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Abstract
Untrusted hardware supply chains enable malicious, powerful,
and permanent alterations to processors known as hardware
trojans. Such hardware trojans can undermine any software-
enforced security policies deployed on top of the hardware.
Existing defenses target a select set of hardware components,
specifically those that implement hardware-enforced security
mechanisms such as cryptographic cores, user/kernel privilege
isolation, and memory protections.

We observe that computing systems exercise general pur-
pose processor logic to implement software-enforced security
policies. This makes general purpose logic security critical
since tampering with it could violate software-based secu-
rity policies. Leveraging this insight, we develop a novel
class of hardware trojans, which we dub Jinn trojans, that
corrupt general-purpose hardware and can hide in many
places within a processor to enable flexible and powerful high
level attacks. Jinn trojans deactivate compiler-based security-
enforcement mechanisms, making type-safe software vulner-
able to memory-safety attacks by compromising a single bit
of architectural state. We show that Jinn trojans are effective
even when planted in general purpose hardware, disjoint from
any hardware-enforced security components. We show that
protecting hardware-enforced security logic is insufficient to
keep a system secure from hardware trojans.

1 Introduction

The increasing complexity of modern System-on-chips (SoCs)
incentivises companies to outsource the designs of hardware
design blocks [21, 35]. Similar to code reuse via software
libraries, sourcing third-party intellectual property (3PIP) al-
lows system integrators to benefit from highly optimized or
specialized designs. The increased dependence on 3PIP ex-
poses the hardware supply chain to the danger of malicious
logic planted at design-time [34, 41, 44, 47, 86]. Rogue de-
signers or malicious design houses can inject design-time
trojans that permanently hide in an otherwise functional hard-
ware component. Such trojans compromise the security of

SoCs assembled by system integrators. Maliciously designed
components masquerade as benign functional units, but alter
critical signals under a stealthy set of run-time conditions
that allows the trojan to persist undetected until deployment.
When the run-time conditions trigger the trojan [65, 86], the
malicious hardware modifies the processor’s behavior to en-
able attacks against the system. Such trojans can leak crypto-
graphic keys [31, 48, 51] or cause application code to execute
within the processor’s privileged mode [44].

Existing hardware trojans typically target processor mech-
anisms that implement hardware-enforced security policies
(e.g., the user-kernel mode bit [82]). Such trojans, limited to
attacking hardware-enforced security logic, invite increased
scrutiny of the hardware components implementing those se-
curity features. Such hardware components may be subjected
to verification or simply implemented in-house [80]. Further,
prior work on defense mechanisms emphasizes the depen-
dence of annotated hardware designs or security-critical hard-
ware invariants that are generally decided at design-time, and
generic to any particular software workloads [36, 72, 84, 87].
From a malicious hardware-designer’s perspective, it seems
challenging to place trojans at design-time in components
used to implement hardware-enforced security policies that
are highly analyzed and verified.

Many security policies are enforced by software that uti-
lizes processor features not typically associated with security.
For example, array bounds checks inserted by a compiler for
a type-safe programming language protect programs from
buffer overflow attacks [58, 70] using simple comparison and
conditional branch instructions. We find that trojans that tam-
per with hardware used to implement software-enforced se-
curity policies can deliver payloads with comparable effects
on system security while evading modern trojan detection
schemes. Such trojans can indiscriminately hijack software
running in multiple processor modes, affecting application
code, operating system kernel code, and software running
within a trusted execution environment (TEE).

Such trojans are not isolated to specific processor compo-
nents typically associated with security enforcement; any part



of the processor that is used to implement instructions used
by software to enforce security policies can be tampered to
implement these trojans. Therefore, there is no singular self-
contained component that requires increased scrutiny. In short,
we observe that general-purpose hardware used to implement
instructions involved in compiler-injected safety-checks is
security-critical.

Despite their advantages, designing a trojan that thwarts
software-enforced security policies poses several challenges:

• Trojans must precisely distinguish between instructions
from software that is enforcing security and the same
instructions used elsewhere.

• Malicious hardware designers may be limited to hard-
ware modifications within a single non-security-critical
Intellectual Property (IP) block.

• Trojans can’t be tightly tailored to specific software and
must remain useful across patches to application soft-
ware.

We prototype Jinn trojans, a new class of trojans that at-
tacks in-flight memory safety checks injected by type-safe
programming language compilers. Such compilers add auxil-
iary instructions into a program during compilation to main-
tain that program’s safety properties (in this case, type-safety
and memory-safety) during execution. Our Jinn trojans hide
in general-purpose hardware IP blocks of a CPU core and
tamper with the execution of safety checks, allowing attackers
to exploit the now vulnerable memory accesses within type-
safe software. In effect, Jinn trojans make type-safe software
vulnerable to return-to-libc [71], return-oriented program-
ming [58], and other memory safety attacks.

In summary, this paper makes the following contributions:

• We show that building a Jinn trojan is possible. Using
gem5, we build end-to-end Jinn trojans that successfully
launch code-reuse attacks on Rust programs to spawn a
shell.

• We implement a Jinn trojan prototype in a large out-
of-order RISC-V core and evaluate its complexity and
power consumption.

• We design two trigger mechanisms necessary to deliver
Jinn payloads and demonstrate trade-offs between versa-
tility, precision, and attacker-effort.

The rest of the paper is organized as follows. Section 2 pro-
vides background material on hardware trojans and memory
safety. Section 3 describes our threat model. Section 4 de-
scribes the Jinn attack methodology. Section 5 describes the
design of Jinn hardware trojans, and Section 6 describes the
attacker steps and corresponding malicious software that ex-
ercises the trojans. Section 7 describes our end-to-end attack

implementations. Section 8 describes our RTL implemen-
tation. Section 9 presents the complexity of our gem5 and
RTL trojan implementations. Section 10 discusses potential
mitigations against Jinn trojans. Section 11 compares Jinn-
style attacks to related work. Finally, Section 12 presents our
conclusions.

2 Background

2.1 An Untrusted Hardware Supply Chain
The hardware supply chain broadly comprises three stages:
design, fabrication, and deployment. The growing complexity
of hardware designs and market deadline requirements encour-
age heavy re-use of hardware component designs, similar to
the reuse of software libraries. Hardware engineers at the de-
sign stage use Hardware Description Languages (HDLs) like
Chisel [20], Bluespec [54], Verilog, and VHDL to specify the
behavior of hardware components. Proprietary hardware de-
signs are commonly implemented and integrated at this stage;
they may be distributed as black-boxes, protecting third-party
intellectual property (3PIP) to maintain profitability of highly
specialized and optimized hardware designs [35].

The design stage presents an opportunity for powerful at-
tackers such as nation-states or significant stakeholders in the
hardware design space to inject malicious functionality into
hardware designs [69]. Such malicious alterations are called
design-time hardware trojans [34, 41, 44, 47, 86]. An attacker
attempting to place design-time trojans will have access to the
HDL-level implementation of the hardware design, allowing
attackers to implement trojans that affect relatively high level
behavior of the hardware. In comparison, fabrication-time
trojans [23, 31, 48, 56, 82] are injected through alterations at
the layout level of a hardware design and, consequently, rely
on the sophistication of reverse-engineering techniques [57]
to infer high level behavior.

2.1.1 Hardware Trojan Construction

The design of hardware trojans can be separated into two
logical components: a trigger and payload [69].

The trigger defines the mechanism for activating the tro-
jan’s malicious behavior; until the trigger activates the tro-
jan, the processor exhibits no malicious behavior. Effective
trojans must successfully evade verification testing – when
hardware blocks are tested for their functionality. Trojans
that erroneously activate on benign workloads will be caught
during verification testing and fail to reach deployment as
the processor’s behavior will deviate from expected benign
behavior. Trojans must therefore be stealthy. They can evade
detection by hiding in the enormous state space of modern
integrated circuits (ICs) and snooping for an attacker-defined
secret value or waiting on a set of conditions that have a low
probability of occurring during benign workloads.



The trojan’s payload defines the malicious function that is
delivered when the trigger conditions are met – commonly
overriding a benign signal. Payloads typically target security-
critical control signals that lead to breaches in confidentiality
(e.g. leaking cryptographic keys) [23, 48], integrity (e.g. flip-
ping the user/kernel privilege bit) [44, 82], or availability (e.g.
a kill-switch crashing the system) [15].

2.2 Memory Safety Guarantees
Programs written in safe programming languages like
Java [33] and Rust [45] are guaranteed to be type-safe. Their
type-safety ensures that accesses to memory via pointers al-
ways access the correct memory object (called the referent
memory object [60]). The compiler for such languages may
insert checks into the code to enforce type-safety at run-time;
this is most notably done for array bounds checks [9, 46].
Because of these bounds-checks, type-safe programs are
invulnerable to memory safety attacks such as code injec-
tion [55], return-to-libc [71], and return-oriented program-
ming (ROP) [58] attacks which corrupt control data (such as
function pointers and return addresses) to divert control flow
to code of the attacker’s choosing.

To maintain safe operation, compilers for type-safe lan-
guages rely on hardware to correctly implement the machine
instructions (also referred to as machine code and native code)
that implement the run-time checks. If the processor some-
how modifies the behavior of these instructions, the run-time
checks no longer work, and the program, even though its
source code is type-safe, is now vulnerable to memory safety
attacks.

3 Threat Model

We adopt a well-studied design-time trojan threat model [31,
34, 38, 65, 69, 73, 76, 85, 86]. The attacker’s goal is to place
a design-time trojan in a system-on-chip (SoC) that remains
undetected through verification testing and is placed on a de-
ployed machine. This machine deploys software written in
type-safe programming languages such as Rust [45], Java [33],
Go [11], C# [12], and Kotlin [17]; the software is therefore
protected by run-time checks inserted by the type-safe lan-
guage compiler.

Attackers attempting to place design-time trojans have (or
can reverse-engineer) high-level behavior of hardware com-
ponents such as branch-predictors, decoders, computational-
execution units, load-store queues, reorder buffers (ROBs), etc.
Consistent with prior work [31, 34, 44, 52], we assume that at-
tackers can modify the HDL-level, RTL-level, and netlist-level
hardware designs. Consistent with modern IP reuse protection
trends, 3rd-party IP (3PIP) hardware designs are shared as
closed-source (or black-box) designs [28, 32, 80].

We assume that attackers forgo modifications to security-
oriented hardware components (such as user/kernel privilege

separation logic, memory-protection units (MPUs), trusted
execution environment (TEE) logic, cryptographic cores, etc.),
and instead target general-purpose hardware (such as branch-
predictors, ROBs, etc.). The attackers’ goal when maliciously
altering hardware designs is to inject hardware footholds
which enable malicious software to compromise high-level
security guarantees.

Attackers then attempt to interface with software running
on the deployed system. An attacker can exercise the trojan
in a wide variety of use cases, including: victim software co-
located with malicious software as separate guests on a single
virtual machine server host; interfacing with a victim web
server over the internet; or malicious device driver software
running within the sandboxed constraints. We assume that
all victim software is written in safe programming languages
and that the compilers for these safe programming languages
inject the appropriate run-time checks.

Further, we adopt a threat model identical to those assumed
in memory-safety research [13, 14, 55, 59, 64, 67, 83]. We as-
sume that software exposes attacker-controllable variables
that control the contents of run-time checked regions of mem-
ory. An attacker aims to undermine a compiler-injected run-
time check and consequently exploit a memory-safety error
to change the program’s control flow. We assume that the
attacker has some knowledge of the memory layout of the
victim program and can further identify gadgets necessary
to launch control-flow hijacking attacks. An attacker would
use this information to prepare a payload to deliver to the
deployed victim software.

4 Attacking Safe Programming Languages

Modern hardware trojans typically target processor compo-
nents that implement hardware-enforced security policies
(such as user/kernel privilege separation logic [44, 82], mem-
ory protection logic [52], cryptographic cores [48,51,56], and
trusted execution logic [34]). However, we observe that com-
pilers for type-safe programming languages utilize “general-
purpose” hardware to implement memory-safety run-time
checks.

Straightforward attacks on application-implemented secu-
rity policies from within hardware are highly inflexible; if the
malware hard-coded application-specific information within
the processor, the malware would likely break when the ap-
plication is updated. Jinn trojans attack compiler-based en-
forcement mechanisms, which use instruction sequences that
remain identical across changes to an application’s implemen-
tation.

Compiler-injected safety checks prevent programs from
performing unsafe operations at run-time; without these
run-time checks, programs may have exploitable memory
safety bugs. We recognize these injected run-time checks
as repetitive instruction sequences that implement security-
enforcement mechanisms. Instruction sequences that imple-
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i+j > L

while i < input_len {
    let c = input[i];
    // Implicit
    // i+j < len(buffer)?
    buffer[i+j] = c;
    i += 1;  
}
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Figure 1: Steps for Software Exploitation

ment these run-time checks are structured very similarly, if not
identically, throughout a program. For example, Kotlin injects
its bounds checks [17] as a procedure-call (prior to optimiza-
tions), and Rust [45] does this by in-lining code; any array
access will therefore execute a predictable code pattern. These
strict patterns make the bounds checks easily and flexibly iden-
tifiable by a hardware trojan snooping on in-flight instructions.
We show in Section 7 that such bounds-checks are sufficiently
consistent to be encoded in hardware as a trigger to reliably
attack critical bounds-checks in diverse software contexts.
By tampering with run-time checks, trojans enable software
to violate the safety properties such as memory-safety. The
vulnerabilities induced by trojans that tamper with run-time
checks expose programs written in type-safe languages to a
wide scope of memory-safety attacks [67] such as sophisti-
cated control-flow hijacking attacks [27,29,59,63,70,79] and
data leaks [50, 64].

A trojan that attempts to tamper with these safety checks
must recognize the particular instructions in the dynamic in-
struction stream flowing through the processor’s pipeline that
correspond to the compiler-injected bounds check. The trojan
must usefully tamper with instructions, delivering a hardware
payload that forces a safety-check to fail, and stable execu-
tion to resume. After the trojan disables the safety-check, an
attacker must exploit the memory-safety error. Figure 1 illus-
trates this process. First, malicious hardware recognizes the
operation of an imminent bounds-check and delivers a pay-
load that causes the bounds-check to pass (when it should fail
when the processor acts benignly); then, attacker-controllable
and maliciously crafted inputs cause the victim program to
access memory outside the bounds of the buffer. In Figure 1,
step 2 illustrates a software payload that overwrites the return
address of the current frame on the call stack to initiate a
control-flow hijacking attack; this attack is launched upon
execution of the next return instruction.

Machine code lacks the high-level information about the
purpose of each instruction; this is often referred to as the
semantic gap [74]. A trojan must distinguish between the
cmp instructions that implement a bounds check from any
others, such as those that implement if statements or looping
conditions. To overcome this challenge, we have designed
two different triggers that allow Jinn trojans to identify which

# i+j
add    0x460(%rsp), %rax
# Store i+j on the stack for later
mov    %rax, 0x8(%rsp)
# Compare i+j with the buffer length
cmp    $0x400, %rax
# Move status flags into GP register
setb   %al
# Conditionally Set Zero-flag (ZF) to 
# set jump direction
test   $0x1, %al
# Jump to error handler if the index
# is out-of-bounds
jne    0x40a2df <pass>
jmp    0x40a305 <error>
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Figure 2: Bounds Check Machine Code

cmp instruction to tamper; one such trigger is novel.

5 Jinn Trojans

We characterize the class of Jinn trojans by the payload that
they deliver. Jinn trojans thwart the software-level security of
SoCs by tampering with the native code of compiler-injected
run-time checks.

Figure 2 illustrates a bounds check generated by the Rust
compiler for the x86 instruction set. The bounds check is
comprised of several instructions that compute the index into
the buffer being accessed (line 2), compare the index and
the length (line 6), and jump to (or past) the error handler
(lines 14 and 15). By tampering with bounds checks, Jinn
trojans thwart the language-level safety guarantees provided
by the compiler and open programs up to a broad range of
memory-safety exploitation techniques.

5.1 Hardware Payloads
To tamper with the bounds check, the trojan may inject a
variety of payloads. Considering the instruction sequence
in Figure 2, multiple hardware payload designs can disable
the array bounds-check. For example, a trojan may tamper
with the immediate operand of the compare instruction (cmp)
on line 8 to represent a much larger number; this can cause
the bounds-check to operate as if the buffer is much larger
than it really is. Another payload may tamper with the status
flags set by the cmp instruction that are subsequently read by
the setb instruction (line 8). This will cause the conditional
jump (jne) instruction to behave as if the index (stored in
%rax) was within the bounds of the buffer. Further, the jne
(jump-not-equal) instruction opcode could be tampered with
to behave like a je (jump-equal) instruction, then incorrectly
transferring control to the buffer-access code. Each of these
payload designs allows an index that is out of bounds to pro-
ceed to the buffer access, and equivalently expose a memory
safety vulnerability. As a consequence, the completed index-
ing operation will read or write memory outside the buffer,



allowing input to drive the program into a state in which it
reads and leaks sensitive information or writes and corrupts
critical program state such as return addresses or function
pointers.

5.2 Hardware Trigger

Ideally, the trojan payload should only be delivered when a
bounds checking routine is executing. Consider a payload
that corrupts a cmp instruction’s immediate operand. The
trojan’s trigger must therefore distinguish between a bounds
checking cmp and cmp instructions used in other parts of the
same program or within other programs and the operating
system.

Jinn trojans significantly benefit from trigger designs that
precisely distinguish tampered instructions in the context of
run-time checks from other non-critical occurrences of the
same instructions.

Several trigger mechanisms enable trojans to make this dis-
tinction between execution contexts with various trade-offs,
and we discuss two. We first discuss an interactive trigger de-
sign that loads identifying information for the victim run-time
check’s execution context, and second, a trigger that encodes
a signature of the run-time check instruction sequence. Both
these triggers provide the trojan with the precision necessary
to identify instructions belonging to a bounds check.

5.2.1 Interactive Trigger

A trojan can use the memory address of the code stored in
memory to precisely identify a particular bounds checking
routine. As the threat model (Section 3) explains, we assume
that an attacker is able to learn information about the memory
layout of a program and that the attacker can learn the address
of a specific bounds checking instruction.

The trojan can implement a covert interface for accepting
this address by tampering with an additional instruction (for
example, an add instruction) that takes two 64-bit operands
where the first operand accepts the tampered bounds checking
instruction address value, and the second operand accepts a
secret value that tells the trojan to store the first operand into
internal state that records the program counter value on which
to trigger the payload. Due to the interactivity of this trigger,
it’s easier to reason about its capabilities with an attacker
that can run arbitrary code with local access to the tampered
machine. For example, an attacker that is operating within a
guest VM on a cloud server may want to attack other guest
VMs dispatched to the same server.

This interactive trigger implements a two-stage design,
where the initial state of the trigger waits for a tampered in-
struction’s address (the add instruction in the previous exam-
ple), and the secondary phase waits for the program counter to
match the internally stored address, and for the instruction at
this address to match the instruction opcode of the instruction

to be tampered (e.g., the cmp instruction in the example in
Figure 2).

5.2.2 Run-time Check Encoded Trigger

Alternatively, a trojan can recognize an incoming bounds
check by observing the data flow pattern corresponding to
a bounds check. We observe that the compiler predictably
generates bounds checking instruction sequences that trojans
can reliably tamper with to hijack the program. By encoding
logic to recognize the dataflow path of key data used to de-
cide the jump target for the bounds check, and the associated
instruction signatures, trojans can anticipate incoming bounds
checks. Section 7.1.2 discusses this in further detail, and Sec-
tion 9.3 presents our experiments to empirically verify the
sensitivity and resilience of such a trigger.

This trigger obviates the necessity of the additional re-
connaissance step of identifying a target instruction address.
Rather, this trigger identifies and tampers all executions of the
encoded bounds checks. We observe that under benign work-
loads for safely written code, bounds checks are expected
to pass. Consequently, delivering the payload on a bounds
check that passes induces no malicious behavior, leaving the
trojan undetected. However, code that intentionally causes
a bounds-check to fail, such as compiler test suites, may de-
tect this trojan; this trojan would be detected in the unlikely
scenario where both the victim software and compiler’s test
suite are run on the same deployed system. If an attacker an-
ticipates this risk, this trigger design can be augmented with
additional conditions such as a counter for unlikely workload
events, such as floating point exceptions [76,85,86] or another
metric-based characterization of the victim program.

6 Launching the Software Attack

To successfully exercise a Jinn trojan, software must first
perform two tasks. First, it must prime the victim program’s
state to productively and immediately exploit the vulnerable
software state produced by the hardware trojan; this process
constitutes the reconnaissance of gadgets used in the software
payload, and an attacker delivering the corresponding mali-
cious inputs to the victim program. Next, as the victim pro-
gram executes, the trojan’s trigger recognizes a targeted safety
check (as Section 5.2 previously discussed) and delivers the
hardware payload. Finally, the previously software-injected
input launches following the memory corruption yielded by
the disabled safety check.

Figure 1 illustrates a victim program’s call stack. The
buffer access in the snippet of code is vulnerable to ex-
ploitation with Jinn trojans. When i+j is greater than the
length of the array, dereferencing the buffer would access
memory outside the bounds of the buffer; bounds checks
prevent the invalid run-time accesses (denoted with the red
lines). An attacker attempting to hijack this victim program



must exercise the Jinn trojan to corrupt memory outside of
buffer.

Step 0: Reconnaissance

The attacker must perform reconnaissance steps to construct
the payload that will be injected into the program. The first
step is for the attacker to identify an exploitable buffer access,
which is characterized by a couple properties. The access
must depend on a compiler-injected bounds check.1

Further, the buffer access must operate on attacker-
controllable data. Depending on the intended software pay-
loads for attacks, either the index, or both the index and
the data, must be attacker-controllable to launch memory-
corruption attacks, such as buffer overflows and overreads;
this step is reminiscent of traditional reconnaissance steps
towards exploiting traditional memory-safety vulnerabili-
ties [67].

As Section 3 explains, we assume that an attacker is capa-
ble of performing the necessary reconnaissance by using tools
like GDB [2], angrop [1], and ROPgadget [61] to learn infor-
mation about a binary’s memory layout and identify gadgets
useful in launching control-flow hijacking attacks.

Address Space Layout Randomization (ASLR) [68] de-
ployment may complicate a Jinn attack. ASLR is a common
defense that randomizes the base addresses of several data
locations (such as the stack, heap and code). Randomizing
the location of a bounds-checking instruction’s address ne-
cessitates an additional reconnaissance step when using the
interactive trigger (Section 5.2.1). ASLR is often thwarted
by memory-disclosure attacks [64] which commonly rely
on other memory safety vulnerabilities (such as buffer over-
reads [64]) to disclose the layout of the victim process. Unfor-
tunately, within the domain of safe programming languages,
this reliance is not feasible. However, attackers that can run
arbitrary code on the deployed machine can launch cache-
side channel attacks to learn the memory layout of a pro-
gram [22, 42, 62]. For example, if the victim is a type-safe
operating system (e.g. Redox [4]), an attacker would run
timing-based cache side-channel attacks to reveal code loca-
tion offsets for kernel code (e.g. system call handlers) [42]
and, consequently, expose the ASLR offset.

Step 1: Priming the Victim Program

Following identification of an exploitable buffer access and
gadgets to construct the control-flow hijacking attack, the
attacker must construct the corresponding software payload
bytes to be delivered to the victim process. The software
payload bytes are delivered preemptively, anticipating that
the Jinn trojan will induce a memory-safety vulnerability.

1This needs special consideration since compilers can optimize away
redundant bounds checks.

Step 2: Trigger Sequence

As the victim processes the software payload bytes, the at-
tacker must concurrently run a triggering sequence to engage
the trojan on the upcoming bounds check. Depending on the
trigger design, this may include steps like priming a trojan-
implemented counter or delivering a secret activation value
to the trojan, as discussed in Section 5.2.

Step 3: Delivering Software Payloads

As Figure 1 illustrates, an attacker that exploits a faulty
bounds checks can corrupt memory locations that are reach-
able through the buffer[i+j]-dereferencing expression. An
attacker with influence over the indexed location and data (as
discussed in Section 3) can launch an attack that hijacks the
control flow of the victim program. A simple example of this
would require corrupting the return address with a chain of
gadget addresses to launch a ROP attack that spawns a shell
program [59].

7 Attack Implementations

We implemented three prototype Jinn trojans on the x86 out-
of-order core (O3CPU) running a full-system simulation on
the gem5 simulator [26] and attacked Rust programs running
on Ubuntu Base 20.04.

We compiled victim Rust applications for 64-bit x86. To
ease the construction of a software payload that implements
a generic ROP attack [59], we use a static relocation model
that produces a non-position-independent executable.

Rust 1.58.1 [10] supports neither stack smashing protec-
tion [75] nor backward-edge control-flow protections such
as shadow stacks [14]. Therefore, the memory-corruptions
enabled by Jinn trojans attacking Rust executables are not
inhibited by mitigation schemes commonly used to defend
against memory-safety attacks in type-unsafe languages.

We implement our prototypes in the Issue-Execute-
Writeback (IEW) stage of gem5’s O3CPU. The IEW stage
comprises Issue, Execute, and Writeback routines; however,
we model our code to isolate modifications to the core within
the Execute logic. We limit all modifications to the core to the
C++ function that defines the execute semantics of each in-
struction. We expect that the changes necessary to implement
the Jinn trojan resemble modifications isolated to a single IP.

7.1 Variant 1: Attacking Indexed Buffers

Our first prototype attacks an indexed buffer that relies on an
implicit bounds-check injected by the Rust compiler. We im-
plement a trojan that uses the run-time check encoded trigger
discussed in Section 5.2.2 and delivers a payload that corrupts
the status flags set by a bounds-checking cmp instruction. We



# Compare length (0x400) and index (%rax)
cmp $0x400, %rax 
# EFLAGS = [PF IF CF]
# Load status flags into register (%al)
setb %al
# %al = 0x1
# Conditionally set Zero-flag (ZF)
# to control jump direction
test $0x1, %al
# EFLAGS = [IF] (unset ZF)
# Jump to buffer access
jnz 0x40a2df # jump if ZF is unset
# Jump to error handler
jmp 0x40a305
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Figure 3: Tampering with a Bounds Check

then exploit the memory safety error induced by our Jinn tro-
jan to overwrite a return address on the call stack, hijacking
the control flow of the victim Rust program and spawning a
shell.

7.1.1 Payload

We choose a hardware payload that tampers with the status
flags controlled by the cmp instruction within the bounds
check. This payload implementation allows us to set a single
bit, minimizing the payload’s complexity. The payload sets
the carry flag in the EFLAGS register regardless of the result
of the cmp instruction.

We observe that a payload that triggers on a cmp instruction
can thwart the bounds checks of other languages, allowing
our trojan to defeat the bounds checks of other programming
languages. In addition to Rust, Go implements bounds checks
with a critical cmp instruction on x86. Consequently, interac-
tive trigger designs (such the one discussed in Section 5.2.1)
allow the trojan to deliver a payload to flexibly undermine
both Rust and Go bounds-checks since they implement iden-
tically structured bounds checks.

Corrupting the carry-flag causes the bounds-check to trans-
fer control to the code which accesses the array as opposed to
the panic handler which should be executed when a bounds-
check fails.

Figure 3 illustrates the effects of our trojan. Assuming
that the register %rax holds an index value greater than the
length of the accessed buffer (0x400), an untampered cmp
instruction (line 2) would clear the carry-flag (i.e. set it to 0).
By setting the carry-flag to 1, the subsequent setb instruction
(line 5) writes 1 to the register operand %al. When %al is 1,
the following test instruction (line 9) clears the zero-flag
(ZF) (sets it to 0), and the subsequent jnz transfers control
flow to the buffer-access code, passing the bounds check.

The Gem5 O3CPU divides the cmp instruction into two
micro-ops:

• Load-immediate (li), which loads the statically identi-
fied buffer-length into a physical register

• Sub-flags (sub), which subtracts the value in the

ADD_R_M  : ld   t1, DS:[t0 + rsp + 0x4c8]
MOV_R_M  : ld   rcx, DS:[t0 + rsp + 0x18]
MOV_R_M  : ld   cl, DS:[rcx]
ADD_R_M  : add   rax, rax, t1
MOV_M_R  : st   rax, DS:[t0 + rsp + 0x10]
SETB_R   : movi   al, al, 0x1
TEST_R_I : limm   t1b, 0x1
JNZ_I    : rdip   t1, t1
JNZ_I    : limm   t2, 0x14
CMP_R_I  : limm   t1, 0x400
SETB_R   : movi   al, al, 0
MOV_R_M  : ld   rax, DS:[t0 + rsp + 0x10]
TEST_R_I : limm   t1b, 0x1
JNZ_I    : rdip   t1, t1
JNZ_I    : limm   t2, 0x1a
MOV_M_R  : st   cl, DS:[t0 + rsp + 0xf]
TEST_R_I : and   t0b, al, t1b
MOV_M_R  : st   cl, DS:[t0 + rsp + 0x4ff]
JNZ_I    : wrip   t1, t2
CMP_R_I  : sub   t0, rax, t1
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Figure 4: OoO Micro-ops Observed During Bounds Check

immediate-loaded physical register from a renamed ar-
chitectural register that contains the index offset into the
memory buffer. The subtraction’s result is then used to
update the status flags.

This payload is delivered as part of the SubFlags micro-op.
This temporary alteration to the behavior of the cmp instruc-
tion doesn’t corrupt any extra architectural state, obviating
any risks to stable execution after delivering a payload.

7.1.2 Trigger

We implement the trigger design discussed in Section 5.2.2
that encodes the sequence of micro-ops that precede the tar-
geted cmp instruction in a bounds check.

Figure 4 lists the sequence of in-flight micro-ops used to
implement the bounds check and array access as they pass
through the IEW stage. We implement a trojan trigger that
recognizes this sequence of micro-ops and then triggers the
malicious logic that delivers the payload on the final micro-op
of the sequence (sub).

This listing represents one of many observed micro-op ex-
ecution sequences observed during execution of the same
Rust statement (line 4). These sequences vary significantly
due to extra-microarchitecural state that is not observable
from a trojan isolated within the IEW stage. These perfor-
mance optimizations challenge the design for a reliable trojan
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Figure 5: Trigger States



trigger; however, we recognize that the data dependence be-
tween values calculated to perform the bounds check must
be maintained. The arrows in Figure 4 point from a physical
or architectural register operand to a preceding operation’s
output on which it depends.

Figure 5 shows a partial illustration of the finite state ma-
chine that our trigger implements. The edges depicting state
transitions correspond to the in-flight instructions (formatted
as macro-op:micro-op) that the trojan observes. The
trigger implementation encodes the micro-ops for instruc-
tions that compute critical values along the dataflow path to
the payload-targeted sub-flags micro-op. In its inital state,
the trigger snoops for an add instruction’s micro-op, ld, that
attempts to load a value from the stack into a physical register.
Subsequently, the trigger then snoops for two micro-ops that
may arrive out of order:

• The first micro-op of the cmp instruction that we wish to
tamper, loading an immediate value to a physical register
(the source-level buffer’s length)

• The second micro-op of the add instruction that adds the
source-level index and offset.

At its final pre-triggered state, the trigger snoops for the
second micro-op of the cmp instruction that implements the
subtraction to compute the status flags.

The trigger progressively advances its state as it observes
instructions that match the bounds checking sequence. Ad-
ditionally, the trigger implements a decay-counter that incre-
ments when it observes irrelevant instructions and resets the
trigger state to the initial state upon reaching a threshold.
These would correspond to backward edges in Figure 5 from
each node back to the Init/Reset state; we omit these edges
from Figure 5 for clarity, but we implemented them in our
trigger logic. Additionally, trigger activation both delivers the
payload and resets the trigger state back to the Init/Reset
state.

In our experiments, we found that a decay threshold of
seven micro-ops provided sufficient accuracy for detecting
bounds-checking instruction sequences. This threshold is
decided by various properties of the hardware design like
presence of out-of-order execution, speculative components,
superscalar operation, etc. To further improve the precision of
the trigger, we implement logic that allows the trojan to rec-
ognize instructions that are contextually appropriate while ex-
ecuting a bounds check out of order– for example, the control-
transfer instructions (jnz and jmp) that follow a bounds check
to set up the buffer access; such instructions do not affect the
trigger’s decay counter.

7.1.3 Exploit

The victim program implements a simple procedure that
copies bytes from standard input to a statically allocated buffer
at a parameterized offset from the start of the buffer.

buffer
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Figure 6: Attacking Mispredicted Bounds-Checks

We use angrop [1] to analyze the victim binaries for gad-
gets to construct a return-oriented-programming (ROP) attack
payload. As illustrated in Figure 1, the tampered bounds check
allows an indexed-buffer to write outside the bounds of the
buffer. To exploit this vulnerability, we inject a sequence of
bytes into the program. The program then attempts to copy as
many bytes as it can to fill the buffer; however, this condition
is never met since the Jinn trojan causes the bounds check to
fail. Instead, the program keeps reading bytes until the input
buffer is exhausted. We input a maliciously crafted set of bytes
that overwrite the return address to launch a return-oriented
programming (ROP) attack [59] that launches a shell.

7.2 Variant 2: Mispredicted Bounds Checks
To demonstrate the flexibility of payloads that can imple-
ment Jinn trojans, we implement an attack that corrupts the
branch resolution logic that squashes microarchitectural state
on mispredicted branches. Several successful bounds-checks
in sequence train micro-architectural branch predictors to
transfer control to the memory-access (as opposed to the
panic handler). This variant tampers with branch resolution
to prevent mispredicted bounds–checks from being squashed,
consequently committing memory accesses that would have
failed their bounds-checks.

7.2.1 Payload

The trojan’s payload targets the conditional jump instruction
(jnz) that implements the control-flow transfer to memory
access code that is guarded by a bounds-check. Microarchitec-
tures that implement branch-predictors will speculatively exe-
cute past this branch instruction to execute either the memory-
access or the bounds-check panic code. By exploiting a branch
predictor state that’s trained to pass bounds-checks, a payload
that tampers with branch resolution/misprediction can prevent
the processor from squashing and rewinding execution for
incorrect speculatively executed bounds-checks. The payload
hijacks the logic that checks for mis-speculation. When the
trojan’s trigger is engaged, the payload suppresses the check-
pointing logic that reverts the microarchitectural state upon
identifying misspeculation.



As Figure 6 illustrates, repeated writes within the bounds
of a bounds-checked buffer first train the branch-prediction
unit (BPU). The subsequent access outside the bounds of
the buffer is predicted to pass. Control is then speculatively
transferred across the conditional jump to the buffer-access
(instead of the panic handler for an out-of-bounds access).
During branch-resolution, the microarchitecture discovers
that it mispredicted the target of the conditional jump and
incorrectly transferred control to the buffer-access code. At
this point, a trojan payload prevents the microarchitecture
from reverting to the checkpoint.

Following the delivery of this hardware payload, the mi-
croarchitecture continues stable execution as if the bounds-
check had passed, exposing an exploitable memory-safety
vulnerability.

7.2.2 Trigger

We implement the interactive trigger discussed in Sec-
tion 5.2.1 to pair with the payload discussed in the previous
section. We tamper with the operation of the add instruction to
store the first operand into internal state if the second operand
matches a secret hard-coded value that would be decided at
design-time. Following that, the trojan snoops on in-flight
instructions, searching for an instruction address that matches
the stored target instruction address. Once it identifies a match-
ing instruction, it validates that the target instruction is a jnz
instruction and delivers the payload.

7.2.3 Exploit

The trojan-induced memory-safety attack must first train the
branch predictor to speculatively pass bounds-checks and to
branch to the guarded buffer-access. An attacker that can
control victim software indices must therefore access several
locations within the bounds of the buffer before the trojan
can usefully deliver its payload. Exploiting the trained and
tampered branch prediction logic, our implementation of the
attack overwrites memory locations outside of the buffer. Sim-
ilar to the previously discussed exploit in Section 7.1.3, we
use this memory-safety vulnerability to launch a ROP attack
that spawns a shell.

7.3 Variant 3: Attacking Rust Iterators

We implement a third attack that attacks Rust iterators within
the same gem5 O3CPU platform and stage as discussed in
Section 7.1. Rust provides iterators as code patterns or tem-
plates to idiomatically process sequences of data objects from
a parameterized data structure. They differ from buffers that
are indexed since they don’t expose an interface for random ac-
cess within the set of elements. Instead, elements are fetched
from iterators sequentially, and library code ensures that an
internal pointer marking the current element never exceeds

let iter = buffer.iter_mut();
// Iterate through local buffer
for elem in iter {
    // Copy elements from input iterator
    *elem = match input_iter.next() {
        // "x" contains a value
        Some(x) => *x
        // "input_iter" is empty
        None => break
    };
}
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Figure 7: Iterator Implementation in Rust

# Load the pointer to the current element
mov 0x18(%rsp), %rax
# Load a pointer to the iterator object
mov 0x20(%rsp), %rcx
# Compare bounding pointer in the iterator
# to the current element pointer
cmp 0x8(%rcx), %rax
# Conditionally jump to code that handles
# an empty iterator
je 0x409d7d <empty>
# Otherwise, fetch the next element
mov 0x20(%rsp), %rax <fetch next>
[...]
# Empty iterator code
mov 0x0, 0x30(%rsp) <empty (0x409d7d)>
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Figure 8: Iterator Pointer Comparison Machine Code

the bounds of the data structure. This attack exercises a Jinn
trojan that implements an interactive trigger (discussed in
Section 5.2.1) to compromise the comparison of an iterator’s
internal current element pointer to the bounds of the structure.

7.3.1 Payload

The payload of this Jinn trojan variant targets the cmp in-
struction that implements the Rust iterator’s bounds-check.
This “bounds-check” is a Rust source-specified bounds-check.
Rust ships this iterator implementation as part of its core
crate (set of libraries). Its implementation differs from the
bounds checks discussed previously that are inserted by the
compiler during code generation. However, it maintains the
same properties that make it an ideal candidate for tamper-
ing by a trojan: it’s consistently structured and used across a
variety of applications.

Figure 7 shows a source-level implementation of an iter-
ator [8] in Rust. Source-line 1 declares and instantiates the
mutable iterator (iter) with which the Jinn trojan tampers.
At line 3, a for loop statement iterates over elements in the it-
erator. The body of the loop (lines 5-9) consists of a statement
that copies elements from another iterator (input_iter) into
the local buffer. A trojan that tampers with the for loop can
cause the assignment at line 5 to write to elements beyond the
bounds of the buffer.

Figure 8 shows the machine code that implements a portion
of the iterator code, defined in Rust’s core library, and called
at source-line 3 in Figure 7. The mov instructions, which load
the current-element pointer (line 2) and bounding iterator



pointer (line 4), prepare operands for the cmp instruction at
line 7. This comparison sets condition flags that are used in
the following instruction to transfer control flow depending
on if the iterator still contains elements. Iterators will update
internal data each time an element is extracted, and increment
the current-element pointer that’s stored in the architectural
register, %rax. Upon reaching the end of the structure, the
condition codes set by the cmp instruction (line 7) will cause
the following jump-equal (je at line 10) to transfer control to
code that handles an empty iterator.

We implement a Jinn payload that tampers with the con-
dition code for the cmp instruction. The payload clears the
zero-flag (ZF) used by the je instruction, and this allows the
iterator to increment its current-element pointer to memory
addresses that are beyond the bounds of the buffer. To ex-
ploit this vulnerability induced by the trojan, an attacker that
interfaces with the victim program can deliver inputs and
use the Jinn-tampered for loop to write maliciously crafted
exploit-bytes to corrupt critical memory locations such as a
frame’s return address.

7.3.2 Trigger

We implement the interactive trigger discussed previously
(Sections 5.2 and 7.2.2). An attacker interfaces with the trojan
by executing an add instruction with a hardcoded operand,
and the trigger stores the second operand as the target instruc-
tion to be tampered. This trigger intends to target a cmp to
deliver the payload discussed in the previous section.

7.3.3 Exploit

The vulnerability exposed by this Jinn trojan variant resem-
bles our previous variants (Sections 7.1.3 and 7.2.3) but with
a slight difference. Since the iterator doesn’t expose an index-
ing interface, the attack must overwrite all bytes in memory
that are located between the buffer and the return address.
As Figure 1 illustrates, other program data for the current
frame, such as local variables and function arguments, may
be located between the buffer and the return address.

In our experiments, the Rust compiler typically places the
iterator (iter in Figure 7) in this region; this challenges the
attack since a naive approach of corrupting all data between
the buffer and return address would corrupt the internal data
of the iterator. We overcome this challenge by intelligently
corrupting the internals of the iterator to cause it to point to
the return address on the stack. We do this by corrupting the
internal pointer to the “next” element that would be served by
the iterator. Subsequent operations on elements served by the
iterator then corrupt the return address. Finally, similar to the
exploits discussed previously, we construct a ROP attack that
launches a shell.

8 RTL Prototype

To get a more accurate representation of the complexity of
Jinn trojans, we evaluate an RTL implementation of the Vari-
ant 1 payload (Section 7.1) using the interactive trigger (Sec-
tion 5.2.1). We implemented this on the RISC-V Berkeley
Out-of-Order Machine (BOOM) core [5].

We implement this trojan by adding three lines of
Chisel [20] code to the ALU within the core’s execute stage.
These three lines comprise logic that: (1) declares a 64-bit
register; (2) implements the trigger by snooping for a secret
value as the first operand to an add instruction and storing
the second operand to the declared register if the first operand
matches; and (3) delivers the payload to a target RISC-V bltu
instruction when the target instruction’s address matches the
value stored by the trigger.

We run a bare-metal application atop the tampered core to
verify the functionality of the implementation. The applica-
tion comprises a C program that calls to linked Rust functions
that implement bounds-checks. We verify our RTL Jinn trojan
successfully allows an attacker to deactivate the memory-
safety guarantee in the Rust functions and maliciously divert
control flow to another target function by corrupting the return
address.

9 Evaluation

We evaluate the complexity of our Jinn trojan prototypes
implemented within the gem5 out-of-order core (O3CPU) and
RISC-V BOOM core implementations, and the sensitivity of
the run-time check encoded trigger against other large code-
bases. Further, we discuss a couple potential real-world attack
vectors in third-party code.

9.1 Gem5 Evaluation
To measure the complexity of our prototype gem5 trojans,
we counted source-lines of code (SLOC) using SLOCCount
2.26 [7]. Table 12 shows the results; Table 2 lists the complex-
ity of the internal state of our trojan implementations.

Variant 1, which implements the run-time check encoded
trigger, trades storage complexity for increased logical com-
plexity in comparison with Variants 2 and 3. This is because
Variant 1 requires manual encoding of each of the instructions
encoded within the run-time check. In contrast, Variants 2
and 3 use significantly more dynamic storage with less logical
complexity. However, as Section 5.2 discusses, the attacker’s
capabilities dictate which trigger is best.

Untriggered operation of the trojan has no impact on ar-
chitectural state and, consequently, does not affect dynamic
instruction stream post-deployment. While gem5 does not
expose timing perturbations due to additional logic within the

2The Run-time check encoded trigger is abbreviated to RTC-trigger.



Variant Component C++ SLOC (count)

Baseline Gem5 O3CPU 16,626

Variant 1 Carry-flag Payload 2
RTC-encoded Trigger 63

Variant 2 BPU-Payload 1
Interactive Trigger 30

Variant 3 Carry-Flag Payload 2
Interactive Trigger 30

Table 1: Jinn Trojan Source Lines of Code (SLOC)

Variant Stateful Component Complexity (bits)

Variant 1
Trigger Stages 4
Decay Counter 4
Total 8

Variant 2
Trigger Stages 1
Target Address 64
Total 65

Variant 3
Trigger Stages 1
Target Address 64
Total 65

Table 2: Gem5 State Complexity

core, our trojans do not impact the tampered functional unit’s
critical path because (1) benign operation doesn’t depend
on trojan snooping (and vice versa), and (2) malicious logic
doesn’t exceed the complexity of benign execute-stage logic.
Therefore, we expect our prototype trojan to incur negligible
(if any) performance overhead.

9.2 RTL Evaluation

We use the Chipyard [18] VLSI flow with BOOM core con-
figuration defaults and Cadence plugins for Genus and Joules
to measure power consumption post-synthesis. Table 4 lists
the power consumption of the baseline BOOM core and the
same core tampered with a Jinn trojan. We observe very low
power overheads (on the order of 0.1%); these are unlikely to
cause tampered cores to exceed design-time power budgets.

Further, Jinn trojans do not affect architectural-level per-
formance because they do not affect benign execution during

Category Baseline (count) Jinn (count) Overhead (%)

Gates 303,092 303,217 < 0.001

Table 3: BOOM Core Gate-count Comparison

Category Baseline (mW) Jinn (mW) Overhead (%)

Register 9.566 9.578 0.125
Logic 40.000 40.047 0.118

Total (Static) 49.567 49.625 0.117

Dynamic 5,152 5,153 < 0.001

Table 4: Power Analysis of BOOM Core

untriggered operation and are small enough to feasibly fit
within existing path-delay-constraints, and therefore not incur
extra operating cycles. Additionally, we use Genus to verify
that our RTL implementation indeed does not introduce suffi-
cient complexity to put it on the critical-path under the default
timing constraints of the BOOM core.

Design-time trojan complexity does not directly determine
a trojan’s stealthiness because mitigation schemes search for
typical behavioral properties of trojan logic irrespective of
the size of logical blocks. Trojan complexity is therefore not
a useful metric for comparing evasiveness with other design-
time trojans. Complexity metrics are useful to demonstrate the
effort an attacker must deliver to implement a trojan design.
So, while power consumption and gate-counts don’t influence
the stealthiness of design-time trojans (unlike fabrication-time
trojans [23, 48, 82]),3 we nonetheless provide these details to
further (1) communicate the complexity of our Jinn trojan’s
implementation, (2) demonstrate that it insignificantly impacts
performance requirements, and (3) show the low attacker-
effort necessary to implement such trojans.

9.3 Trojan Evasiveness
A successful trojan must evade the full range of trojan mitiga-
tion schemes to successfully tamper with a deployed system.
As our threat model in Section 3 explains, trojan detection
schemes can analyze netlist-level and RTL designs from un-
trusted third-party intellectual property (3PIP) to identify sus-
picious circuitry. Since manual inspection techniques aren’t
scalable to larger designs, and attackers can exercise design-
obfuscation schemes [19], we focus on automated schemes.
Trojan-mitigation schemes broadly analyze hardware and
search for suspicious (redundant) logic [38, 85], specialized
triggering mechanisms [49,73,76], and information flow prop-
erties [25, 37, 39, 40, 53].

UCI [38], FANCI [76] and VeriTrust [85] are all defeated
by trigger transformations [86] to avoid exhibiting suspicious
properties. We rely on such transformations to Jinn trojan
RTL trigger designs to evade detection from these analyses.

Bomberman [73] analyzes hardware designs for Ticking-
Timebomb Triggers (TTTs) (triggers that monotonically count

3Power-analysis schemes for trojan detection typically require a trojan-
free design for comparison. This is not available within the threat-models of
design-time trojans.



system-events such as page-faults). Our interactive trigger
(discussed in Section 5.2.1) does not implement a counter
or state-machine that increments throughout execution. Like-
wise, our run-time check encoded trigger (discussed in Sec-
tion 5.2.2) violates a property of TTTs by resetting its
state machine periodically (and is therefore not a monotonic
counter); thus, it avoids being flagged as suspicious. There-
fore, both of the trigger designs discussed in Section 5.2 evade
Bomberman.

Information-flow analysis for hardware trojan detection
attempts to verify lattice properties of annotated hardware
designs. To consider applying traditional information flow
analyses [25, 37, 39, 40, 53], tampered signals demonstrated
in this paper’s attacks, such as the status flags set by cmp
instructions, must be assigned a security label and verified
against integrity properties. It’s unclear how existing infor-
mation flow analysis security labels and policies would be
applied to mitigate Jinn trojans since Jinn trojans don’t tam-
per with conventionally high-security labels; no such clear
demarcations exist yet for the logic that Jinn trojans tamper.

9.3.1 Trigger Limitations

The interactive trigger provides high accuracy for deliver-
ing the payload. It relies on hiding within the state-space
proportional to the size of general-purpose registers. On a
64-bit system, this likely evades detection during verifica-
tion testing since it is infeasible to engage the trojan initial
trigger by testing the full range of 264 values across all the
operands of multi-operand instructions. At 1 billion tests per
second, testing all values for a single 64-bit register would
take approximately 507 years.

The run-time check encoded trigger relies on the as-
sumption that deployed software will not crash because the
inputs it receives do not trigger an out-of-bounds buffer ac-
cess. Crashes may happen when the deployed system with a
planted trojan is the same system that is used to test/debug
victim software. If the software does experience an out-of-
bounds error because the trojan triggered and the software
received an input that causes an out of bounds memory access,
the software will appear to exhibit a memory-safety error and
will experience undefined behavior.

9.4 Real-World Code

To verify that Jinn trojans can attack real-world software, we
identified vulnerable code in third-party Rust programs. As
our threat model in Section 3 discusses, memory-safety at-
tacks typically utilize an attacker-controlled variable to induce
a program to write to a memory location outside the bounds
of a pointer’s referent memory object.

We identify two real-world vulnerable Rust code sequences:
one in the Rust-based operating system Redox [4] and another
in the Rust-based web engine Servo [6].

fn encrypt(&mut self, data: &mut [u8]) -> bool {
  [...]
  for i in 0..data.len() / BLK_SIZE {
    self.aes_blocks.push( [...]
      &data[i * BLK_SIZE..(i + 1) * BLK_SIZE],
));
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Figure 9: Vulnerable Code Sequence in Redox

Figure 9 is a code-listing from the Redox source code
(simplified for brevity) that encrypts file-system blocks. We
observe that data is attacker-controllable, and chunks are
moved from this input parameter to an object-local struc-
ture (aes_blocks). The push function call will first check
the length of the aes_blocks structure and decide to either
proceed with the memory-write or first “grow” (or enlarge)
the structure if it has reached capacity. Figure 10 lists the
if-statement within library-implemented code that the tro-
jan would tamper with; more specifically, it would tamper
with the underlying comparison instruction that the compiler
generates to implement the check. A Jinn trojan can tramper
with a branch within push so that the size of data appears
sufficient when, in fact, it needs to be enlarged. The remaining
code then erroneously writes past the end of the data buffer.
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pub fn push_back(&mut self, value: T) {
  if self.is_full() {
    self.grow();
  }
  [...] // Write to memory

Figure 10: Bounds-Check in Library Code

Figure 11 similarly lists (simplified) code from Servo [6], a
web engine written in Rust. This snippet is from an HTML5
tokenizer that parses attacker-controllable HTML.

fn tokenize(input: Vec<StrTendril>, opts: TokenizerOpts)
            -> Vec<(Token, u64)> {
  [...]
  let mut buffer = BufferQueue::new();
  for chunk in input.into_iter() {
          buffer.push_back(chunk);
          [...]
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Figure 11: Vulnerable Code Sequence in Servo

The write to a local buffer exposes a similar attack vector
for a Jinn-trojan as discussed in the previous example. Both
these code snippets expose attacker-controllable interfaces
that can exploit a memory-safety vulnerability injected by a
Jinn-trojan. Due to the structure of this victim code, however,
the interactive trigger (Section 5.2.1) is likely to be more ef-
fective since the bounds-check is implemented by a Rust core
library, similar to the iterator attack discussed in Section 7.3.



9.5 Bounds Checking Instruction Sequences

To determine whether existing software could accidentally ac-
tivate our trojan, we developed a binary analyzer to search for
the instruction sequences used to trigger our Jinn trojan. We
use the angr [78] Python binary analysis framework to im-
plement our binary analyzer. We then used this tool to search
for the bounds-checking instruction sequences (the sequence
illustrated in Figure 5 and listed in Figure 2) in real programs.
When observing instructions, the analyzer abstracts some de-
tails away like particular memory offsets, constant values, and
general-purpose register identifiers to accommodate differing
memory layouts and register selection; for example, the ana-
lyzer would search for add instructions that load memory at
an offset from the stack pointer (%rsp) and store to a general-
purpose register (illustrated in Figure 12 in Appendix A). The
analyzer found exceedingly few occurrences of the target in-
struction sequence in large code bases, with only a single
false-positive trigger in the Apache web server (as listed in
Table 5 in Appendix A).

In our experiments through prototyping the attacks, we em-
pirically observed no accidental triggers of the trojan from
software excluding the bounds check. Thus, we expect the
Jinn trojan to reliably deliver the payload during a bounds
check. While the run-time check encoded triggers provide
an attack vector that relieves an attacker of a reconnaissance
step, they are sensitive to compiler build flags such as opti-
mizations. Our experiments show that an attacker attempting
to deploy such a trojan must ascertain the build flags used on
the deployed system prior to trojan placement, however, this
is likely to be the highest optimization level for performance-
conscious deployments.

10 Possible Mitigations

In the short term, we believe that diversifying instruction
selection for the run-time checks may help thwart Jinn tro-
jans. Our malware leverages the fact that type-safe language
compilers often emit the same code sequence for perform-
ing dynamic array bounds checks and type safety checks. If
the compiler could insert different instruction sequences for
different run-time checks, or if a dynamic loader could ran-
domize the instructions used for run-time checks each time a
program is loaded, it would be much more difficult for Jinn
trojans to corrupt the execution of the run-time checks.

Longer term, we think a strong defense would be to iden-
tify the circuits within the processor that must be tamper-
free to correctly implement instructions used by run-time
checks. This analysis would enable more rigorous reasoning
about which circuits are security-critical when accounting
for software-enforced security policies; once identified, such
security-critical IP could be designed in-house.

11 Related Work

Hardware trojans are typically organized into two broad cate-
gories: design-time trojans [34, 41, 44, 47, 86] and fabrication-
time trojans [23, 31, 43, 48, 56, 82]. Design-time trojans are
likely to be limited to smaller IP blocks that are typically out-
sourced, but they also have access to a higher-level description
of the hardware at the HDL-level. Conversely, fabrication-
time trojans can tamper with any portion of an SoC but are
limited to the behavior of the hardware that can be discovered
via reverse-engineering [56, 57].

While our prototype Jinn trojans are design-time trojans,
we believe that creating fabrication-time Jinn trojans is also
possible and relatively straightforward. Therefore, we direct
our comparison of Jinn trojans to previous work by reasoning
specifically about versatility of the trojan payloads.

Prior work on trojans attacking user/kernel isolation mech-
anisms, including the supervisor privilege bit [82], enable
arbitrary privileged code execution [44]; by implementing
footholds, Jinn trojans provide similar capabilities by allow-
ing an attacker to hijack code written in safe programming
languages, including type-safe operating systems [3,16,24,81]
and trusted execution environments (TEEs) [77].

Privilege escalation remains a powerful capability; how-
ever, design-time and fabrication-time defenses rely on iden-
tifying such critical signals [37, 39, 40, 53]. Privilege-bits im-
plement well-studied and critical hardware-enforced security,
and trojan-mitigation schemes are thus well tuned to iden-
tifying trojans that attack them; layout-hardening [72] and
physical inspection [30] are two examples of such mitigation
schemes. Jinn trojans, in contrast, do not attack hardware-
enforced security signals and are hence more stealthy while
enabling an attacker with similar capabilities. For similar rea-
sons, payloads in cryptographic logic [23, 48] are detected by
detection schemes [66] that target such hardware-enforced
security. Likewise, Jinn trojans can also enable attackers to
leak keys from a process’s address space by using a ROP
attack to spill secret keys to an output vector (e.g. stdout).

Trojan attacks in the memory hierarchy [31, 43] enable
three capabilities: fault injection, information leakage, and
denial of service. The HarTBleed trojans [31] implement pay-
loads against hardware-enforced security checks in the TLB
to compromise page-table mappings. However, these attacks
are limited to narrow attack scenarios in which the hardware
hard-codes physical frame locations that must coincide with
program-load-time secret data. In contrast, programs hijacked
using Jinn trojans enable an attacker to launch a ROP attack
that can arbitrarily read and write the victim’s memory con-
tents.

Jinn trojans flexibly deliver the wide range of payloads
described above with a single instantiation since the complex-
ities of attack logic is pushed out of hardware and into the
gadgets [59] of a hijacked victim program.



12 Conclusion

We presented Jinn trojans, a novel class of hardware tro-
jans characterized by their payloads that attack safety guar-
antees provided by type-safe programming languages. Jinn
trojans induce memory-safety vulnerabilities by compromis-
ing compiler-injected safety checks. We demonstrated the
efficacy of this class of trojans by implementing end-to-end at-
tacks that exercise Jinn trojans to compromise bounds checks
within Rust programs to hijack the program’s control-flow
and launch a shell. With Jinn trojans, we demonstrate that
software-level security policies can be flexibly compromised
by a trojan placed in traditionally non-security-critical hard-
ware components, that is, components that are not responsible
for implementing hardware-enforced security policies.
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A Binary Analysis

Figure 12 illustrates the pattern-matching criteria for which
we searched when analyzing binaries. The term %gp-reg
refers to an arbitrary general-purpose register identifier (e.g.
%rax, %rbx, etc.), and 0xoffset refers to any immediate val-
ues used to offset a memory address stored in %rsp. As dis-
cussed in Section 9.5, we use a binary analyzer to verify that
exclusive use of the run-time check encoded trigger is un-
likely to activate when executing non-bounds-checking code.
Use of additional triggers and varying run-time check encod-
ings may yield additional flexibility or precision for attackers
attempting to hijack systems with more prevalent use of safe
programming languages.

# Initial Trigger State
add    0xoffset(%rsp),%gp-reg
# Stage one
mov    %gp-reg, 0xoffset(%rsp)
# Stage two
cmp    $immediate,%gp-reg
# Deliver Payload
[...]

1
2
3
4
5
6
7
8

Figure 12: Pattern Matching Criteria for Binary Analysis

Table 5 lists the number of instruction sequences in built
binaries for several benchmark applications from the Phoronix
Test Suite. Besides the first row, the remaining applications
are primarily written in C/C++. This experiment demonstrates
that bounds-checks for Rust programs, as encoded in the run-
time check encoded trigger, are unlikely to falsely trigger on
benign workloads.

Benchmark Matched Instruction Sequences

Indexed-buffer victim 9
Nginx (2.0.0) 0
Apache (2.0.0) 1
Linux Kernel (5.4.0) 0
OS Bench (1.0.2) 0
OpenSSL (1.1.0) 0
Mcperf (1.1.0) 0
Memcached (1.6.9) 0
ipc-benchmark (1.0.0) 0
Leveldb (1.22) 0

Table 5: Observed Runtime-check Instruction Sequences
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