our solution can be combined with any homomorphic com-
putation on the HE-retrieved data, simply by plugging in the
retrieved HE ciphertexts as input to the homomorphic com-
putation (“retrieve-then-evaluate”). Importantly, the homo-
morphic computation is executed solely by the computing
server, without any help from the auxiliary service. The over-
all communication complexity in the integrated retrieve-then-
evaluate protocol is independent of the complexity of the
evaluated function.

To support integration with a wide range of computations,
our solution supports dynamic control at the time of data
retrieval for: (i) Data: fine-grained dynamic choice of the
data items to be retrieved is supported, allowing retrieval of
any subset of the data items. (ii) HE scheme and parameters:
dynamic choice of the HE scheme with which the data is
encrypted, its public key and context parameters such as the
degree of the cyclotomic polynomial, is likewise supported.
(iii) Batching: flexibly choosing which data items are packed
together in each ciphertext is supported. The flexible dynamic
control allows tailoring each HE-retrieval to best optimize the
computation at hand; for example, dynamically choosing a
high degree cyclotomic polynomial in CKKS to maintain cor-
rectness if integrating with a deep homomorphic computation,
and low degree otherwise to speedup performance.

This offers a viable industry compatible solution for com-
puting on HE-encrypted data with zero data exposure during
the pipeline while eliminating the high storage overhead asso-
ciated with storing HE ciphertexts.

Discussion: why use HE if we have two-servers? A major
advantage of HE-based secure computation, in comparison to
secret sharing or garbling based solutions, is its communica-
tion complexity: with HE, communication is typically propor-
tional only to the size of the input and output ciphertexts; in
contrast, with secret sharing and garbling, it is proportional
to the size of the evaluated circuit (i.e., the complexity of the
underlying computation) on top of its input and output size.
Our retrieve-then-evaluate solution achieves the same advan-
tage: it has a communication complexity that is proportional
only to the input and output size while being independent
of the size of the evaluated circuit. We note further that the
auxiliary service has a predefined lightweight logic. This is
in sync with existing enterprise best practices, where services
with a simple predefined logic (e.g., a key management or our
auxiliary service) can be effectively safeguarded, making the
non-collusion assumption credible.

Contribution 2: Proof-of-concept system. We present
CSHER – a proof-of-concept system implementing our com-
pact storage with HE-retrieval while using CKKS [23] as the
HE scheme and our secret sharing scheme as a central tool.

We implemented the system using Amazon Web Services
(AWS) with separate EC2 instances (M5.2xlarge) for each
participating entity (data producer, computing server, and aux-
iliary service). The instances communicate via HTTP. We use
an S3 bucket for storage. We enforced access control to S3
by applying AES encryption on uploaded data, with the de-
cryption key accessible to authorized parties. In addition, we
implemented our system in a multi-cloud environment which
is identical to the one on AWS except that the computing
server is running on a Google Cloud n2-standard-8 instance
(rather than on AWS). Separating the servers into two com-
peting cloud providers is aimed at increasing the confidence
that they do not collude.

Ous system is compatible with the industry’s most com-
monly used architecture, tools and best-practices for storing
and processing sensitive big data. For example, we support the
use of standardized encryption schemes for data protection
in long-term storage (e.g., AES), native datatypes in datalake
storage (e.g., double), and commonly used tools for comput-
ing servers and datalake (e.g., AWS EC2 instances with S3
storage). More broadly, incorporating our system into exit-
ing pipelines requires minimal local expansion of current
systems, supporting transparent integration with existing ap-
plications and data processing flows, e.g., by dynamically
choosing whether data is retrieved in cleartext or in HE form.
Importantly, our system does not only comply with existing
architectures but simultaneously improves on it: to compute
on data, current flows read it from datalake in cleartext form,
whereas our system supports transformation from AES ci-
phertexts to CKKS (or other schemes of the user’s choice)
to be fed into the homomorphic computation with zero data
exposure throughout the entire pipeline.

We ran extensive experiments with empirical results demon-



strating that our solution achieves:

1. Compact storage with zero overhead over using AES
encryption to protect sensitive data; and 10× to 104×
improvement in storage size over directly storing CKKS
encrypted data.

2. Fast runtime of end-to-end storage plus HE-retrieval,
only twice the time of directly storing plus retrieving
CKKS encrypted data. For example, the overall runtime
for storing and then retrieving 2,031,616 data items is
19.8s in our solution compared to 10.3s in the baseline
solution of directly storing and retrieving HE ciphertexts.

Furthermore, we demonstrate our system’s support for flexi-
ble choice of the CKKS parameters by dynamically setting
the degree of the cyclotomic polynomial. Likewise, the data
to be retrieved and how it is packed (batched) into CKKS
ciphertexts can be flexibly set at the time of retrieval.

Concretely, on two-million data items, the storage size in
our solution is 16 MB (cf. 168 MB in the baseline experiment
of directly storing and retrieving batched CKKS ciphertexts
with Z-standard library for compression), the storage runtime
is 2s (cf. 7.8s), the HE-retrieval runtime is 17.8s (cf. 2.5s),
and communication size and time is 331 MB and 0.25s. The
amortized performance per data item is therefore: 8 bytes
of storage, 1µs and 9µs for storage and retrieval runtime re-
spectively, and 165 bytes and 0.1µs communication. The per-
formance of our multi-cloud system are essentially identical,
except for a small overhead in communication time when the
communication is between AWS and Google Cloud rather
than between two AWS instances; concretely, the overhead is
0.23s (0.14µs when amortized per data item). We note that
the HE-retrieval runtime is minor in comparison to the homo-
morphic computation to be applied on the retrieved encrypted
data. E.g., even when integrated with a relatively modest com-
putation –homomorphic evaluation of a depth four decision
tree on the retrieved ciphertexts– only 7% of the computation
runtime was devoted to HE-retrieval (see Table 3). Moreover,
the communication complexity is the size of the retrieved
ciphertexts, while being independent of the complexity of the
homomorphic evaluation.

These results empirically demonstrate the practical usabil-
ity of our system. We note that our implementation was single
threaded and sequential, which does not utilize the fact that
our solution is embarrassingly parallelizable; extending our
implementation to incorporate parallelization and streaming
should gain a major further speedup.

Contribution 3: Secret sharing with fast homomorphic
reconstruction over the reals. We present the first per-
fect secret sharing scheme supporting fast homomorphic
reconstruction over the reals. The scheme offers a 2-out-
of-2 secret sharing for secrets in [0,1].1 Homomorphic re-
construction requires only additive homomorphism over the

1Other ranges can be addressed via scaling and shifting to [0,1].

reals (as supported for example by CKKS), when given
one encrypted share and the other in cleartext. In con-
trast, in all prior secret sharing schemes, the reconstruc-
tion algorithm is either computed over a finite field or ring
(e.g., [9, 11, 15, 20–22, 27, 29, 45, 58]); or involves operations
such as reducing numbers modulo one [12,26] that are imprac-
tical for homomorphic computations even with state-of-the-art
techniques [40]; or does not achieve perfect security [28, 59].

Theorem 1.1 (secret sharing, informal). There exists a 2-out-
of-2 perfect secret sharing scheme for [0,1] whose reconstruc-
tion algorithm is a degree 1 polynomial over the reals in the
2nd share as the unknown. Consequently, it can be homo-
morphically evaluated, over an encrypted 2nd share, by any
scheme supporting additive homomorphism over the reals.

1.2 Overview of our Construction
We overview the main ideas and tools in our construction.

Store secret shares, homomorphically reconstruct to re-
trieve HE-ciphertexts. Our starting point is the following
idea. To store data, first secret share it using a 2-out-of-2 se-
cret sharing scheme, and store the 1st (resp. 2nd) share with
access authorized to the computing (resp. auxiliary) server.
To retrieve the data in HE-encrypted form, the auxiliary server
encrypts its share using the HE scheme and sends the cipher-
text to the computing server; the computing server homo-
morphically reconstructs the data, using his cleartext share
together with the received encrypted share, to obtain the data
in HE-encrypted form. To instantiate the above idea we re-
quire a “HE-friendly secret sharing” whose reconstruction
algorithm can be efficiently computed over encrypted input.
For HE schemes over finite rings such as Paillier [53] and
BGV [17], additive secret sharing is friendly, as its reconstruc-
tion requires only additive homomorphism over the finite ring.
In contrast, for HE over the reals, no friendly secret sharing
scheme was known prior to our work.

Friendly secret sharing for arithmetic over the reals. In
our secret sharing scheme, the key idea for achieving fast
homomorphic reconstruction over the reals is to avoid the
mod 1 step of [12,26]. In [12,26], sharing a number x ∈ [0,1)
is by sampling a random t ∈ [0,1) and outputting shares
s1 = t and s2 = x+ t mod 1; reconstructing is by outputting
s1 + s2 mod 1. In our secret sharing for reals we avoid com-
puting mod 1 during reconstruction. Instead, to share a secret
x ∈ [0,1] we sample uniformly random (b, t) ∈ {0,1}× [0,1),
and compute shares: b+ t and x+(b+ t) mod 2. We repre-
sented each share by the pair of its integral of fractional part:
s1 = (b, t) and s2 = (sint ,s f rac) for sint = ⌊x+ t⌋+ b mod 2
and s f rac = ((x+b+ t) mod 2)− sint . Equivalently, sint =
(−1)b (⌊x+ t⌋−b) and s f rac = (x+ t)−⌊x+ t⌋. Our recon-
struction outputs s f rac− t +(−1)bsint +b (all operations are
computed over the reals). The key property of our scheme
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Figure 1: Our protocol (Figure 4): storage (left), HE-retrieval (right), subsequent homomorphic computation (green). The protocol
employs a PRF fk to generate s1 = (b, t); a secret sharing scheme with 1st share hardwired to be s1, denoted (Shrs1 ,Recs1); and
an HE scheme with which we encrypt (entry-by-entry) s2 = (sint ,s f rac) and homomorphically evaluate Recs1 on the encrypted s2.

is that, when given cleartext b, t and encrypted sint ,s f rac, as
in our HE-retrieval protocol, the reconstruction algorithm is
a degree 1 polynomial in sint ,s f rac, and therefore it can be
efficiently evaluated using any additive homomorphic encryp-
tion over the reals, e.g., CKKS. The security of our secret
sharing scheme essentially follows by noticing that s f rac is a
masking of x by adding to it a random t ∈ [0,1) and reducing
modulo 1, and sint is a masking of the integral part of x+ t
by XOR-ing it with a random bit b. The key point however is
that we never have to compute this reduction modulo 1 during
reconstruction.

Storage optimized to zero overhead. To attain zero overhead
over storing the data in cleartext, instead of storing both shares
we store only the 2nd share (s2), while generating the 1st
share (s1) on-the-fly, pseudo-randomly, using a pseudorandom
function fk whose key k is accessible to the data producer
and computing server, but not the auxiliary server. We use a
single key k across all store and retrieve sessions. This works
because the 1st share in our secret sharing for reals is chosen
uniformly at random and independently of the secret (likewise,
in additive secret sharing over a finite ring). Since the share
size in our secret sharing for reals (likewise, in additive secret
sharing over a finite ring) has the same size as the cleartext
data, the storage size is identical to storing the data in cleartext.
See an illustration in Figure 1.

1.3 Related Work

Storage systems utilizing secret sharing. Secret sharing is
used in the context of storage systems to ensure data availabil-
ity and confidentiality, see a survey in [46] Section 4.6.9. But
it has not been used for HE-retrieval prior to our work. The
shares’ size is a major consideration in the context of storage

systems due to its implications to storage costs. Secret sharing
based storage solutions typically employ Krawczyk’s com-
putational secret sharing scheme [44] that has nearly optimal
share size: the total size of the shares ∑

n
i=1 |si| = |x|+ n|K|

for |x| the data size, |K| the size of a symmetric encryption
key freshly generated for each data item, and n the number
of shares. All solutions use secret sharing over a finite field
or ring (see a survey in [10]). In contrast, in our work we
propose a new secret sharing scheme for storage that is over
real numbers. The total size of the shares in our scheme is
|x|+ |K|, consisting of the data x and a key K (cf. |x|+2|K|
in [44]); moreover, the key is never revealed to the other party
in our compact storage solution, and therefore we can use a
single persistent key for all data (rather than requiring a fresh
key to be generated and stored for each data item in [44]).

Rate-1 HE. Gentry and Halevi [32] and Brakerski et al. [16]
designed a highly effective technique for packing many data
items in an HE ciphertext achieving zero overhead in cipher-
texts size over plaintext size. The problem however is that
these highly packed cipehrtexts support only additive homo-
morphism, which considerably limits their usability.

Homomorphic decryption for symmetric ciphers. Naehrig
et al. [52] suggested transforming AES ciphertexts into HE
ciphertexts via homomorphic evaluation of AES decryption
when given as input a HE encryption of the AES decryp-
tion key. This was followed by a line of work for AES ci-
phers [30, 33] and other symmetric ciphers such as LowMC
[8], Kreyvium [19], FLIP and FiLIP [50, 51], RASTA and
MASTA [37, 51], and HERA [25] (see a survey [5]). How-
ever, this approach currently offers a running time that is not
practical for handling massive amounts of data. Moreover,
using non standardized ciphers does not comply with industry
practices of using AES. Our solution is at least 104× faster



than the above works, albeit in the two-server model.

Homomorphic repacking. An alternative approach to prov-
ing a dynamic choice of the batching pattern in the retrieved
HE ciphertext is to use homomorphic packing or re-packing.
I.e., given HE ciphertexts, homomorphically decrypt them and
re-organize their underlying messages as to produce a cipher-
text containing the desired messages in the desired batching
pattern. The runtime of homomorphic packing is at least the
time for homomorphic decryption (aka, bootstrapping), which
takes over 20s for CKKS ciphertexts with the current state-of-
art (see [47, Table 3]), and the runtime for repacking 4096
items is 60.69s by [49, Table VIII]. In contrast, our solution
takes 0.06s for 4096 data items (see Table 2).2

Follow-up work. Zhou et al. [61] implemented our generic
protocol on data types and HE schemes beyond those in our
empirical evaluation, demonstrating its good performance and
high usability. They deviate from our solution in two main
points. First, they use a binary representation of real numbers,
where the complexity of their reconstruction algorithm (i.e.,
the number of transmitted ciphertexts and homomorphic oper-
ations) is linear in this binary representation length (cf. O(1)
in our solution). Second, their system modeling consists of a
client and server that must interact during both the storage and
the retrieval phases (cf. our system modeling that is consistent
with industry systems where data is uploaded to storage by
data producers and fetched by data consumers).

Paper Organization
The rest of this paper is organized as follows: preliminary
terminology and definitions appear in Section 2; our secret
sharing scheme in Section 3; our compact storage for HE-
retrieval in Section 4; the implemented system and empirical
evaluation in Section 5; and conclusions in Section 6.

2 Preliminaries

We use standard definitions for functions being negligible
with respect to a system parameter λ called the security pa-
rameter, denoted neg(λ); similarly for polynomial, where ppt
stands for probabilistic polynomial time in λ. We follow stan-
dard definitions for probability ensembles and computation-
ally indistinguishability, denoted ≈c; when two distributions
are identical we denote this by ≡. We denote by s←R S a
uniformly random sample s from a set S. See the formal defi-
nitions in [41]. We use |z| to denote the binary representation
length of z. We consider both fixed-point and floating point
binary representations of real numbers in [0,1]. We denote by
Q1.p the fixed-point representation using 1 bit for the integral

2Runtime were measured on comparable hardware: Intel Xeon Sil-
ver 4210 CPU2.20GHz (single core) in [47], and Intel Xeon Platinum
8269CY CPU2.50GHz (20-cores) in [49], both are comparable to AWS EC2
M5.2xlarge used in our experiments (according to the public benchmark [2]).

part and p bits for the fractional part. For a floating point we
define the precision of the significand (respectively, exponent)
to be the number of bits allocated by the format for the sig-
nificant (respectively, exponent). That is, for a floating point
in double precision, the precision of the significand is 53 bits
(11 bits for the exponent).

Definition 2.1 (secret sharing). A 2-out-of-2 secret sharing
scheme for A is a pair of ppt algorithms (Shr,Rec) such that:

• Shr is a randomized algorithm that given x ∈ A outputs
a pair of shares (s1,s2).

• Rec is a deterministic algorithm that given a pair of
shares (s1,s2) outputs an element in A.

The correctness requirement is that for all x ∈ A,

Rec(Shr(x)) = x.

The (perfect) security requirement is that for every x,x′ ∈ A
and i ∈ {1,2}, the following two distributions are identical:

{si}(s1,s2)←Shr(x) ≡ {s′i}(s′1,s′2)←Shr(x′).

Definition 2.2 (homomorphic encryption (HE)). A ho-
momorphic public-key encryption (HE) scheme E =
(Gen,Enc,Dec,Eval) with message space M is a quadruple
of ppt algorithms as follows:

• Gen (key generation) takes as input the security parame-
ter 1λ, and outputs a pair (pk,sk) consisting of a public
key pk and a secret key sk; denoted: (pk,sk)←Gen(1λ).

• Enc (encryption) is a randomized algorithm that takes
as input a public key pk and a message m ∈M , and
outputs a ciphertext c; denoted: c← Encpk(m).

• Dec (decryption) is a deterministic algorithm that takes
as input a secret key sk and a ciphertext c, and outputs a
decrypted message m′; denoted: m′← Decsk(c).

• Eval (homomorphic evaluation) takes as input the pub-
lic key pk, a circuit C : M ℓ → M , and ciphertexts
c1, . . . ,cℓ, and outputs a ciphertext ĉ; denoted: ĉ ←
Evalpk(C;c1, . . . ,cℓ).

The correctness requirement is that for every (pk,sk) in the
range of Gen(1λ) and every message m ∈M ,

Pr[Decsk(Encpk(m)) = m]≥ 1−neg(λ);

the scheme is C -homomorphic for a circuit family C if for
all C ∈ C and for all inputs x1, . . . ,xℓ to C, letting (pk,sk)←
Gen(1λ) and ci← Encpk(xi) it holds that:

Pr[Decsk(Evalpk(C;c1, . . . ,cℓ)) ̸=C(x1, . . . ,xℓ)]≤ neg(λ)

(the probability is over all randomness in the experiment).



A C -homomorphic encryption scheme supports additive
homomorphism over the reals if C contains the circuits con-
sisting of addition gates over the reals.

A HE scheme E = (Gen,Enc,Dec,Eval) is CPA-secure if
no ppt adversary A can distinguish between the encryption of
two equal length messages x0,x1 of his choice. See a formal
definition in [41].

Psedudorandom functions (PRF). We call an efficiently
computable family of keyed functions F = { fk : {0,1}∗→
B}k∈{0,1}λ,λ∈N pseudorandom if for all λ, a uniformly random
function fk from F s.t. |k| = λ is computationally indistin-
guishable from a uniformly random function from the set of
all functions having the same domain and range. See a formal
definition in [41, Definition 3.25].

3 Secret Sharing over Reals

We present our 2-out-of-2 secret sharing scheme over the
reals (cf. an overview in Section 1.2). We start by discussing
abstract real numbers (Figure 2), and then elaborate how to
implement it for floating-point numbers in finite precision
(Figure 3). Our scheme satisfies the following properties (cf.
Theorem 3.2-3.3).

Definition 3.1 (secret sharing properties). Let S = (Shr,Rec)
be a 2-out-of-2 secret sharing scheme for A. Denote the
set of possible values for share i = 1,2, by Si = {si | x ∈
A,(s1,s2)← Shr(x)}. For every s1 ∈ S1, denote by Shrs1 and
Recs1 the algorithms Shr and Rec respectively with the 1st
share hardwired to be s1. Let E be a C -homomorphic public-
key encryption scheme.

• S is E-friendly if for all s1 ∈ S1, Recs1 ∈ C (and the
input to Recs1 is in the message space of E).

• S has a random 1st share if for all x ∈ A,

{(s1,s2)← Shr(x)} ≡
{(s1,s2) | s1←R S1,s2← Shrs1(x)}.

• S has a compact 2nd share if for all x ∈ A and s1 ∈ S1,

|Shrs1(x)|= |x|

(where |z| denotes the binary representation length of z)

3.1 Abstract Real Numbers
We present our secret sharing scheme for [0,1] in Figure 2.
We prove that it satisfies the following properties.

Theorem 3.2 (secret sharing). The secret sharing scheme
S = (Shr,Rec) in Figure 2 satisfies the following:

• S is a 2-out-2 secret sharing scheme for A= [0,1].

Shr(x). Given x ∈ [0,1], proceed as follows:

1. Sample uniformly random (b, t) ∈ {0,1}× [0,1)

2. Compute:

sint = (−1)b (⌊x+ t⌋−b)

s f rac = x+ t−⌊x+ t⌋

3. Output s1 = (b, t) and s2 = (sint ,s f rac)

Rec(s1,s2). Given shares s1 = (b, t) and s2 = (sint ,s f rac) in
{0,1}× [0,1), output: s f rac− t +(−1)bsint +b

Figure 2: Our secret sharing (all arithmetic is over the reals)

• S is E-friendly w.r.t. every HE scheme E that supports
additive homomorphism over the reals (and whose mes-
sage space contains S2).

• S has a random 1st share and a compact 2nd share.

Proof of Theorem 3.2, correctness. To prove correctness
holds we show that for all x ∈ A, Rec(Shr(x)) = x. Fix
x ∈ [0,1] and let (s1,s2) ← Shr(x). By definition of Shr
there exists b ∈ {0,1} and t ∈ [0,1) such that s1 = (b, t) and
s2 = (sint ,s f rac) for sint = (−1)b (⌊x+ t⌋−b) and s f rac =
x+ t−⌊x+ t⌋. Rec computes x′ = s f rac− t +(−1)bsint + b.
Assigning the value sint = (−1)b (⌊x+ t⌋−b) we have that:

x′ = s f rac− t +(−1)b((−1)b (⌊x+ t⌋−b))+b

= s f rac− t +(⌊x+ t⌋−b)+b

Assigning the value s f rac = x+ t−⌊x+ t⌋ we have that:

x′ = x+ t−⌊x+ t⌋− t +(⌊x+ t⌋−b)+b

which is in turn equal to x, and hence correctness holds.

Proof of Theorem 3.2, security. To prove that (perfect) se-
curity holds we show that for every x ∈ A and i ∈ {1,2},
the distribution {si}(s1,s2)←Shr(x) is uniformly random in
{0,1} × [0,1). The first share s1 is uniformly random in
{0,1}× [0,1) by construction. We next show that the pair
s2 = (sint ,s f rac) is uniformly random in {0,1}× [0,1). The
integral part sint = (−1)b (⌊x+ t⌋−b) is the XOR of ⌊x+ t⌋
with a uniformly random bit b, and therefore sint is a uni-
formly random bit. The fractional part s f rac = x+ t−⌊x+ t⌋
is equal to (x+ t) mod 1 for a uniformly random t ∈ [0,1),
and therefore s f rac is uniformly random in [0,1). Moreover,
since the randomness in sint and s f rac emanates from the in-
dependent random variables b and t respectively, then sint
and s f rac are likewise independent, and so the pair (sint ,s f rac)
is uniformly random in {0,1}× [0,1). We conclude that s1
and s2 are uniformly random in {0,1}× [0,1). This in turn



implies that for every x,x′ ∈A and i ∈ {1,2}, the two distribu-
tions {si}(s1,s2)←Shr(x) and {s′i}(s′1,s′2)←Shr(x′) are identical, and
therefore perfect security holds.

Proof of Theorem 3.2, HE-friendliness over the reals. The
reconstruction algorithm Rec(b,t)(sint ,s f rac) computes over
the reals the degree 1 polynomial s f rac +αsint +β, where the
coefficients are α = (−1)b and β = b− t, and the unknowns
are sint and s f rac.

Proof of Theorem 3.2, random 1st share & compact 2nd share.
For every x ∈ [0,1] and (s1,s2)← Shr(x), s1 is uniformly
random in {0,1}× [0,1), and s2 = Shrs1(x) (by definition of
Shrs1(x)). Moreover, |s2| = |x| (when x and s2 are specified
with the same precision).

3.2 Reals in Floating-Point Representation
We explain now how to apply our scheme on inputs x ∈ [0,1]
specified in floating point representation. The scheme is pa-
rameterized by a precision p, and is denoted by (Shrp,Rec).
The algorithm Shrp first converts the input x to fixed-point in
Q1.p format (i.e., with 1 bit for the integral part and p bits for
the fractional part); then proceeds analogously to Figure 2,
albeit while sampling t in Q1.p format; finally, outputs the
shares after conversion to floating point. The algorithm Rec
is identical to Figure 2, albeit computing on floating-point
numbers. The latter is done for compatibility with the mes-
sage space in libraries implementing CKKS encryption [23],
such as Microsoft SEAL [57], where messages are floating
point numbers in double precision.

More formally, given p ∈ N, for all x ∈ [0,1], denote by
xp the value of x in fixed-point representation Q1.p format
(possibly losing accuracy in the conversion to Q1.p). We say
that (Shr,Rec) is a secret sharing scheme with precision p for
[0,1] if it is secure (as defined in 2.1) and correct w.r.t xp in
the following sense: for all x ∈ [0,1], Rec(Shrp(x)) = xp. The
scheme is specified in Figure 3 and analyzed in Theorem 3.3.

Theorem 3.3 (secret sharing, finite precision). For every p ∈
N, the secret sharing scheme S = (Shrp,Rec) in Figure 3
satisfies the following.

• S is a 2-out-of-2 secret sharing scheme with precision p
for [0,1].

• S is E-friendly w.r.t. every HE scheme E that supports
additive homomorphism over the reals (and whose mes-
sage space contains S2).3

• S has a random 1st share. Moreover, S has a compact
2nd share, provided that the input x is specified with
significand and exponent precision at least p and log2 p,
respectively.4

3We may convert S2 to the message space of E , if needed.
4For x in double precision, taking p = 53 guarantees that the scheme has

a compact 2nd share.

Shrp(x). Given x ∈ [0,1] in finite precision, specified in a
floating point representation, proceed as follows.

1. Convert x to binary fixed-point number in Q1.p format
(i.e., with 1 bit for the integral part and p bits for the
fractional part, possibly losing precision by truncating
the least significant bits)

2. Sample uniformly random (b, t)∈{0,1}× [0,1) where
t is a binary fixed-point number in Q1.p format

3. Compute:

sint = (−1)b (⌊x+ t⌋−b)

s f rac = (x+ t)−⌊x+ t⌋

4. Output s1 = (b, t) and s2 = (sint ,s f rac) with t and s f rac
in a floating point format that preserves their valuea

aFor example, floating point in double precision suffices for p = 53.

Rec(s1,s2). Given shares s1 = (b, t) and s2 = (sint ,s f rac) in
{0,1}× [0,1) (in the same format as in the output of Shr),
output:

s f rac− t +(−1)bsint +b

Figure 3: Our secret sharing in finite precision p

Proof of Theorem 3.3, correctness. Given p ∈ N and x ∈
[0,1] in floating point representation, we show that
Rec(Shrp(x)) = xp. Since the conversion to floating point in
Step 4 of Figure 3 preserves the values of t and s f rac, it follows
that s1 and s2 inputted to Rec satisfy: s f rac = xp+ t−⌊xp + t⌋
and (−1)bsint +b = ⌊xp + t⌋ Therefore the output of Rec sat-
isfies, s f rac− t +(−1)bsint +b = xp as desired.

Proof of Theorem 3.3, security. Fix p ∈N. Consider first the
algorithm Shr∗p that is the same as Shrp except for not con-
verting t and s f rac to floating point in Step 4. Like in Theo-
rem 3.2, b and sint are uniformly random in {0,1}. Denote
by [0,1)p the set of numbers from [0,1) in Q1.p format. In
Step 2, t is sampled uniformly at random from [0,1)p. More-
over, in Step 3, s f rac = xp + t mod 1, so it is likewise uni-
formly random in [0,1)p. Moreover, b and t are sampled
independently, and so also sint and s f rac are statistically inde-
pendent. Therefore, (b, t) and (sint ,s f rac) are both distributed
uniformly at random in {0,1}× [0,1)p. This implies that
for every p ∈ N, x,x′ ∈ [0,1] and i ∈ {1,2}, the distributions
{si}(s1,s2)←Shr∗p(x) and {s′i}(s′1,s′2)←Shr∗p(x′) are identical. Now
consider the algorithm Shr where we do convert t and s f rac
to floating-point representation. Because the conversion to
floating-point does not increase the statistical distance, the dis-
tributions {si}(s1,s2)←Shrp(x) and {s′i}(s′1,s′2)←Shrp(x′) are identi-
cal. Namely, perfect security holds.



Proof of Theorem 3.3, E-friendly and random 1st share.
The proof follows identically to the proof of Theorem 3.2.

Proof of Theorem 3.3, compact 2nd share. To convert Q1.p
to floating-point with no information loss it suffices to use a
floating-point format with significand and exponent of pre-
cision p and log2 p respectively. Concretely, we can convert
z = (z0, . . . ,zp−1) to the floating point number with signifi-
cand z and exponent −p (in binary representation).

4 Compact Storage for HE

In this section we present our compact storage for HE-retrieval
(Section 4.1 and Figure 4) and discuss how our solution fits in
within the larger system (Section 4.2). See also an overview
of our solution in Section 1.2, an illustration in Figure 1, and
a system flow diagram in Figure 5. We provide a rigorous
security analysis in Section 4.3.

4.1 Our Protocol
Our compact storage with HE-retrieval (Figure 4) is com-
prised of two protocols: store and retrieve. In store, the data
producer dataProd secret shares the data and uploads it to
storage; in retrieve, the two servers compSrv and auxService
run a two-party protocol, at the conclusion of which, compSrv
holds a HE ciphertext for the retrieved data. The system relies
on a trusted key management service (KMS) for the trusted
setup phase in Figure 4 (cf. Section 4.2).

Our solution is generic and can be instantiated with any
HE-scheme E and secret sharing scheme S , provided that S is
E -friendly and has a random 1st share and compact 2nd share
(cf. Definition 3.1). For example, it can be instantiated with
additive secret sharing over Zn together with any HE that sup-
ports additive homomorphism over that ring, e.g., BGV [17].5

In the context of our motivating scenario, our compact storage
solution can be instantiated with our secret sharing scheme
for secrets in A = [0,1] (cf. Figures 2-3), together with any
HE scheme that supports additive homomorphism over the
reals, e.g., CKKS [23].

4.2 System Architecture
We now describe how our solution is executed within the
larger system, including applications requesting the compu-
tation, a persistent storage resource, and a key management
service (KMS).

The system flow. The retrieve protocol is initiated by a com-
pute request sent from an application (with identifier appID)
to compSrv, specifying the data location index to compute on.

5In additive secret sharing for Zn, Shr(x) outputs uniformly random s1 ∈
Zn and s2 = x+ s1 mod n and Rec(s1,s2) outputs s1 + s2 mod n. Clearly,
this has a random 1st share, compact 2nd share, and is friendly with respect
to any additive-homomorphic encryption over Zn.

Common parameters: A C -homomorphic CPA-secure HE
scheme E = (HE.Gen, HE.Enc,HE.Dec,HE.Eval). A 2-out-
of-2 secret sharing scheme S = (Shr,Rec) for a domain A
s.t. S is E-friendly, has a random 1st share and compact
2nd share, and (Shrs1 ,Recs1) as specified in Definition 3.1.
A pseudorandom family of functions F = { fk : {0,1}∗→
S1}k∈{0,1}λ . A security parameter λ.

Parties: dataProd, compSrv and auxService.

Trusted setup: Sample (pk,sk)← HE.Gen(1λ) and k←
{0,1}λ. Give pk to compSrv and auxService; and fk to
dataProd and compSrv.

Storage: store is executed by dataProd on input
(index,x) ∈ {0,1}∗×A, as follows.

1. Compute s1← fk(index) and s2← Shrs1(x)

2. Upload to storage (index,s2) with access authorized to
auxService

Retrieval: retrieve is executed by compSrv and auxService,
where compSrv has input index (auxService has no input):

1. compSrv computes s1 ← fk(index), and sends index
to auxService

2. auxService does the following:

(a) Download from storage (index,s2)

(b) Compute c2← HE.Encpk(s2) (if s2 is a tuple, en-
crypt entry-by-entry)

(c) Send c2 to compSrv

3. compSrv outputs c← Evalpk(Recs1 ;c2)

Figure 4: Compact storage for HE over domain A. For ex-
ample, with S of Figure 2, s1 = (b, t), s2 = (sint ,s f rac), and
c2 = (HE.Encpk(sint),HE.Encpk(s f rac)).

Upon receiving such a request, compSrv proceeds as follows:
(1) fetch from the KMS the PRF key and the HE public key
associated with the data at index; (2) forward (index, appID)
to auxService; (3) upon receiving from auxService a HE en-
crypted share, homomorphically reconstruct the data; (4) per-
form the requested computation over the HE encrypted data.
Upon receiving a request from compSrv, auxService proceeds
as follows: (1) fetch from the KMS the HE public key associ-
ated with data at index; (2) download from storage the share
s2(index) in index location, and encrypt it using the HE public
key; (3) send the HE-encrypted share to compSrv. The KMS
handles fetch requests according to the access policy, return-
ing DENY in case the application appID is not authorized
to compute on data at location index. We note that appID
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Figure 5: System architecture and flow

is included in the fetch request, to enable verifying that the
application is authorized to compute on the data at location
index. The storage handles download requests according to
the access policy, returning DENY in case the requesting en-
tity is not authorized to download the data at location index.
See Figure 5 for the described flow. For simplicity, we pre-
sented the flow for a single index and HE key. More generally,
the application can specify a vector of indices together with
a batching pattern and a HE key identifier (indicating under
which public key the retrieval and computation should be
executed). Details follow.

Batched retrieval. The retrieval protocol retrieve can retrieve
multiple data items specified by their indices together with
(optionally) a specification of which data items to pack to-
gether in each retrieved HE ciphertext (batching pattern). Im-
portantly, this batched retrieval supports dynamic and flexible
choice of which data items to pack together in each ciphertext
of the HE (while complying, of course, with the upper bound
on how many data items can be packed in each ciphertext).
To achieve batched retrieval, when auxService encrypts its
shares, it packs in each HE ciphertext the shares corresponding
to the requested data items. Likewise, the computing server
encodes its plaintext shares while adhering to the requested
batching pattern, and upon receiving the packed encrypted
shares from auxService homomorphically evaluates the re-
construction algorithm in a single-instruction-multiple-data
(SIMD) fashion.

Managing authorizations and keys. To enforce access and
authorization policies, each system entity has a unique iden-
tifier, where we use standard mechanisms and services for
registering and authenticating identities (with proper creden-
tials), and for managing the associated keys and policies. For
simplicity of the presentation we focus on access control

granularity at the data producer level, where for each data
producer, an application is either fully authorized (i.e., it is
authorized to request computations on all data uploaded by
the data producer), or the application is fully denied (i.e., it is
authorized to none of the data producer’s data).

The KMS maintains for each data producer the list of autho-
rized identities as detailed next. During an on-boarding phase,
each data producer is on-boarded to the KMS, and the KMS
generates for it a PRF key, and a HE key pair that is used for
homomorphic computations on this data producer’s data (or,
more generally, several key pairs, for different schemes and
parameters, to support versatile homomorphic computations).
Each of the generated HE keys is associated with an access
policy, i.e., a list of identities specifying which applications
are authorized to request computations on the data producer’s
data and to fetch the HE secret key to obtain the result in
cleartext. Likewise, applications are on-boarded to the KMS
by adding them to the access policies of the relevant data pro-
ducers keys. Subsequently, the public key of a data producer
can be fetched from the KMS, by any entity, by specifying
an application’s identity (appID) that is in the list of applica-
tions authorized to compute on the data of this data producer;
whereas the secret key can be fetched only by the authorized
applications themselves. The PRF key, of each data producer,
can be fetched only by compSrv.

Our system guarantees that, for each data producer
dataProd, only authorized applications can obtain cleartext
computation results on dataProd’s data. Moreover, even if
one of the servers (compSrv or auxService) is malicious, it
cannot bias the HE retrieval to be performed under a pub-
lic key other than the key associated with dataProd’s data.
Even an active attack by compSrv sending arbitrary index∗,
results in obtaining the share at location index∗ encrypted
under the HE public key of the data producer associated with



this location. Although compSrv can use the received cipher-
text to homomorphically reconstruct the data, it cannot fetch
the secret key and decrypt if it is not authorized to this data
producer’s data.

Formal modeling of key management and storage. We
model the KMS and storage resources as ideal functionalities,
denoted Fstorage and Fkeys, respectively. These functionali-
ties may be accessed by all system entities (including ones
beyond those considered in our protocol), using the same per-
sistent resources in all sessions and all protocols running in
the ecosystem.

The key management functionality Fkeys (Figure 7) is pa-
rameterized by a data producer dataProd, a HE scheme E ,
and a set of indices ids specifying the entities that are au-
thorized to access the secret key. We remark that, in Fig-
ure 5, fetch requests include also index, as an extra parameter;
this should be interpreted as follows. Upon receiving a fetch
request for (index,appID), first identify the data producer
dataProd that is associated with the data at index (assuming
that, as common in industrial practices, the metadata at loca-
tion index includes the identity of dataProd who uploaded the
data), and then send (Fetch,appID) request to the functional-
ity Fkeys that is parameterized on this dataProd. Moreover,
to support multiple HE schemes and keys, Fkeys initializes the
keys, stores them with unique key identifiers (keyID’s). Then
fetch requests include appID together with keyID.

The storage functionality Fstorage (Figure 6) maintains up-
loaded records of the form (index,value, IDs), where index
is a unique record identifier, value is the stored data, and IDs
is the set of parties authorized to download the record. Down-
load requests are answered only if the requesting entity is
authorized to receive the data, i.e., the entity appears in the
IDs of the requested index.

Our protocol (Figure 4) is realized using the ideal func-
tionalities Fstorage and Fkeys as follows. The trusted setup is
executed by calling Fkeys initialization to generate the HE
and PRF keys. In retrieve, both compSrv and auxService
send (Fetch,appID) to Fkeys, and receive in response the
HE public key (provided appID is authorized); in addition,
compSrv receives also the PRF key. Upload and down-
load operations (in store and retrieve, respectively) are ex-
ecuted by sending to Fstorage (Upload, index,s2,auxService)
and (Download, index) requests, respectively.

4.3 Security Analysis
Our solution is compact, private, and correct in the following
sense. Compactness is in the sense that there is no overhead
in storage size over standard storage such as storing AES
encrypted data. Privacy is in the sense that data secrecy is
preserved at all time, against any active adversary control-
ling at most one out of the servers compSrv and auxService.
Correctness is in the sense that the retrieved HE ciphertext
decrypts to the stored value (and all parties are ppt). That

Shared Functionality Fstorage

Shared functionality Fstorage proceeds as follows:

Upload. Upon receiving from a party P a message:

(Upload, index,value, IDs)

record the tuple (index,value, IDs) (ignore if a record
(index, ·, ·) was previously recorded).

Download. Upon receiving from a party Pj a message:

(Download, index)

output (index,value) to Pj, if (index,value, IDs) was
previously recorded by Fstorage and IDs contains Pj
(Otherwise return DENY).

Figure 6: The storage functionality

Shared Functionality Fkeys

Parameterized by data producer dataProd, a HE scheme
E = (Gen,Enc,Dec,Eval), and identities ids, shared
functionality Fkeys proceeds as follows:

Init. Sample and record (pk,sk)← Gen(1λ) and
k←{0,1}λ. Output k to dataProd.

Fetch key. Upon receiving a (Fetch,appID) message from
a party P proceed as follows:

• If P ∈ ids return (pk,sk)

• If appID ∈ ids return pk and if P is compSrv then
additionally return k

• Otherwise return DENY

Figure 7: The keys functionality

is, the output ciphertext c obtained by first executing store
on data item x and database location index and then execut-
ing retrieve on index satisfies that HE.Decsk(c) = x (where
sk is the secret key for HE as generated during setup). To
formally state these properties we first set some notations. We
denote the output and view of compSrv in an execution of the
protocol in Figure 4 by

outcompSrv(x; index,λ) and
viewcompSrv(x; index,λ)

respectively, where the view consists of the party’s input, ran-
domness and received messages. Analogously, we denote the
view of auxService by viewauxService(x; index,λ). We denote



the values uploaded to storage during the execution by

storage(x; index,λ)

and denote their storage size by |storage(x; index,λ)|. We
compare the latter to the size |x| of directly storing x.

Theorem 4.1 (compact storage for HE over domain A). The
protocol in Figure 4 satisfies the following:

• Compactness. For every (index,x) ∈ {0,1}∗ ×A and
λ ∈ N,

|storage(x; index,λ)|= |x|

• Privacy holds against any (active) ppt adversary con-
trolling either compSrv or auxService, but not both.
Formally, for every ppt P∗ ∈ {compSrv∗,auxService∗},
and every ppt distinguisher D that chooses index and
x0,x1 ∈ A s.t. |x0|= |x1|,∣∣Pr[D(viewP∗(x0; index,λ)) = 1]

− Pr[D(viewP∗(x1; index,λ)) = 1]
∣∣≤ neg(λ)

(the probability is over all randomness in the protocol).

• Correctness.6 For every (index,x) ∈ {0,1}∗×A, with
probability at least 1−neg(λ) the following holds:

Decsk (outcompSrv (x; index,λ)) = x

(the probability is over all randomness in the protocol).
Moreover, dataProd, compSrv and auxService are ppt.

Proof. The proof appears in Appendix A.

5 Empirical Evaluation

We implemented our compact storage with HE-retrieval (Fig-
ure 4) into a system, named CSHER, and ran extensive exper-
iments demonstrating that our system has compact storage
with zero overhead over storing AES encrypted data, and
nearly optimal runtime complexity.

5.1 The Implemented System
CSHER is instantiated with: (1) CKKS [23] HE scheme using
Microsoft SEAL version 3.6.2 [57]; (2) our secret sharing
scheme for reals (Figure 2); and (3) a PRF based on HMAC
with SHA-256 using OpenSSL version 1.1.1. The implemen-
tation is in C++, compiled with g++ version 9.3.0 and C++
standard 17. Everything is running on a Docker container,
based on an Ubuntu 20.04.2 image. Access control is imple-
mented by using AES-GCM-256 symmetric key encryption

6If the protocol employs a secret sharing scheme for [0,1] with
precision p (cf. Section 3.2), then correctness holds w.r.t xp, i.e.,
Decsk

(
outcompSrv (x; index,λ)

)
= xp (where xp is the value returned when

converting x to Q1.p fixed-point format).

to encrypt stored shares for the data under a secret-key ac-
cessible to dataProd and auxService, but not to compSrv. As
an optimization we upload to storage the AES encryption of
s′2 = sint + s f rac, so that only a single ciphertext is required
for each data item; when auxService downloads the AES ci-
phertext of s′2, it decrypts and computes s2 = (⌊s′2⌋ ,s′2−⌊s′2⌋).
We ran experiments in both a single-cloud and a multi-cloud
environment.

Single cloud system. We ran our implementation on AWS
EC2 instances with AWS S3 storage. We use a separate
AWS EC2 instance for each entity (dataProd, compSrv and
auxService), all residing in the same AWS subnet. Our im-
plementation is single threaded and runs on standard EC2 in-
stances of type M5.2xlarge (32 GB RAM and up to 10 Gbps
network bandwidth). The storage is in an AWS S3 bucket
residing in the same AWS region as the EC2 instances. Com-
munication between compSrv and auxService is via HTTP
using Microsoft’s cpprestsdk library.

Multi cloud system. We ran our implementation in a multi-
cloud environment where compSrv runs on a Google Cloud
(GC) Virtual Machine (VM) of type n2-standard-8, while
dataProd, auxService and the storage are identical to those
used in our single-cloud system. We note that EC2 m5.2xlarge
and GC VM n2-standard-8 instances are similar in charac-
teristics, both having 8 vCPUs and 32GB memory, but not
necessarily identical. Our Google Cloud Virtual Machine and
the AWS EC2 instances reside in GC us-west1 and AWS
us-west-2, respectively.

5.2 Experiments
We measured storage size, runtime and communication in
both our single-cloud and multi-cloud systems and compared
performance to the baseline solution of storing and download-
ing the data directly in HE-encrypted form using Zstandard
library compression. Furthermore, we report performance of
a full pipeline execution consisting of HE-retrieval followed
by homomorphic computation over the HE-retrieved data.

We use the same parameters when executing both our sys-
tem and the baseline solution, as follows. Both are imple-
mented with CKKS in Microsoft SEAL as the HE scheme,
using the same AWS S3 bucket for storage, and with security
parameter 128 bits. The degree of the cyclotomic polynomial
ranged over all values supported in SEAL: 8192, 16384 and
32768, with 30 bits of precision for the plaintext moduli at
each level of homomorphic computation. The number slots
of data items that can be packed in each ciphertext is half the
degree of the cyclotomic polynomial. Performance is evalu-
ated both in batched mode (packing slots data items in each
ciphertext)7 and in un-batched mode (a single data item in

7This affects storage size not only for HE, but also for AES where batching



each ciphertext).
Data items are synthetically generated from [0,1] with finite

precision, and represented as double-precision numbers ac-
cording to the IEEE 754 standard [3]. The randomness in the
secret sharing is taken as a fixed-point number with the same
precision. The number of data items n ranges over the follow-
ing values: 2, 4096, 16384, 98304, 507904 and 2031616.

Keys are kept in cache memory of the relevant party, and are
reused across executions of the protocol. Each experiment is
repeated 20 times, taking the average and standard-deviation.

We ran both end-to-end and microbenchmarks experiments.
The end-to-end experiments compare the performance of our
system vs. the baseline solution in: storage size; end-to-end
runtime during store; and end-to-end runtime during retrieve.
The microbenchmarks measure runtime in each computation
step and the communication.

5.3 Results
Performance of our HE-retrieval system. The empirical
evaluation of both our single-cloud and our multi-cloud sys-
tems demonstrates that they attain:

• Compact storage size: 10× better than the baseline in
batched mode, and 104× better if un-batched.

• Fast end-to-end runtime: only twice the optimal time.

See Table 2 and Figures 8a-8b for our results in experiments
with a degree 8192 cyclotomic polynomial. We note that the
storage phase in our solution is faster than the baseline, but re-
trieval is slower. Essentially, our storage is faster because we
store AES ciphertexts rather than encrypting and storing HE
ciphertexts; whereas our retrieval is slower because it includes
HE encryption, and HTTP serialization and deserialization of
the HE ciphertexts (rather than fetching from storage previ-
ously encrypted HE ciphertexts). We remark that the HTTP
serialization and deserialization (provided by SEAL library)
consume roughly half of the retrieval time. Table 4 shows the
breakdown of end-to-end storage and retrieval runtime mea-
surements into specific operations and HTTP communication
complexity; see Table 1 for the correspondence to Figure 4.
The experiments with degrees 16384 and 32768 cyclotomic
polynomial show essentially no change in performance, pro-
vided full batching capacity is utilized (because the increase
in complexity per ciphertext is fully compensated by increase
in the number of slots per ciphertext).

We note that there is almost no performance difference in
our single vs. multi cloud systems. Concretely we can see
in Table 4 that, despite hugely different sizes of data sent
over HTTP, the communication time has grown by an almost
constant factor of 0.1 to 0.23 seconds. This is expected as
the distance between the servers affects the latency but not
the throughput. As evident in Table 2, the overall effect of

means that we use one IV for many data items.

the additional latency on retrieval time is small and becomes
relatively negligible as data size and processing time increase.
In fact for 2,031,616 data items we even see a small improve-
ment in the retrieval time, and this is probably due to some
differences in the hardware between the VMs.

Retrieve-then-Evaluate. In Table 3 we report performance
when executing our HE-retrieval solution followed by homo-
morphic evaluation of a decision tree over the HE-retrieved
data. We HE-retrieved 1,966,080 data items, corresponding
to 327,680 feature vectors (samples) of 6 features each, and
homomorphically evaluated over them a depth four decision
tree, using the algorithm from [6]. The HE parameters tightly
support the homomorphic computation at hand (degree 16K
cyclotomic polynomial with ciphertext modulus that is a prod-
uct of eight 30-bits primes and a 50-bits special prime), and
we fully utilized the batching capacity (8192 data items per
ciphertext). This is made possible by our solution’s capability
to dynamically select HE parameters and batching pattern at
retrieval time. Our results exhibit fast performance: 0.57ms
runtime per data sample for the full pipeline. This runtime is
comprised of 0.04ms (7%) for the homomorphic reconstruc-
tion and 0.53ms (93%) for the homomorphic tree evaluation.
We note that the former is a constant overhead, independent of
the homomorphic computation at hand; e.g., when executing
homomorphic training, the former still requires 0.04ms while
the latter takes much longer (minutes to hours when using the
algorithm from [6]).

We compare our performance to the baseline solution of
directly storing HE ciphertexts, while focusing on scenarios
A-D detailed next (cf. Table 3).

• Scenario A: the target computation and data are known
at upload time. So HE parameters and batching profile
are set as to optimize runtime (identically to the parame-
ters in executing our system); but there is no support for
homomorphic computations requiring higher HE param-
eters or different batching.

• Scenario B: target data and batching is known at up-
load time, but the target computation is not known. So,
HE parameters are set to support versatile computations
(degree 32K cyclotomic polynomial with ciphertext mod-
ulus that is a product of ten 45-bits primes and a 60-bits
special prime), and retrieved ciphertexts utilize full batch-
ing capacity (16384 data items in each ciphertext).

• Scenario C: the converse of B – the target computation
is known at upload time, but the target data is not known
at upload time. So, HE parameters are set as in Scenario
A, and retrieving m data items may require, in the worst
case, retrieving m ciphertexts (more generally, between
m/slots and m, depending on the fraction of slots per
ciphertext containing relevant data items).



Table 1: Microbenchmarks to Figure 4 steps correspondence

Entity Data Producer Computing Server Auxiliary Server

Benchmark
Share

AES
Upload

Process HMAC
Reconstruct Download

AES HE
Prepare

operation encrypt HTTP share decrypt encrypt HTTP
response derivation response

Fig. 4 step #
store1 store2 store2

read stream
retrieve1 retrieve3 retrieve2a retrieve2b retrieve2b

serialize &
/other details & deserialize write to stream

Table 2: Storage size (MB) and runtime (seconds) in end-to-end experiments

Number Storage Size (MB) Runtime (s)
of data Batched Un-batched Store Retrieve

items Ours Baseline Ours Baseline Ours Baseline Ours Baseline
single multi
cloud cloud

2 0.00003 0.3 0.00006 0.8 0.02 0.10 0.05 0.15 0.03
4,096 0.03 0.3 0.1 1,389.0 0.06 0.10 0.06 0.16 0.04

16,384 0.10 1.4 0.5 5,554.0 0.07 0.10 0.16 0.26 0.05
98,304 0.80 8.0 3.0 33,325.0 0.20 0.50 0.90 1.00 0.10

507,904 4.00 42.0 16.0 172,179.0 0.70 1.90 4.50 4.60 0.60
2,031,616 16.00 168.0 65.0 688,718.0 2.00 7.80 17.80 17.60 2.50

(a) Storage size (MB) in our solution vs. baseline, on data items en-
crypted one-by-one (top) or in batched form (bottom)

(b) End-to-end time (seconds) in our solution vs. baseline for storage
(top) and retrieval (bottom)

Figure 8: Performance: storage size (left) and runtime (right)



Table 3: Retrieve-then-Evaluate Ours vs. Baseline A-D, on
samples with 6 features.

Versatile Ho-
momorphic
Computa-

tions?

Cherry
Pick-
ing

Data?

Storage
per

Sample
(KB)

Runtime
per

Sample
(ms)

A × × 0.50 0.53
B ✓ × 0.50 1.70
C × ✓ 3600.00 74.23
D ✓ ✓ 7200.00 158.39

Ours ✓ ✓ 0.05 0.57

• Scenario D: neither computation nor data are known at
upload time. So, HE parameters are set as in Scenario B,
and retrieving m data items is as in Scenario C.

In Scenarios C-D, not fully utilizing batching slows down
the homomorphic computation on the retrieved ciphertexts to
28,827ms per sample; however, this may be remediated by
first homomorphically packing the retrieved data, and then
applying the homomorphic evaluation on the produced fully
batched ciphertexts. In the empirical evaluation of Scenarios
C-D, we implement homomorphic packing as follows: we
store in each ciphertext a single data item replicated in all
slots, and homomorphically pack the desired batch by homo-
morphically zeroing out unwanted positions and summing up
the ciphertexts of interest.8 This entails storing six ciphertexts
for each sample (one for each feature); each ciphertext size is
0.6MB and 1.2MB in Scenarios C and D respectively. We note
that it is possible to improve on the storage size while incur-
ring a degradation in runtime performance. Concretely, when
implementing Scenarios C-D, we could store fully batched ci-
phertexts (without replications), and homomorphically repack
by employing rotations (together with zeroing out unwanted
positions). However, this incurs more than 20× slowdown
compared to the former approach, resulting in runtime over
3406ms per sample, with HE parameters of Scenario D. More-
over, the use of rotations incurs a higher noise accumulation,
resulting in data corruption in Scenario C (due to its lower
HE parameters).

Comparison to Baselines B-D. Our solution strictly out-
performs Baselines B-D, in both storage and runtime. Our
solution offers saving in storage by a factor of 10×, 72,000×
and 144,000× compared to Scenarios B, C and D, respec-
tively; and runtime speedup by a factor of 3×, 130× and
278×, respectively. See Table 3.9

8I.e., let x j be the desired item for position j, x j = (x j, . . . ,x j), and e j the
unit vector with 1 at position j, we homomorphically evaluate ∑

slots
j=1 e jx j .

9Storage size per sample is the same in Scenarios A-B (cf. Table 3),
despite B having higher HE parameters leading to larger ciphertexts. This is
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Figure 9: Costs in USD (y-axis) of storage and retrieval, based
on AWS pricing, for Our solution (blue triangles) vs. Baseline
A (orange circles), when storing 25PB of data and retrieving
up to 1020 data items (x-axis), in log-log scale.

Comparison to Baseline A. Our solution outperforms Base-
line A in storage (10× saving) and in its support for ver-
satile homomorphic computations, data cherry picking and
dynamic batching, while incurring only a minor degradation
in runtime (0.04ms overhead per sample). See Table 3. We
illustrate (Figure 9) the monetary implications of using our
solution compared to Baseline A, by extrapolating our em-
pirical measurements to massive amounts of data. We rely
on AWS pricing [1] for M5.2xlarge EC2 machine and S3
bucket as used in our system ($0.242 per computing hour,
and $0.02 for 1GB storage per month). Consider a data lake
of 25PB of data. AWS storage costs approximately $0.5M
per month; so our solution saves roughly $4.5M per month
in storage costs compared to the baseline solution of directly
storing HE ciphertexts. Furthermore, even when accounting
for the overhead in HE-retrieval compared to directly retriev-
ing HE ciphertexts – which is, 15.1s runtime for two million
HE-retrieved data items (cf. Table 2), costing $0.001 – our
solution is cost effective for HE-retrieval of almost 1016 data
items per month. This is because, initially, the storage cost
dominates the overall cost – and so, our solution offers sub-
stantial savings; but, gradually, the runtime cost becomes the
dominating factor (as storage is constant in our experiment,
whereas the runtime is linearly increasing in the number of
retrieved data items), leading to a linear cost overhead in our
solution.

5.4 Optimization: Parallelization & Streaming

The retrieval runtime in our solution can be significantly and
easily optimized by parallelization. In our current implemen-
tation, all operations are performed sequentially. They can

because Scenarios A-B store batched ciphertexts, and so the number of slots
per ciphertexts increases proportionally to the increase in ciphertext size. In
contrast, Scenarios C-D do not employ batching, and therefore the storage
per sample increases with the increase in HE parameters.



Table 4: Microbenchmarks

Number Runtime (seconds) HTTP
of Data Producer Computing Server Auxiliary Server Communication
data Share AES Upload Process HMAC Recon- Down- AES HE Prepare Size Runtime
items encrypt HTTP share struct load decrypt encrypt HTTP (MB) (seconds)

response derivation response single multi
cloud cloud

2 0.00001 0.00001 0.02 0.01 0.00001 0.004 0.01 0.000003 0.01 0.01 0.7 0.001 0.1
4,096 0.003 0.00005 0.06 0.01 0.003 0.004 0.02 0.00001 0.01 0.009 0.7 0.001 0.1
16,384 0.01 0.0002 0.06 0.03 0.01 0.02 0.02 0.00004 0.06 0.04 2.7 0.001 0.09
98,304 0.08 0.001 0.1 0.2 0.07 0.09 0.03 0.0002 0.3 0.2 16.0 0.010 0.13
507,904 0.4 0.005 0.3 1.0 0.5 0.5 0.08 0.001 1.7 1.2 83.0 0.06 0.14
2,031,616 1.5 0.02 0.4 3.9 1.5 1.9 0.3 0.01 6.7 4.8 331.0 0.25 0.48

be fully parallelized so that each thread handles a single HE
batch (for encryption) or HE ciphertext (for serialization, dese-
rialization, reconstruction), that make up together about 78%
of the retrieval runtime. Namely, using AWS EC2 instances
with 96 vCPUs, we can reduce 78% of the current runtime by
a factor of 96.

Further optimization can be achieved by handling the data
sent from Auxiliary Server to Computing Server as a stream.
In the current implementation, Computing Server waits for the
HTTP response to be returned from Auxiliary Server before it
starts to process it. In contrast, with streaming implementation,
the Computing Server will process the HE ciphertexts as it
gets them, while, in parallel, Auxiliary Server still generates
the remaining ones. This will yield an overall running time
that is the maximum of the Computing and Auxiliary servers
runtime rather then their sum, which amounts to roughly 40%
reduction in the total runtime.

6 Conclusions

We presented a compact storage with HE-retrieval solution
that eliminates the high storage overhead associated with stor-
ing HE-ciphertexts. Our solution attains: compact storage,
equal to storing AES ciphertexts; fast runtime, nearly as fast
as directly storing and retrieving HE ciphertexts; dynamic con-
trol, at the time of retrieval, of the data items to be retrieved
and the HE parameters and batching profile; compatibility
to common industry’s architecture tools and best-practices;
and rigorous security analysis. As a central tool we introduce
the first perfect secret sharing scheme with efficient homo-
morphic reconstruction over the reals. We implemented our
solution into a system running on AWS EC2 instances and S3
storage. Further major performance speedup is available via
parallelization and streaming. This gives a viable solution for
use-cases requiring homomorphic computation on sensitive
data in long-term storage.
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A Proof of Theorem 4.1

Proof of Theorem 4.1. Let E = (Gen,Enc,Dec,Eval) be a C -
homomorphic CPA-secure public key encryption scheme, let
S = (Shr,Rec) be E-friendly secret sharing scheme with
random 1st share for domain A, and let λ ∈ N be a security
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parameter and fk be a function sampled uniformly at random
from a pseudorandom function family F = { fk : {0,1}∗→
S1}k∈{0,1}λ,λ∈N with |k|= λ. Let π = (store, retrieve) be our
protocol from Figure 4 when instantiated with E and S for the
HE and secret sharing schemes, and with Fstorage and Fkeys
for the storage and key management functionalities.

The ppt complexity of dataProd, compSrv, and auxService
follows from all components ((Shr,Rec), fk, Enc, and Eval)
being ppt algorithms.

The correctness of π stems from the correctness and E-
friendliness of the secret sharing, and the C -homomorphism
of E . More formally, fix some x ∈ A, index ∈ {0,1}∗ and
λ ∈ N, and let s1 ← fk(index) and s2 ← Shrs1(x). The E-
friendliness together with C -homomorphism of E guarantees
that for every (pk,sk) in the range of Gen(1λ) it holds that

Pr
[
Decsk

(
Evalpk

(
Recs1 ,Encpk(s2)

))
̸= Recs1(s2)

]
≤ neg(λ)

(1)

In addition, the correctness of S = (Shr,Rec) and the range of
fk : {0,1}∗→ S1 guarantees correctness of the reconstructed
value when sampling s1 is done with fk, and therefore

Recs1(s2) = Rec(s1,s2) = x (2)

Combining together Equations 1-2 we obtain

Pr
[
Decsk

(
Evalpk

(
Recs1 ,Encpk(s2)

))
̸= x

]
≤ neg(λ) (3)

Moreover, the construction of π defines the out-
put of compSrv to be outπ

compSrv (x; index,λ) =

Evalpk
(
Recs1 ,Encpk(s2)

)
and hence implies to-

gether with Equation 3 the correctness of π, i.e.,
Pr

[
Decsk

(
outπ

compSrv (x; index,λ)
)
̸= x

]
≤ neg(λ).

The compactness of π follows directly from the 2nd share
compactness together with the construction in Figure 4, as
for any input x only the second share s2 is being stored and
|s2|= |x|.

The privacy proof for any ppt adversary compSrv∗ relies
on its view being independent of x (and presumably only
depending on the size of x). More formally, consider a con-
struction π̄ similar to π, where on any index∗ received from
compSrv∗ instead of Step 2b of retrieve in π the auxiliary
service auxService encrypts a random r ∈ S2 s.t |r| = |s2|.
From the CPA-security of E we obtain that for any x ∈ A,
index ∈ {0,1}∗ and λ ∈ N the following holds:

viewπ

compSrv∗(x; index,λ)≈c view
π̄

compSrv∗(x; index,λ) (4)

In addition, the first share as derived in an execution of π̄

depends only on fk(·) and is independent of x. Therefore, for
any λ ∈ N, every ppt distinguisher D that chooses x,x′ ∈ A
s.t. |x|= |x′| and any index the following holds:∣∣∣Pr[D(viewπ̄

compSrv∗(x; index,λ)) = 1]−

Pr[D(viewπ̄

compSrv∗(x
′; index,λ)) = 1]

∣∣∣≤ neg(λ)

Combining this with Equation 4 we obtain the desired.
For the privacy proof against any auxService∗, first note

that if π is executed on a previously used index then the
view of auxService∗ is completely independent of the current
execution input data x, as nothing related to it was stored
in Fstorage. Therefore we consider executions with a unique
index.

Consider a version of π, denoted by π̄, where fk is re-
placed by sampling s1 ←R S1 at random. That is, Step
1 of store in Figure 4 is replaced with s1 ←R S1 and
(Upload, index,s1,compSrv) to Fstorage and Step 1 in retrieve
is replaced with sending (Download, index) to Fstorage to get
s1. Since π̄ is executed on a unique index it holds that for any
x and index the distribution of shares (s1,s2) produced by Shr
is identical to the distribution produced by sampling s1 with
a uniformly, randomly sampled function R from the set of
all functions {R : {0,1}∗→ S1} and having s1 ← R(index).
Moreover, the pseudorandomness property guarantees that
for every x, the shares (s1,s2) produced by fk are distributed
computationally close to shares produced by R. Therefore,
for any λ ∈ N, x ∈ A and any index the following views are
indistinguishable,

viewπ

auxService∗(x; index,λ)≈c view
π̄

auxService∗(x; index,λ)
(5)

Next fix some value y ∈ A and consider a version of π̄,
denoted by π̄y, with a modified storage functionality F y

storage
that behaves as Fstorage besides that on any download request
from auxService∗ with respect to any index that is stored it
computes s1 ← R(index) and s2 ← Shrs1(y) and returns s2.
By the perfect security of (Shr,Rec) and a hybrid argument
it is guaranteed that for any λ ∈ N, x ∈ A and every index

viewπ̄

auxService∗(x; index,λ)≡ viewπ̄y

auxService∗(x; index,λ) (6)

Note that the view of any auxService∗ in π̄y is completely
independent of the input x since in F y

storage the reply of s2 is
derived from a fixed and independent value y. Therefore, we
obtain that for any λ ∈N, every x, x′ ∈ A s.t |x|= |x′| and any
index the following holds:

viewπ̄y

auxService∗(x; index,λ)≡ viewπ̄y

auxService∗(x
′; index,λ)

Combining this with Equations 5 and 6 we obtain the
desired, i.e., for any λ ∈ N, every ppt distinguisher D that
chooses x, x′ ∈ A s.t |x|= |x′| and any index,∣∣∣Pr[D(viewπ

auxService∗(x; index,λ)) = 1]−

Pr[D(viewπ

auxService∗(x
′; index,λ)) = 1]

∣∣∣≤ neg(λ)

as desired.
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