
NRDelegationAttack: Complexity DDoS attack on DNS Recursive Resolvers ∗

Yehuda Afek †

Tel-Aviv University
afek@tauex.tau.ac.il

Anat Bremler-Barr ‡

Tel-Aviv University
anatbr@tauex.tau.ac.il

Shani Stajnrod
Reichman University

shaaniba93@gmail.com

Abstract

Malicious actors carrying out distributed denial-of-service
(DDoS) attacks are interested in requests that consume a large
amount of resources and provide them with ammunition. We
present a severe complexity attack on DNS resolvers, where
a single malicious query to a DNS resolver can significantly
increase its CPU load. Even a few such concurrent queries
can result in resource exhaustion and lead to a denial of its
service to legitimate clients. This attack is unlike most recent
DDoS attacks on DNS servers, which use communication
amplification attacks where a single query generates a large
number of message exchanges between DNS servers.

The attack described here involves a malicious client whose
request to a target resolver is sent to a collaborating malicious
authoritative server; this server, in turn, generates a carefully
crafted referral response back to the (victim) resolver. The
chain reaction of requests continues, leading to the delegation
of queries. These ultimately direct the resolver to a server that
does not respond to DNS queries. The exchange generates a
long sequence of cache and memory accesses that dramati-
cally increase the CPU load on the target resolver. Hence the
name non-responsive delegation attack, or NRDelegationAt-
tack.

We demonstrate that three major resolver implementations,
BIND9, Unbound, and Knot, are affected by the NRDelega-
tionAttack, and carry out a detailed analysis of the amplifi-
cation factor on a BIND9 based resolver. As a result of this
work, three common vulnerabilities and exposures (CVEs)
regarding NRDelegationAttack were issued by these resolver
implementations. We also carried out minimal testing on 16
open resolvers, confirming that the attack affects them as well.

∗Supported by a grant from the Blavatnik Interdisciplinary Cyber Re-
search Center, Tel Aviv University.

†Member of the Checkpoint Institute of Information Security.
‡The majority of this research was carried out while the author was at

Reichman University. Member of the Checkpoint Institute of Information
Security.

1 Introduction

In a system like the DNS, what is the worst case scenario
for resource consumption while processing a single request?
Malicious actors carrying out distributed denial-of-service
(DDoS) attacks are interested in requests that consume a
large amount of resources and provide them with effective
ammunition. DNS system designers on the other hand, strive
to ensure that no request uses more than a very limited amount
of resources.

The DNS system has been, and remains, an attractive prime
target for DDoS attacks. Even back in 1987, while more con-
cerned about human errors than malicious activity, Mock-
apetris wrote in his initial design RFC1034 [24]:

The recommended priorities for the resolver
designer are:
1. Bound the amount of work (packets sent,
parallel processes started) so that a request
can’t get into an infinite loop or start
off a chain reaction of requests or queries
with other implementations EVEN IF SOMEONE
HAS INCORRECTLY CONFIGURED SOME DATA.

Even after Mockapetris’ clear warning about the overuse
of the resolver resources, attackers still found a way to im-
pose excess strain on the resolver resources. Most recent
attacks, such as the NXNSAttack [5], water-torture, and other
flood attacks, abuse the resolver resources to trigger a large
number of queries between the resolver and the hierarchy of
authoritative servers. The chain reaction of events revealed
in this paper leads to a complexity vulnerability in which an
attacker request, together with a particular malicious author-
itative response, overloads memory and compute resources
on the resolver. Interestingly, the mechanisms introduced to
mitigate a recent DDoS attack [5] play a key role in our DDoS
complexity amplification attack.

The chain reaction of events at the heart of the NRDele-
gationAttack we present starts with a large referral response
received from a malicious authoritative server. Two of the

mechanisms in the chain reaction are:

1. When the server resolves each NS name in the referral
response, the victim resolver is delegated to a server that
does not respond to DNS queries.

2. In response to each such delegation, the resolver restarts
the resolution process, ignoring the state of the current
resolution, including some important safety limitation
counters. As a result, the resolution process restarts
repeatedly until either a timeout or the restart-limit is
reached. At this point, a FAIL response is saved in the
cache and returned to the client.

We measured the effect of a single NRDelegationAttack at-
tacker sending 15,000 malicious packets per second and using
a referral list that contains 1,500 NS names, on BIND9 [18],
Unbound [29], and Knot [13] implementations. Our evalua-
tion showed that as a result of the attack, the throughput for
benign users is reduced by a factor of 609, 58, and 388 respec-
tively. In addition, we tested the NRDelegationAttack on the
top 16 open resolvers and demonstrated its impact in the wild.
Our results show that all the resolvers tested were affected
to a certain extent by the attack. To get more comprehensive
measurements, we conducted a detailed analysis on a BIND9
server implementation.

This work includes suggestions for minimal modifications
that can be made to the recursive resolver algorithm to mit-
igate the NRDelegationAttack and significantly limit the re-
sources used by the resolver during the attack. We tested
our mitigation technique and proved its efficiency against the
NRDelegationAttack.

After reviewing the mechanisms that play a role in the
NRDelegationAttack chain reaction in Section 2, we discuss
the threat model in Section 3. In Section 4, we show how the
different pieces of the model interact to form the NRDelega-
tionAttack. In Section 5, we analyze the complexity factor
of the NRDelegationAttack on BIND9. Section 6 covers its
impact on recursive resolver implementations and on open
resolvers. Alternative mechanisms to mitigate the NRDele-
gationAttack are suggested in Section 8 and related work is
shared in Section 9. We review the responsible disclosure
procedure in Section 7, and draw conclusions in Section 10.

2 Basic DNS Mechanisms

2.1 SLIST
The “SLIST” mechanism is presented in RFC-1034 [24]). It is
used as a scratch pad memory in the resolver implementation
to record the status of each intermediary name server resolu-
tion that is performed while processing a client query. Before
starting to resolve any new NS name(s) (e.g., from the referral
list) the resolver looks at the SLIST to see whether a previous
resolution makes this new one superfluous; if necessary, it

adds the new name(s) to the SLIST and starts its resolution
process. In BIND9, this data structure is called address-DB
(ADB) [17]. Further details and an example of how the SLIST
is used are given in Appendix A.

2.2 Delegation Response
To answer a resolver query, an authoritative server can decide
to delegate the resolution work to another name server. For
example, this occurs when .org delegates the resolution of
www.usenix.org to .usenix.org, or when a resolver gets a
referral response (RR).

Motivated by fault-tolerance and low latency response re-
quirement, referral response is a multi delegation response.
It contains a list of name-servers and the resolver continues
the resolution by delegating its query to any one of the name
servers in the list. The number of name servers in the RR
can be large and may not always include their corresponding
IP addresses, known as glue records. One reason why the
referral-list response does not include glue records is because
authoritative servers are not allowed to provide IP addresses
for domains whose origin resides outside their zone; these
are known as Out-of-Bailiwick name servers [16]. This pol-
icy was created to protect the servers from DNS poisoning
attacks.

The important aspect for the NRDelegationAttack is that
any delegation response will trigger a “restart” event in the
resolver algorithm.

2.3 Restart Event
In many cases, the resolution process in a resolver is delegated
to a different name server, in which case it restarts and con-
tinues the resolution at the new name server. Consequently, a
restart event was introduced in RFC-1034 [24] to allow this.

The “new authoritative” server to which it is redirected is
recorded in the ADB (see Section 2.1). In response to the
restart, the resolver clears and resets a few flags. Among them
is the “No_Fetch” flag, which was introduced to mitigate the
NXNSAttack (see Section 2.4). After clearing the flags, the
resolver continues the resolution of the name-at-point.

2.4 Referral Response Limit
A recent DNS DDoS attack, named the NXNSAttack [5],
employs a malicious NS referral response (Section 2.2) with
a long list of non-existent NS names. The NXNSAttack is
amplified and extremely effective because the resolver starts
simultaneously resolving all the names in the referral list
immediately upon receiving the referral response. To mitigate
this attack, a new limit was introduced on the number of
NS names being resolved from a referral response, per client
request. Upon receiving a referral response with many NS
names, the resolver starts resolving only k names (the referral

limit) per client query (in BIND9 and KNOT implementations
k equals 5, and in UNBOUND implementation 6). If all k
attempts return NXDOMAIN, the resolution is aborted and
an NX response is returned to the client.

This limit is called the referral-response-limit
(“NS_RR_LIMIT” in BIND9). Throughout this paper,
we use the term “referral-limit”. A special flag, denoted
by “DNS_ADBFIND_NOFETCH” or “No_Fetch,” is set
when the limit is reached. As shown in Section 4 and
analyzed in Section 5.2, this limitation plays a key role in the
NRDelegationAttack.

3 Threat Model

To mount an NRDelegationAttack on a recursive resolver, an
attacker needs to:

1. Control one or more clients from which it can issue the
malicious queries.

2. Control an authoritative name server configured to re-
spond with a particular referral response that will be used
in Phase II of the attack.

3. Supply a list of server domain names, with servers that
do not respond to DNS queries. Or, in some variants,
the attack will control a “delegation authoritative” that
is configured to respond with the IP address of a server
that doesn’t respond to DNS queries (see Section 4.2).

Using the authoritative server, the attacker responds using
NS referral responses in which it controls the response con-
tent, such as the number of NS names, the names themselves,
and any additional information. Authoritative name servers
can be easily and cheaply acquired by first buying and reg-
istering new domain names. As part of our experiments, we
purchased several domain names for less than $1 each in less
than 5 minutes. These domain names can be dynamically
associated with any authoritative server on the Internet. Alter-
natively, as shown by recent DNS hijacking attacks [14, 23],
attackers can compromise the DNS operators’ credentials and
manipulate zone-files, sometimes even gaining access to their
registrar records.

4 NRDelegationAttack

The attack is formed based on the specific interplay of sev-
eral DNS mechanisms in the resolver, some of which were
introduced only recently. In this section, we explain these key
mechanisms and their interplay before describing a variant of
the attack in Section 4.1, Figure 1 and Figure 2. The attack
proceeds as follows:

1. Following a malicious query, the malicious authoritative
server sends a large referral response (LRR, see Section

2.2) to the target victim recursive resolver. The referral
list contains n (≤ 1500) different domain names, with no
glue records. The recursive resolver will try and resolve
the query with any one of the n NS names in the list. As
a first step, the resolver has to resolve these NS names.

2. Before starting to resolve any of the NS names in the
LRR, the recursive resolver checks in the cache and the
ADB to see if any of the n names already has a resolution
that it can use. When n is large, this operation consumes
an enormous amount of memory and CPU resources;
we denote its compute cost by CC(n). This is the core
source for the complexity of the NRDelegationAttack,
which is significantly amplified by being repeated in a
loop. This loop is due to the NXNSAttack mitigation
mechanism, which forces the n names to be processed
in chucks of k names at a time, as explained in the next
4 steps.

3. This kind of LRR, with n nonexistent (NX) domain
names and no glue records, was used in the “NXN-
SAttack” [5]. In the NXNSAttack, when the resolver
receives the LRR, n resolution processes start simulta-
neously, essentially flooding both the victim recursive
resolver and the authoritative appointed by the NX do-
main names in the LRR.

4. To mitigate the NXNSAttack, a new ’referral limit’ (e.g.,
= 5) denoted by k was imposed on the number of re-
ferrals that can be resolved out of the n names for each
client query; the value of k may differ slightly in differ-
ent implementations (see Section 2.4). If all k attempts
return NXDOMAIN or FAIL, the resolution is aborted
and an NX response is returned to the client, thus cut-
ting down the amplification factor of the NXNSAttack.
In the following section, we compare the effects of the
NRDelegationAttack to that of the NXNSAttack. We
refer to the resolver versions before the NXNSAttack as
pre-NXNS and those after the NXNSAttack disclosure
as NXNS-patched versions.

5. In the NRDelegationAttack, rather than n nonexistent
NS names, the attacker uses n existing NS names with-
out glue records. Each such name is a name of (or leads
to) a server that is non-responsive (NR) to DNS_queries
server (see Section 2.2), hence the name “NRDelega-
tion”. Upon receiving such an LRR, NXNS-patched re-
solvers will initially resolve k NR names, and will try to
ask each of these servers to resolve the query.

6. As explained in Section 2.2, each delegation response
triggers a “restart” event. Hence, k restart events are
triggered when each of the first k delegation responses
are received by the recursive resolver (NXNS-patched
version).
Each restart event clears the resolver indication that the

“referral-limit” was reached for this LRR. As a result, the
resolver starts the process from the beginning, except
this time it starts with the resolutions of k other names
from the LRR. Consequently, each restart caused by
each delegation initiates the resolution of k additional
names from the LRR. This ultimately results in k more
delegations. The process enters an expanding loop in
which k2 resolutions of NS names from the LRR are
started in the subsequent iteration of the loop. The bad
news is that after each of the restart events, as long as
there are names in the LRR whose resolution has not
yet started, the recursive resolver again checks whether
any one of the n names in the LRR already has a usable
resolution in either the cache or the ADB (see Step 2).
The resulting compute load is (k+ k2) ·CC(n), which is
the core reactor of this complexity attack. In principle,
after the next iteration, the accumulated complexity is
(k+ k2 + k3)CC(n) but no more than a maximum of n.

7. In pre-NXNS versions, the n resolutions of each of the
domain names from the LRR start at once. Thus, al-
though it issues many queries, the load complexity on
the resolver is much lower than in the NRDelegation
attack on NXNS-patched versions because the resolver
flags the LRR after going through all of the LRR domain
names. It will not repeat Step 2 as it does in the patched
versions. In addition, the NXNSAttack will have a larger
packet amplification factor because each authoritative
responds and exchanges packets with the resolver. In the
NRDelegationAttack, the non-responsive servers simply
do not respond. On the other hand, the NXNSAttack
is terminated faster; once an NX response is received
by the resolver, it ends the client resolution with an NX
response. In the NRDelegationAttack, the resolver keeps
waiting in the hope that one of the (non-responding)
servers will respond. While waiting, the resolver also
keeps processing additional NS names from the LRR
until it hits the safety threshold counters (see below).
As a result, the NRDelegationAttack on pre-NXNS re-
solver versions has nearly twice the CPU complexity
of the NXNSAttack on the same version (292 million
instructions vs. 180 million per attacker query), while on
the NXNS-patched version it is 38 times more complex
(3415 million instructions vs. 90 million per attacker
query, see Figure 3).

8. In real implementations of the recursive resolver, either
pre or patched NXNSAttack, there are safety limitation
counters on the number of restarts allowed in each phase
and in total (= 100 restarts). These limitations prevent
the process from continuing exponentially until reach-
ing n. However, these safety bounds are high (e.g., 100
restarts before the resolution aborts) and do not restrain
the power of the attack, which is still enough to deny
service at the target.

9. Because there are several different delegation methods
in the DNS system, the NRDelegationAttack has dif-
ferent variants, depending on the delegation method be-
ing used. In the most straightforward version, but not
the simplest to craft, the attacker can use a list of ex-
isting domain names that are not responsive to DNS
queries. For example, this may include different web
servers such as www.google.com, www.usenix.org, etc.
Alternatively, ’broken’ or stale domain-to-IP mappings
can be used as domain names in the referral list. Using
a modular method, the attacker can also use his own
delegation server, in which several different response
options direct the resolver to a resource IP that is non-
responsive to DNS queries. We refer to this as the “del-
egation server” variant. For example, the attacker can
use an “NXDOMAIN-Redirection” [33] response (see
Appendix B) in which, instead of replying with NX to
non-existent domain names, the delegation authoritative
redirects the resolver to an NR resource. Additional del-
egation options are given in Section 4.2 and Table 1.

4.1 NRDelegationAttack Construction
The following is a detailed step-by-step description of
the attack scenario presented in Figure 1; this is the most
involved variant of the attack. The attack has three major
phases:
Phase I: Victim resolver receives a large referral response
(LRR).
Phase II: Victim resolver starts processing the LRR.
Phase III: Victim resolver loops through delegation response
and restarts Phase II.

Each phase has the following steps:
Phase I:

1. Attacker’s client queries the victim resolver about
xyz.referral.com (Step 1 in Figure 1).

2. Victim resolver queries referral.com (Step 2 in Figure
1).

3. Authoritative referral.com responds with a large referral
response (LRR) (Step 3).

Phase II:

1. The resolver looks up each of the n names to see if any
one of them already has a resolution it can use. This
is a total of 2n lookups. This step is the core source of
the high complexity, especially since it will be repeated
many times, as explained in the next phase (Step 4 in
Figure 1).

2. The resolver starts resolving referral-limit names in the
LRR, e.g., 5 in BIND9 implementation (Step 5 in Fig-
ure 1). In the first execution of this step, it begins the

Restart Event

.referral.com
name servers

'FAIL' response xyz.referral.com

'A' query foo1-5.delegation.com6

Phase I

1
'A' query xyz.referral.com2

5

8

ServersAttacker Client

"referral.com" is already in the
cache

.delegation.com
name servers

.

.

.

"Restarts" Limit reached / Timeout

'A' Response (Delegation Response)

(IP of an non-responsive to DNS queries server)

4

9

13

Recursive Resolver

'A' query xyz.referral.com
5

5
No Response

Clear "No_Fetch" flag

11

12

10

 n > referral-limit,
start only referral-limit* new

resolution processes and Turn on
"No_Fetch" flag

5

'A' query xyz.referral.com

Phase II

Phase III

Process the RR,
lookup each name in cache

and local memory (ADB)
(2n lookups)

75

Non-Responsive
to DNS queries

server

Non-Responsive
to DNS queries

Authoritative

Authoritative

* in bind9, ‘Referral-limit’=5

3

Figure 1: “Delegation server” variant of the NRDelegationAttack flow overview, focused on the resolver requests and responses.

resolution of the first referral-limit NS names from the
LRR. Each subsequent execution begins resolving the
next referral-limit NS names, until the resolution of all
the names in the LRR has been invoked.

3. The resolver turns on the No_Fetch flag (Step 5), which
is part of the NXNSAttack mitigation and is intended
to limit the number of referred NS names resolved per
client query.

4. The resolver issues the query for these referral-limit NS
names (Step 6).

Phase III: Victim loops multiple times through referral
response-restart loop.

1. Each such name leads the resolver to an authoritative,
which responds with a server IP address that is non-
responsive to DNS queries and issues the delegation
response (Step 7 in Figure 1).

2. Upon receiving a delegation response, the resolver trig-
gers a restart event and restarts the resolution for the
LRR (Step 8 in Figure 1).

3. The victim resolver clears the “No_Fetch” flag (Step
9), because retaining it could break the resolution of

a valid domain name. For example, if domain “.com”
has more than “referral-limit” delegation options, and
domain “.example.com” also has delegations that need
to be resolved, then the resolver cannot preserve the
“No_Fetch” flag between the “.com” and “.example.com”
resolutions.

4. The victim resolver does the following in parallel:

(a) Restarts the RR-list processing (Step 10 in Figure
1).

(b) Queries the resources received in Step 7 and re-
ceives no helpful information in return (i.e., no
response at all, as shown in Steps 11-12 in Figure
1).

5. Following the above restart, go to Phase II.

6. The victim loops through Phases II and III until a time-
out or restart limit is reached and a ’FAIL’ response is
returned to the client (Step 13 in Figure 1).

The source of the heavy load produced by the attack is
mostly from the numerous executions of Step 1 in Phase II.
(In BIND9, it is at most 100 times.) If the number of names
n in the referral list is large, e.g., 1,500, then each execu-
tion of this step costs 3,000 memory accesses and at least

no
referral.com

SLD
authoritative

foo1-5. delegation.com

‘A’ Response
(foo1-5.delegation.com
IN Non-Responsive IP…)

* in bind9, ‘Referral-limit’=5

Yes
noYes

2. Add ‘xyz.referral.com’ to ADB and Start resolution

3. Received referral response, save in ADB
4. For each NS in referral response

4.1 Check if NS has helpful info in ADB or in Cache
4.2 If ‘No_Fetch’ flag is off

4.2.1 Add to ADB
4.3 If more than ‘Referral-limit’* NS were added

4.3.1 Turn on ‘No_Fetch’
5. If all NS’s were added to ADB

5.1 Turn on ‘Do_not_restart_query’ flag

7. If received ‘Delegation’ Response &&
‘Do_not_restart_query’ flag is off
7.1 RESTART ‘xyz.referral.com’ and Clear all flags

(For each response) AND
Query the delegation authoritative

8. Else If received ‘NXDOMAIN’ answer
8.1 Return ‘NXDOMAIN’ response to client

5

55

foo6-10.delegation.com
foo11-15.delegation.com
foo16-20.delegation.com
foo21-25.delegation.com
foo26-30.delegation.com

5
5

5
5

5
5X5 queries –

due to ‘foo1-5.delegation.com’
Redirects

25

1. Is ‘xyz.referral.com’
in cache or ADB ?

1.1 Return to client Resolver

Yes 6

10

6.1

9

11

.delegation.com
TLD

Authoritative

Figure 2: Delegation server variant of the NRDelegationAttack flowchart; the resolver resolution algorithm during the attack.

5,600 times more CPU instructions relative to a benign query
(1,100,000,000:195,000 instructions). The NRDelegationAt-
tack amplification factor is given in Section 5.2. Figure 2
presents a flowchart of the relevant parts of the resolver algo-
rithm.

Although the NRDelegationAttack is mainly explained
here using a BIND9 implementation, we also tested it on
Unbound, and Knot implementations, and 16 open DNS re-
solvers (see Section 6.2 and Section 6.3). Our evalutions show
that all the resolvers under test suffer degradation in their
performance under the NRDelegationAttack. This occurs pri-
marily due to the excessive use of the resolver resources when
it receives the NRDelegationAttack malicious query (e.g., the
number of cache lookups done per one malicious query). As
part of the responsible disclosure discussion with the vendors,
excessive use of the resolver resources indeed proved to be
the main reason for the impact of NRDelegationAttack on the
resolvers.

4.2 NRDelegationAttack Delegation Options

It is important that the referral list received at the end of Phase
I includes only domain names leading to a server that is non-
responsive to DNS queries. Otherwise, if the resolver receives
useful resolution, it may obtain a reply to the query thereby

ending the attack chain reaction and preventing the repetition
of Phase II. There are several delegation options that can be
used to ensure the NRDAttack will succeed, as presented in
Table 1.

In some resolver implementations there may be limitations
regarding the fetches allowed per zone or IP address; these
limitations can be bypassed using wildcard records. In this
case, the attacker can either look for wildcard records where
the IP address does not host a DNS server, or use arbitrary
subdomains under his “delegation server” and direct them to
different IP addresses that do not host a DNS server.

We tested all the versions mentioned above using our Inner-
Simulator, described in Section 5.1.

5 NRDelegationAttack Complexity Factor

In this section, we analyze and measure the NRDelegationAt-
tack complexity amplification factor.

5.1 Isolated Lab Setup
The experimental setup includes a client, a resolver and three
authoritative name servers. The resolver is a BIND9 recur-
sive resolver with both the NXNSAttack patched version
(BIND9 version 9.16.6) and a pre-NXNS version (BIND9 ver-

Variant (Response
in Step 7)

Pros Cons
DNS Mechanisms used
to Arm the Attack

RCODE Received in Step
7 (Example)

NXDOMAIN-
Redirection

Attacker controls the
whole chain

Attacker needs to have a
“delegation” server

QNAME Minimisation,
CNAMEs, Wildcard
Records

‘A’ (11.22.33.44)

NR-Delegation

Attacker can use some of
“.com” servers OR use
his own sub domain and
control the whole chain

Not all “.com” servers
can be used OR attacker
needs to have a “delega-
tion” server

QNAME Minimisation,
CNAMEs, Wildcard
Records

‘A’ (11.22.33.44)

NR-DNS names
The attacker may use real
domains which are not in
his control

Attacker needs to have
a “delegation” server and
create such domain lists

QNAME Minimisation,
CNAMEs, Wildcard
Records

‘NS’ (google.com)

’Broken’ or stale
domain-to-IP map-
pings

No need for a “delega-
tion” server

Attacker needs to create
such domain lists

Wildcard Records (in
some cases, only if the
domain found has it
configured)

‘A’ (11.22.33.44)

Table 1: NRDelegationAttack delegation options.
* NR-DNS is short for “Non-Responsive to DNS queries" server

sion 9.16.2). The three authoritative name servers include: a
‘root’ authoritative name server, an attacker authoritative name
server, and a malicious redirection authoritative. Most of our
tests were carried out on a BIND9 version 9.16.6 resolver
compiled to work with our local ‘root’ authoritative name
server. We implemented our authoritative name servers with
Name Server Daemon (NSD) [30] version 4.3.3. The clients
were deployed on the same machine, which was configured to
send DNS queries directly to our local recursive resolver. The
setup configuration, referred to as Inner-Emulator, is available
in [34].

5.2 NRDelegationAttack Complexity Factor

As noted previously, most of the heavy load produced by the
attack stems from the numerous executions of Step 1 in Phase
II, which is recursively called in Phase III (see Section 4).
We used the Inner-Emulator setup and Valgrind tool [4] with
a BIND9 implementation to compute the complexity factor
function (cost(n)). This represents the number of machine
instructions executed to resolve one malicious NRDelega-
tionAttack request, where n is the number of NS names in
the referral-list. The major term in this function is the cost
of executing Step 1 in Phase II multiplied by the number of
times it is executed:

Let benignCost be the number of instructions executed to
resolve one benign query; the average number over different
benign queries is BenignCost = 195,000 instructions.

Let Rstrts(n) be the number of restart events raised in a
resolution as a function of n. The value of Rstrts(n) is at
most 100, at which point the resolution is aborted. Rstrts(n)
is measured as follows:

Rstrts(n) =

1 ≤ n ≤ 10 : 3
11 ≤ n ≤ 15 : 3+(n−10)
16 ≤ n ≤ 20 : 8+5∗ (n−15)
21 ≤ n min(33+25∗ (n−20),100)

RR_Sent(n) is the total number of NS name queries sent
by the resolver as a function of n and is bounded by the
restarts limit (= 100). When the restarts limit is reached, the
resolution process is aborted. RR_Sent(n) is measured as
follows:

RR_Sent(n) =

{
1 ≤ n ≤ 35 : n
36 ≤ n : 35

Note that the restarts limit is reached when n = 23. How-
ever, because the resolver is multi-threaded, the restarts limit
is reached concurrently with other threads that are looking
up referrals for NS names in the ADB. As a result, there is
some variance in the number of NS names that are inserted
into the ADB and have been queried, when the restarts limit
is reached. That is, RR_Sent(n) when n ≥ 30, may be due to
race conditions that occur between n being 25 and 35.

Let ResolutionLoop(n) be the cost of processing the
referral-response (Phase II in Section 4). Notice its high de-
pendency on n, even if n >> 35. Our measurements show
that ResolutionLoop = 21,000 in BIND9 for each referral in
the referral list.

QSentCost(n) refers to the number of instructions executed
when queries are sent out for the NS names in the resolution
process and a corresponding response is received. Its value is
as follows:

QSentCost(n) = RR_Sent(n)∗2∗21,000

Note that 21,000 is the approximate number of in-
structions it takes to send one query and to receive its
response. This number is multiplied by the number of
referrals queried (RR_Sent(n)) and by 2 because each re-
ferral is queried in both IPV4 and IPV6. Putting it all together:

Cost(n) = Rstrts(n)∗ResolutionLoop(n)+QSentCost(n)
= Rstrts(n)∗n∗21,000 +RR_Sent(n)∗2∗21,000

405

1,111

2,245

3,415

21

1,051

2,101

3,151

17 88
184

292

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
um

be
r o

f I
ns

tr
uc

tio
ns

 (m
ill

io
ns

)

Number of Referrals

BIND9 with NXNS patch Cost(n) BIND9 without NXNS patch

Figure 3: Instructions executed on the resolver processor per
one malicious client request (in millions), tested on BIND9
with NXNS patched and non-patched versions, compared to
our NRDelegationAttack instructions prediction function.

We measured the resolver server’s actual performance with
Valgrind [4] using different values of n, and compared the
results with Cost(n). We tested the NXNSAttack patched and
non-patched versions of BIND9 (version 9.16.2 and 9.16.6,
respectively). The results are given in Figure 3. As can be
observed, Cost(n) closely predicts the number of instructions
executed for each malicious attacker query. The instructions’
amplification factor is at least 5,600 relative to a benign query
(1,100,000,000:195,000 instructions). In addition, the number
of instructions on a pre-NXNSAttack version of BIND9 is
significantly lower than the number on an NXNS-patched
version (1,100,000,000:88,000,000), as explained at the be-
ginning of Section 4.

6 NRDelegationAttack Measurements

In the previous section we measured and analyzed an NRDel-
egationAttack with one malicious query in a closed setup
disconnected from the Internet. Here we test it on a cloud
setup and on open resolvers in the network. We measured
the effect of different-sized attacks on the resolvers’ (BIND,
Knot, and Unbound) performance, and a weak attack on open
resolvers. All of this was executed while taking into account
ethical considerations.

6.1 Cloud Setup
Our cloud setup resided in the Azure cloud and included the
different attacker DNS servers, along with benign users that
make requests in parallel. This allowed us to evaluate the
impact of the attack’s effect on benign users as shown in
Figure 4. The following machines were used:

1. Resolver machine with either BIND9 (9.16.6), Knot
(5.1.3) or Unbound (1.13.1) resolvers; all were NXN-
SAttack patched versions.

2. Two client machines, a benign client and an attacker
client, each equipped with a Resperf tool [31].

3. Authoritative server that is used to craft the malicious
referral-response (referral.com in Figure 1).

4. Two machines simulating the authoritative (and its
backup) that owns the domain referred to by the NS
names in the referral response (e.g., delegation.com in
Figure 1). This authoritative was configured to respond
with different delegations to non-responsive DNS query
servers e.g., NXDOMAIN-Redirection (see Appendix
B).

5. Two machines simulating the authoritative and the
backup to which benign users are referred.

We placed the client, resolver, and authoritative servers in
the same Azure region so our measurements would not be
impacted by any significant Internet delays. All the machines
used in the cloud-setup have Intel Xeon Platinum 8272CL
with 4 virtual CPUs, 16GB RAM, and the Ubuntu 18.04 op-
erating system.

.referral.com
name servers

Authoritative ServersClients

.delegation.com
name servers

Recursive Resolver

Client 1

Client 2

Resolver
(Bind9 / Knot / Unbound)

.benignAuth.com
name servers

Figure 4: Cloud-setup testing environment simulation

6.2 Resolver Throughput Under NRDelega-
tionAttack

In this section, we analyze the impact of an NRDelegation-
Attack on benign queries in a resolver that is under attack.

12.18

11

1.215

6.5

0.37

2.5

0.13

17.5

10

7.2

6

5

1.2 1.1

17.5

12.5

6.5
5.5

4.2

2.3

1

8

0.47

3

0.2
0.7

0.05

7.2

5.5

3

1.9

0.8 0.6

11

0.8
1.2

0.65 1
0.5

5.5

0.15

1.7

0.08 0.3
0.02

5

3.5

2
1.4

0.45 0.3

5.7

0.15
0.7

0.1
0.45

0.0450

2

4

6

8

10

12

14

16

18

20

100 Referrals 500 Referrals 1500 Referrals 100 Referrals 500 Referrals 1500 Referrals 100 Referrals 500 Referrals 1500
Referrals

BIND9 UNBOUND KNOT

Be
ni

gn
 A

ns
w

er
s P

er
 S

ec
on

d
(In

 th
ou

sa
nd

s)

500 Attacker QPS 5000 Attacker QPS 15000 Attacker QPS

BIND9 UNBOUND KNOT

Figure 5: Resolver throughput tested on NXNSAttack patched versions of BIND9, Knot, and Unbound implementations under
and without either NRDelegationAttack or NXNSAttack.

We tested BIND9, Unbound, and Knot implementations, all
with NXNS-patched versions, with different attack scenarios,
i.e., with different sizes of referral response. We used two
Resperf tools [31]: the first simulates the attacker and issues
queries each time at a fixed rate, and the second tool ramps
up the benign user requests until things start to fail. All this
is done in the cloud-setup. For each combination of attack
parameters and rate, we tested the impact of both attacks:
NRDelegationAttack and NXNSAttack.

As shown in Figure 5, all resolver implementations exhib-
ited a significant performance degradation in their throughput
measurements during the NRDelegationAttack. The impact
of the NRDelegationAttack is significantly more severe than
that of the NXNSAttack, with BIND9 having a dramatically
lower throughput during the NRDelegationAttack compared
to the NXNSAttack. Furthermore, the longer the malicious
referral-list, the bigger the impact of the NRDelegationAt-
tack on the tested resolver. This is because all the names in
the referral-list are searched for in the ADB and the resolver
cache, even if they have no resolution process. We also mea-
sured the attack’s impact with different attacker QPS rates.
These results demonstrate that as the malicious QPS increases,
the resolver throughput decreases in all the tested implemen-
tations. We also observed that increasing the length of the
referral list is more destructive to the resolver than increasing
the attack rate by same proportion.

6.3 NRDelegationAttack Impact on Open Re-
solvers

In this section, we demonstrate the effect of the NRDelega-
tionAttack in the wild on 16 popular open resolvers. To test
the attack on real open resolvers, we used our Azure cloud-
setup.

We were doubly restricted when testing the NRDelegation-
Attack on real open resolvers. First, we could not cause any
harm to any of the open resolvers, as per the ethical statement
about these measurements given in Section 6.4. Second, we
could not measure the resolver itself. We could only make an
indicative measurement of the latency and number of referral
resolution attempts (“sent” in Table 1) per attacker request
for each open resolver.

To avoid any disturbance of the open resolvers’ operations,
we used a rather weak version of the attack that had only 1
malicious request with 20 names in the referral-list response
configured in the malicious authoritative. We repeated each
of our tests 5 times, spread over some period of time.

The summary of our tests is presented in Table 2. As can be
seen in the table, even when compared to the NXNSAttack,
all the open resolvers tested show a significant performance
degradation during our weakened version of the NRDelega-
tionAttack. Our client’s DNS timeout value was 15 seconds;
if there was no response within that period, we received a

client-timeout.
The impact of the NRDelegationAttack is visible in both

an increase of the resolver latency and the number of referrals
sent to our authoritative servers. In most of the resolvers tested,
the number of referrals that were sent during the NRDelega-
tionAttack is much higher than during the NXNSAttack on an
NXNS-patched resolver. This could be caused by the restart
events that occur during the NRDelegationAttack but we do
not know the implementation details of the open resolvers.
Moreover, all the resolvers tested showed a significant in-
crease in latency when responding to the attacker’s request.
In some cases, we even received a client-timeout and got no
response. While the attack took place on a BIND9 resolver in
the cloud-setup environment, we saw a correlation between
the attacker request latency, the amount of resources used on
the resolver, and the benign users’ latency, as shown in Table
2.

The above experiments suggest that the NRDelegationAt-
tack can impact the performance of open resolvers, even with
a weakened version of the attack.

6.4 Ethical Statement

As mentioned before, when testing the NRDelegationAttack
on real open resolvers, we could not cause harm to any of the
open resolvers. Consequently, we could only take an indica-
tive measurement using a weakened version of the NRDelega-
tionAttack. Each test point on an open resolver sent only one
request that initiated a response of at most 20 referrals. This
was repeated 5 times at different points in time to ensure the
accuracy of the measured latency. To verify that our tests did
not harm the open resolvers, we first tested the weakened ver-
sion of the NRDelegationAttack on the resolver in our internal
setup. According to these tests, each such request is equiva-
lent to at most 100 benign requests. Moreover, we notified
the owners of all the open resolvers used in the responsible
disclosure procedure.

7 Responsible Disclosure Procedure

Following the discovery of the NRDelegationAttack, we ini-
tiated a responsible disclosure procedure and corresponded
with 20 different vendors and open resolver implementations.

To improve and synchronize the process, the DNS com-
munity “DNS.OARC” has created a specific channel in dns-
oarc.net/community/channels and invited DNS related ven-
dors and SP’s. In this channel we shared our technical report
and corresponded with different vendors and SP’s including
ICANN, Cisco, PowerDNS, Google and others. In addition
we continued to correspond with several parties one-on-one
through encrypted email. Furthermore, we have shared on the
OARC channel our cloud setup with instructions on how to
test NRDelegationAttack using the setup.

Three CVEs were issued, (CVE-2022-2795 [1]) by BIND9,
(CVE-2022-40188 [3]) by Knot, and (CVE-2022-3204 [2])
by Unbound. The three vendors responded swiftly and co-
operated to patch their software and servers, most of them
by limiting the number of referrals processed or the cache
searches per request. See Section 8 for the details of the miti-
gation techniques and the performance measurements on the
vendors patched versions. Here is a quote from one of the
large parties in the disclosure, which rated the original report
as having high severity: “By flooding the target resolver with
queries exploiting this flaw, an attacker can significantly im-
pair the resolver’s performance, effectively denying legitimate
clients access to the DNS resolution service.”

8 NRDelegationAttack Mitigation Options

We present several approaches to mitigate and reduce the ef-
fect of the NRDelegationAttack. The NRDelegationAttack
builds upon very basic resolution mechanisms such as dele-
gation and referral response. Therefore, when mitigating the
attack, special care must be taken to ensure that the successful
resolution of benign queries is not affected in any way. The
following are examples of such techniques.

Consider only k of the NS names in the referral response:
For all intents and purposes, the resolver considers only
the first k (e.g., 20) NS names from the list of names in
the referral response. Nevertheless, the entire list is kept
in the cache unless the resolution results in an IP address.
Only the first k names are looked up each time in the
ADB and cache, and the resolver attempts to resolve at
most k names. While this approach does not provide
complete mitigation, it significantly reduces the effect
of the NRDelegationAttack as shown in Figure 6. This
is the easiest approach to implement since it requires
minimal changes in the resolver implementation. The
approach came up in the discussions we had with some
of the vendors in the responsible disclosure procedure
and some of them use this technique (BIND and Knot).
As noted in [5], the top million domains have an average
of 2.52 NS names in their corresponding RR, and 99%
of them have less than 7. Because many root servers
respond with 13 NS names in the RR, k = 20 was
chosen as a safe number that is unlikely to affect the
resolution of any benign name. Notice that had this
mitigation technique been applied to an unpatched
against NXNSAttack version (pre-NXNS version),
then it would reduce the effect of the NXNSAttack.
However, the limit set in the NXNSAttack mitigation
(see Section 2.4) is more restrictive (send at most 5
NS name resolutions per client query) than the limit
set here (= 20). Thus applying this mitigation on an
NXNSAttack patched version is not expected to effect
the behavior under an NXNSAttack. Except that the

Open Resolver NXNS Attacker NRDelegationAttack Attacker

Name IP

Benign
Query

Latency
(msec)

Latency
(msec)

Latency
Increase (%)

Referrals
Sent (IPV4
& IPV6)

Latency
(msec)

Latency
Increase

(%)

Referrals
Sent (IPV4 &

IPV6)

VeriSign 64.6.64.6 70 90 28.57 3 (Only IP4)
Client-

Timeout
INF 35

ADGuard 94.140.14.14 78 200 156.41 14 11000 14002.5 40

Dyn
216.146.35.35

97 160 64.95 3 (Only IP4)
Client-

Timeout
INF 34

Quad9 9.9.9.9 79 130 64.55 5 (Only IP4) 8000 10026 38

Yandex 77.88.8.8 94 250 165.95 4 (Only IP4)
Client-

Timeout
INF 40

Comodo-
Secure

8.26.56.26 76 130 71.05 12 1600 2005.26 13

OpenDNS
208.67.222.222

75 170 126.6 12 1200 1500 22

Google 8.8.8.8 74 130 75.67 14 4700 6251.35 14
Cloudflare 1.1.1.1 80 560 600 10 5350 6587.5 12

DNS.Watch 84.200.69.80 70 100 42.85 3 (Only IP4) 13000 18471.4 34
FreeDNS 37.235.1.174 86 225 161.62 5 (Only IP4) 8000 9202.32 20 (Only IP4)
Hurricane 74.82.42.42 72 210 191.6 5 (Only IP4) 6100 8372.22 20 (Only IP4)

Level3
(∥RR∥= 20)∗

209.244.0.3 90 550 511.11
20 (Only

IP4)
11000 12122.22 40

Level3
(∥RR∥= 30)∗

209.244.0.3 90 5000 5455.5
20 (Only

IP4)
14000 15455.5 60

Norton
199.85.127.10

80 115 43.75 3 (Only IP4)
Client-

Timeout
INF 30

SafeDNS 195.46.39.39 86 90 4.65 6 (Only IP4) 5085 5812.8 7 (Only IP4)

Ultra 156.154.71.1 70 100 42.85 3 (Only IP4)
Client-

Timeout
INF 24

BIND9
Cloud-Setup-
Testing env

50 67 34 10 10050 20000 40

KNOT
Cloud-Setup-
Testing env

72 110 52.7 10 17575 24309.7 14

UNBOUND
Cloud-Setup-
Testing env

90 200 122.2 12 17540 19388.8 20

Table 2: Latency for BIND9, Knot, Unbound, and 16 open resolvers in responding to one NRDelegationAttack or one NXNSAt-
tack malicious query with 20 NS names in the referral-list (∥RR∥= 20), and the number of referral queries sent by the resolver
(only those sent in Step 6 in Figure 1) while processing these 2 queries.
* Because the initial NXNSAttack test on level3 showed 20 referral queries sent (which is = ∥RR∥), we verified that this resolver
limit on the number of referrals sent = 20, by testing it with ∥RR∥= 30.

CPU and Memory load would be somewhat reduced
since only 20 names would be looked up in the cache
and ADB.

Preserving the No_Fetch: We also suggest not clearing the
No_Fetch flag upon restart. In this way, after the restart,
the resolver knows it already issued the resolution of 5
names and that the referral_limit has been reached; thus,
it will not query about any more names from the LRR.
Either way, only 5 queries are issued by the resolver and
the recursive repetition of Phase II is eliminated, further
eliminating Phase III. Because this flag is implemented
in the code, it must be reset before processing a new
referral response. This is not trivial since it is an event
that is not simple to distinguish. Clearly, this flag must
be reset between client queries.

No RR lookup on No_Fetch: To completely eliminate the
repetition of Phase II, it is possible to add a condition
that prevents looking up the referral-list in the ADB and
the resolver cache if the flag No_Fetch is turned on. This
mitigation ensures that Phase II of the attack is executed
only the first time the referral response is processed,
which we believe follows the spirit of the NXNSAttack
mitigation.

The mechanisms “Preserving the No_Fetch” and “No
RR lookup on No_Fetch” are difficult to implement
while ensuring that legitimate client queries are not af-
fected. For example, if the No_Fetch flag is preserved in
the resolution process, a client querying “foo.example”
in which the “.example” domain name has more than 5
name servers in the referral list, could receive a FAIL
response. This happens because the resolver will stop the

resolution process after adding the first 5 names to ADB
and will not resolve the “foo.example” domain name.

3 14 28 42
16

81 167 250
405

1,111

2,245

3,415

9.4 9.4 9.4 9.50

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

In
st

ru
ct

io
ns

 p
er

 o
ne

 m
al

ic
io

us
 re

qu
es

t
(In

 m
ill

io
ns

)

Number of NS names in malicious referral response
No RR lookup on No_Fetch Preserving No_Fetch

Without any NRDelegationAttack patch Consider only 20 names from the referral response
(same as the blue line in Fig 3)

Figure 6: Comparing performance of the first three mitigation
suggestions by the number of instructions in the resolver per
one malicious NRDelegationAttack client request, on BIND9
version 9.16.6 (NXNSAttack patched). Blue is used to desig-
nate the performance of the unpatched version under attack
(as in Figure 3). The other lines show the three other patches.

Cache NR responses: Another suggestion to mitigate the
NRDelegationAttack is to add a new RCODE, “NR",
to mark a domain name in the cache that resolves to a
server that is non-responsive to DNS queries or to queries
in general. Caching “NR" domains with a configurable
TTL prevents the resolver from asking the same non-
responsive server over and over again. We also suggest
adopting the NR RCODE in the resolver algorithm in a
way that stops the resolution process when more than x
of the resolutions leads to an NR resource.

We tested the first three NRDelegationAttack mitigation
suggestions above on BIND9 version 9.16.6 and compared
the number of instructions executed with and without the three
mitigations. As shown in Figure 6, the three suggestions sig-
nificantly reduced the amount of resolver resources consumed
during the NRDelegationAttack. As can be seen in Figure
6, the load of the attack with the “No_Fetch” mitigation is
about 7.3% of the load without any mitigation. We also saw
a change of 1.2% with the “No RR lookup on No_Fetch”
mitigation and 0.3% with the “Consider only k of the NS
names in the referral response” mitigation. As shown for the
“Consider only k of the NS names in the referral response”
mitigation, when k equals 20, the number of instructions is
around 9.5 million, regardless of the number of NS names in
the referral response. This is indeed the number of instruc-
tions executed upon receiving a malicious referral response
with 20 NS names.

As part of the responsible disclosure procedure, we tested
the NRDelegationAttack patch of each of the three vendors,

BIND, Unbound, and Knot. The corresponding results are
presented in Figure 7, showing that all three patches present
a substantial improvement in performance under the NRDele-
gationAttack.

9 Related Work

Complexity attacks exploit algorithmic deficiencies in the
implementation of targeted services. Many network systems
such as Bro intrusion detection [12], TCP [20], and hashes
[6, 12] are vulnerable to complexity attacks [7]. For exam-
ple, Crosby et al. [12] show how a maliciously crafted input
compromises the data structure of the server, leading to mal-
function of the server in the worst-case scenario. The authors
demonstrate their complexity attacks on the Perl, Squid, and
Bro systems.

Pfeifer et al. [32] raised issues regarding configuration er-
rors and the risk of unavailability due to the complexity of the
DNS system. They also examine possible improvements to re-
duce the risk. Although they targeted amplification and flood
attacks [19], to the best of our knowledge, no specific com-
plexity attack was observed on DNS servers. Moura et al. [26]
in their TsuNAME amplification attack, found a way to use
maliciously crafted authoritative configuration with cyclical
dependencies on DNS records. As a result, some recursive
resolvers can greatly amplify queries, potentially resulting
in a denial-of-service to DNS servers. Luo et al. [21] ana-
lyzed the prevalence and characteristics of the NXDOMAIN
and water torture attacks. They showed that the volume of
the DNS water torture attack is significantly larger than the
volume of disposable domains or DGA queries. In addition,
they demonstrated that the client IPs launching the DNS wa-
ter torture attack are all random generated fake addresses.
NXNSAttack [5] is another flood attack that exposed a vul-
nerability causing a flood of queries between the recursive
resolver and the authoritative, resulting in an overload on both
of them and producing an amplified DDoS effect. Bushart
et al. [10] exposed an application-layer DoS attack in which
they chained CNAME records and forced resolvers to per-
form deep name resolutions. This leads to an overload on the
target authoritative name server and considerably reduces its
availability.

Maury [22] presents a different attack named iDNS, which
also exploits the delegations of name servers in a referral
response and causes a packet amplification factor (PAF) of
at most 10x. In iDNS, the attacker’s name server sends self-
delegations back and forth to the attacker’s name server, up to
an infinite depth. Some measures were taken by different DNS
vendors such as BIND9 and Unbound following the disclosure
of iDNS, as described in [22]; however, these measures do
not influence or weaken the NRDelegationAttack.

Wang [35] focused on the DNS security implications of
glue records. He describes how recursive resolver implemen-
tations such as BIND9 and Unbound treat glue records. How-

12 12

14.3 14.3

11.5 11.5

0.08 0.02

1.4

0.3 0.1 0.045

10.5 10.5

13.3
12.4

10 10

0

2

4

6

8

10

12

14

16

500 Referrals 1500 Referrals 500 Referrals 1500 Referrals 500 Referrals 1500 Referrals

BIND9 UNBOUND KNOT

Be
ni

gn
 R

ep
lie

s
Pe

r S
ec

on
d

(In
 th

ou
sa

nd
s)

Without Attack With NRDelegationAttack With the vendor NRDelegationAttack patch

BIND9 UNBOUND KNOT

Figure 7: Resolver throughput during NRDelegationAttack, tested on NRDelegationAttack patched and non-patched versions of
BIND9, Knot, and Unbound implementations.

ever, the focus of his work is on cache poisoning vulnerabili-
ties rather than the impact on the recursive performance as in
our paper.

Muller et al. [28] perform a comprehensive measurement
using the RIPE atlas to analyze how recursive resolvers select
the name server with which to interact, out of a set of multiple
authoritative servers. These authors show that, upon arrival
of client requests, most recursive resolvers interact with all
the name servers of a given domain to distribute the load and
maintain latency for RTT algorithms. They focus on how and
when the recursive resolvers query a set of multiple authorita-
tive servers. In another work, Moura et al. [27] analyze the
root DNS service during a specific DDoS attack. However, the
analysis refers to authoritative servers rather than recursive
behavior. In a recent work [25], Moura et al. measure and
show the impact of caching and long TTL while discussing
DNS defenses during a DDoS attack.

The DNS infrastructure is also facing abuse by various enti-
ties that use it for applications for which it was not intended. In
this case, a large volume of temporary domain names (known
as disposable domains [15]) is commonly used to help these
services communicate via DNS queries. A study [15] of large
scale DNS traffic recordings showed that 60% of all distinct
resource records observed daily are disposable. Hao et al. [11]
examined the negative impact of disposable domains on recur-
sive caching. They proposed a classification based on domain

name features to increase the cache hit-rate.

10 Conclusions

Two conclusions follow from this paper regarding the DNS
system and how to fix its problems. First, the DNS system
appears to be simple, with a straightforward interface at a
high level. However, under the hood, it is a complex and
complicated system whose behavior is hard to analyze and
predict. This paper, along with other works and recent at-
tacks, exposes a set of complex mechanisms and intricate
relations between procedures and protocols that compose the
DNS system. Specifically, as this paper shows, it is difficult
to understand and analyze how many compute and/or com-
munication resources one query may consume. This brings
us to the second conclusion, that it is hard to predict the con-
sequences of a fix made to a problem. The mitigation of one
attack can open the door to another one. Here, we showed
that the techniques used to mitigate the NXNSAttack proved
to be a major driver in the current NRDelegationAttack.

The NRDelegationAttack introduces a serious DDoS com-
plexity attack on DNS resolvers. We analyzed the attack and
prove its severity through several different tests. The attack
can easily deny service from any target resolver of choice.
In addition, we presented the complexity factor function and
explained the source of the complexity.

Finally, we suggested and tested several simple and effec-
tive mitigation techniques, including methods used by differ-
ent vendors.

Acknowledgements: The authors are grateful to the
USENIX Security shepherd and referees of the paper for
their comments which have considerably improved the paper.
We are thankful to Michał Kępień and Petr Špaček from ISC
(BIND), Wouter Wijngaards and George Thessalonikefs from
NLnet Labs (Unbound), Vladimir Cunat from CZ.NIC (Knot)
and the other members of the DNS-OARC forum for their
many comments and discussions on an earlier version of the
paper that have considerably improved it, and for their anal-
ysis and testing of the attack. In addition, the authors would
like to thank Ron Stajnrod, Adiel Vaintraub and Tom Legkov
for their helpful comments on earlier versions of the paper.

References
[1] Cve-2022-2795. https://nvd.nist.gov/vuln/detail/CVE-2022-2795.

[2] Cve-2022-3204. https://nvd.nist.gov/vuln/detail/CVE-2022-3204.

[3] Cve-2022-40188. https://nvd.nist.gov/vuln/detail/CVE-2022-40188.

[4] Valgrind debugging and profiling. https://valgrind.org/.

[5] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXNSAttack: Re-
cursive DNS inefficiencies and vulnerabilities. In 29th USENIX Se-
curity Symposium (USENIX Security 20), pages 631–648. USENIX
Association, August 2020. https:/ /www.usenix.org/conference/
usenixsecurity20/presentation/afek.

[6] Udi Ben-Porat, Anat Bremler-Barr, and Hanoch Levy. Evaluating the
vulnerability of network mechanisms to sophisticated ddos attacks. In
IEEE INFOCOM 2008-The 27th Conference on Computer Communi-
cations, pages 2297–2305. IEEE, 2008.

[7] Udi Ben-Porat, Anat Bremler-Barr, and Hanoch Levy. Computer and
network performance: Graduating from the “age of innocence”. Com-
puter Networks, 66:68–81, 2014. https://www.sciencedirect.com/
science/article/pii/S1389128614001236.

[8] S. Bortzmeyer. Nxdomain: There really is nothing underneath. Novem-
ber 2016. https://datatracker.ietf.org/doc/html/rfc8020.

[9] S. Bortzmeyer. Dns query name minimisation to improve privacy.
Internet Engineering Task Force (IETF), November 2021. https://
datatracker.ietf.org/doc/html/rfc9156.

[10] Jonas Bushart and Christian Rossow. Dns unchained: Amplified
application-layer dos attacks against dns authoritatives. In Michael Bai-
ley, Thorsten Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis,
editors, Research in Attacks, Intrusions, and Defenses, pages 139–160,
Cham, 2018. Springer International Publishing.

[11] Yizheng Chen, Manos Antonakakis, Roberto Perdisci, Yacin Nadji,
David Dagon, and Wenke Lee. DNS noise: Measuring the pervasive-
ness of disposable domains in modern DNS traffic. In DSN, pages
598–609. IEEE Computer Society, 2014.

[12] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic
complexity attacks. In 12th USENIX Security Symposium (USENIX
Security 03), Washington, D.C., August 2003. USENIX Association.
https://www.usenix.org/conference/12th-usenix-security-symposium/
denial-service-algorithmic-complexity-attacks.

[13] CZ.NIC. https://www.knot-resolver.cz/, 2021.

[14] FireEye. Global DNS Hijacking Campaign: DNS Record Manipula-
tion at Scale. https://www.fireeye.com/blog/threat-research/2019/01/
global-dns-hijacking-campaign-dns-record-manipulation-at-scale .
html, August 2019.

[15] Shuai Hao and Haining Wang. Exploring domain name based features
on the effectiveness of DNS caching. ACM SIGCOMM Computer
Communication Review, 47(1):36–42, 2017.

[16] P. Hoffman, A. Sullivan, and K. Fujiwara. RFC 8499–DNS Terminol-
ogy. https://tools.ietf.org/html/rfc8499, 2019.

[17] ISC. https://kb.isc.org/docs/aa-01463, 2019.

[18] ISC. https://www.isc.org/downloads/bind, 2021.

[19] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten
Holz. Exit from hell? reducing the impact of amplification ddos attacks.
In 23rd USENIX Security Symposium (USENIX Security 14), pages
111–125, 2014.

[20] A. Kuzmanovic and E. W. Knightly. Low-rate tcp-targeted denial
of service attacks (the shrew vs. the mice and elephants). In ACM
SIGCOMM, 2003.

[21] Xi Luo, Liming Wang, Zhen Xu, Kai Chen, Jing Yang, and Tian Tian.
A large scale analysis of DNS water torture attack. In Proceedings
of the 2018 2nd International Conference on Computer Science and
Artificial Intelligence, pages 168–173. ACM, 2018.

[22] Florian Maury. The iDNS attack. In OARC 15, 2015.

[23] Warren Mercer and Paul Rascagneres. Talos blog: DNSpionage cam-
paign targets middle east. https://blog.talosintelligence.com/2018/11/
dnspionage-campaign-targets-middle-east.html, August 2019.

[24] P. Mockapetris. Domain names - concepts and facilities, 1987. https:
//datatracker.ietf.org/doc/html/rfc1034.

[25] Giovane Moura, John Heidemann, Moritz Müller, Ricardo
de O Schmidt, and Marco Davids. When the dike breaks: Dis-
secting DNS defenses during DDoS. In Proceedings of the Internet
Measurement Conference 2018, pages 8–21. ACM, 2018.

[26] Giovane C. M. Moura, Sebastian Castro, John Heidemann, and Wes
Hardaker. Tsuname: Exploiting misconfiguration and vulnerability
to ddos dns. In Proceedings of the 21st ACM Internet Measurement
Conference, IMC ’21, page 398–418, New York, NY, USA, 2021. As-
sociation for Computing Machinery. https://doi.org/10.1145/3487552.
3487824.

[27] Giovane C.M. Moura, Ricardo de O. Schmidt, John Heidemann,
Wouter B. de Vries, Moritz Muller, Lan Wei, and Cristian Hesselman.
Anycast vs. DDoS: Evaluating the November 2015 root DNS event. In
Internet Measurement Conference, pages 255–270, 2016.

[28] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John
Heidemann. Recursives in the wild: Engineering authoritative DNS
servers. In Internet Measurement Conference, pages 489–495, New
York, NY, USA, 2017.

[29] NLNETLABS. https://www.nlnetlabs.nl/projects/unbound/about/,
2021.

[30] NLNETLABS. https://www.nlnetlabs.nl/projects/nsd/about/, 2021.

[31] Nominum. resperf(1) - Linux man page. https://linux.die.net/man/1/
resperf, May. 2019.

[32] Gert Pfeifer, Andre Martin, and Christof Fetzer. Reducible complexity
in dns. 09 2010.

[33] ICANN Security and Stability Advisory Committee (SSAC). Prelimi-
nary report on dns response modification. https://www.icann.org/en/
system/files/files/sac-032-en.pdf, June 2008.

[34] Shani Stajnrod. Dns full protocol simulator. https://github.com/
ShaniBenAtya/dnssim.

[35] Zheng Wang. The availability and security implications of glue in the
domain name system. CoRR, abs/1605.01394, 2016.

https://nvd.nist.gov/vuln/detail/CVE-2022-2795
https://nvd.nist.gov/vuln/detail/CVE-2022-3204
https://nvd.nist.gov/vuln/detail/CVE-2022-40188
https://valgrind.org/
https://www.usenix.org/conference/usenixsecurity20/presentation/afek
https://www.usenix.org/conference/usenixsecurity20/presentation/afek
https://www.sciencedirect.com/science/article/pii/S1389128614001236
https://www.sciencedirect.com/science/article/pii/S1389128614001236
https://datatracker.ietf.org/doc/html/rfc8020
https://datatracker.ietf.org/doc/html/rfc9156
https://datatracker.ietf.org/doc/html/rfc9156
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.knot-resolver.cz/
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://tools.ietf.org/html/rfc8499
https://kb.isc.org/docs/aa-01463
https://www.isc.org/downloads/bind
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://doi.org/10.1145/3487552.3487824
https://doi.org/10.1145/3487552.3487824
https://www.nlnetlabs.nl/projects/unbound/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://linux.die.net/man/1/resperf
https://linux.die.net/man/1/resperf
https://www.icann.org/en/system/files/files/sac-032-en.pdf
https://www.icann.org/en/system/files/files/sac-032-en.pdf
https://github.com/ShaniBenAtya/dnssim
https://github.com/ShaniBenAtya/dnssim

11 Appendices

A SLIST

To demonstrate the use of the SLIST in the resolution process,
we use BIND9 implementation (in which the SLIST is called
“ADB”). In the following example (Figure 8) we explain how
the resolver behaves in an attempt to resolve the query as
quickly as it can, after receiving a referral-list response with
no glue records from the authoritative.

Upon receiving a new client request (i.e., e1.example.com,
Step 1 in Figure 8), the resolver first checks whether the name
server is already in the server’s cache or was previously in-
serted into the ADB. The main purpose for checking these
components is to avoid wasting time and sending unneces-
sary requests if the resolver already knows the answer to
the requested name server. Assuming the resolver does not
find the answer, it inserts the name server into the ADB and
starts a new resolution process to resolve it. First, the resolver
searches the example1.com name server, assuming the name
is already presented in its cache. The resolver issues a query to
the example1.com name server asking about e1.example.com
(Step 2). In this example, the example1.com authoritative an-
swers with a referral-list response, which contains two name
servers that may have the answer to the requested name server
(www1.example2.com and www2.example2.com as seen in
Step 3). Assuming all the names in the referral list have no
other information relevant to the resolution process (i.e., no
additional glue records), the resolver checks whether it has
helpful information about each one of them in the cache or
ADB (described as Step a in Figure 8). If the resolver can-
not find any helpful information about the name servers in the
referral response, it tries to invoke queries about all of them
in parallel (Steps 4-5).

Upon receiving the responses to the queries described in
Steps 4-5 (Steps 4R and 5R), the resolver adds them to the
ADB (as described in b), and continues to search for their
IP address with example2.com authoritative server (Steps
4.1 and 5.1). Then, the resolver receives their IP addresses
(Steps 4.1R and 5.1R) and saves them in the ADB (as can be
seen in c). In Steps 4.2 and 5.2, the resolver searches for
the original client query (e1.example1.com) and receives the
final IP address in Steps 4.2R and 5.2R. Lastly, in the table
described in d , we can see the final state of the ADB, which
is flushed to the resolver cache after returning the final answer
to the client (step 6).

B NXDOMAIN-Redirection Response

Sometimes rather than responding with an NXDOMAIN to a
non-existent query, an authoritative server may redirect the
querying resolver to another authoritative server that can pro-
vide an alternate resolution (as described in [33]). There are

different uses for this redirection response. For example, if the
TLD authoritative server receives a query for a non-existent
domain name (for instance foofake.example), it can use the
NXDOMAIN-Redirection configuration and return an ‘NS’
response instead of an NXDOMAIN. The purpose of this
mechanism could be, for example, to direct the client to a
page offering to sell the requested domain or to obtain adver-
tising revenue from third-parties. The use of NXDOMAIN-
Redirection is optional and, for example, is off by default in
BIND9.

C Delegation Tests on .com TLD

To determine whether an authoritative name server supports
delegation response or not, the attacker needs to have access to
a resolver, e.g., the attacker can set up a BIND9 resolver. Then,
the following steps are done: First, the attacker configures
his computer to use his own resolver; then, he sends a non-
existent query to the desired authoritative. Finally, the attacker
follows the chain of requests and responses on his resolver to
see whether the authoritative answered with an NXDOMAIN
response or a delegation.

We tested .com to see if it supports delegation responses.
We also checked whether any of the resources we were redi-
rected to are suitable for NRDelegationAttack. (See Section 4
for detailed information about NRDelegationAttack require-
ments.) The results of our tests are presented in Table 3.

D Testing QNAME Minimisation

By saving the previous queries in its cache and using them
instead of resolving the same name server over and over again,
the resolver is able to operate efficiently, and even more im-
portantly - quickly. To achieve efficiency and speed, both the
resolver query mechanism and the cache pretend to be hierar-
chical. But, in this research, we discovered that both of them
may not be as hierarchical and efficient as expected.

There are two main options for the resolver to query the
authoritative chain about a client query. We describe them as:

1. The “traditional” method of querying, in which the re-
solver always asks about the fully qualified domain
name.

2. Using query minimization [9] to disclose QNAME Min-
imisation information to the authoritative and increase
privacy.

Figure 9 shows the traditional method in which the resolver
queries the authoritative chain. After the resolver receives a
new query to resolve test1.fake.com from the client (Step 1),
and assuming the requested name server is not saved in the
resolver’s cache (Step 2), the resolver simply starts querying
the authoritative chain about the full name server (Steps 3,4

.example1.com
name servers

'A' request e1.example1.com

.com
name servers

'A' request www1.example2.com
'A' request www2.example2.com

2

5

4

3

.example2.com
name servers

'A' request e1.example1.com1

4R

5R

'A' request www2.example2.com

4.1 'A' request www1.example2.com

5.1

www1.example2.com 'A' 2.2.2.14.1R

www2.example2.com 'A' 2.2.2.2

2.2.2.1

e1.example1.com 'A' 3.3.3.1

4.2 'A' request e1.example1.com

5.2

e1.example1.com 'A' 3.3.3.1

'A' request e1.example1.com
2.2.2.2

e1.example1.com 'A' 3.3.3.16

5.1R

4.2R

5.2R

Client

a

b

c

d

Figure 8: Resolution process - network and Address DB operations view, part of the Appendix
.

Response Ffrom (.com Authoritative IP) Delegation Response Domain Name Suitable for NRDelegationAttack

192.48.79.30 nsg1.namebrightdns.com YES
192.48.79.30 nsg2.namebrightdns.com YES
192.48.79.30 ns1.redehost.com.br YES
192.48.79.30 ns2.redehost.com.br YES
192.41.162.30 ns1.dan.com YES
192.41.162.30 ns2.dan.com YES
192.48.79.30 ns1.dynadot.com.br NO
192.48.79.30 ns2.dynadot.com NO
97.74.111.55, 173.201.79.55 ziyuan.baidu.com NO
192.52.178.30 ns1.hover.com NO
192.52.178.30 ns2.hover.com NO
192.48.79.30 pdns11.domaincontrol.com NO
192.48.79.30 pdns12.domaincontrol.com NO
192.48.79.30 ns35.domaincontrol.com NO
192.48.79.30 ns36.domaincontrol.com NO

Table 3: Delegation responses tested on .com TLD.

and 5). The final response, which in this case is the non-
existent name server (NXDOMAIN), is received from .com
authoritative server (Step 6) and saved in the cache (Step 7).
Finally, the response is returned to the client (Step 8).

ROOT
name servers

'A' query test1.fake.com

.com
name servers

3

6

5

Client
'A' query test1.fake.com1

'NXDOMAIN' test1.fake.com
Response8

4

'NXDOMAIN' test1.fake.com response2

7 Resolver Cache
Name Server Type Value

.com NS ns1.com, ns2.com

ns1.com A ns1.com IP
ns2.com A ns2.com IP

test1.fake.com A NX

Resolver Cache
Name
Server

Type Value

'A' query test1.fake.com

Figure 9: The traditional form of querying the authoritative
chain and the result saved in the resolver cache.

If the resolver is using QNAME Minimisation (as shown in
Figure 10), after the resolver receives a new query to resolve
test1.fake.com from the client (Step 1), and assuming the
requested name server is not saved in the resolver’s cache
(Step 2), the resolver first queries the root authoritative about
just the suffix .com of the requested domain name (Steps
3 and 4). Then, the resolver queries the .com authoritative
about the second level of the domain name fake.com (Step 5),
which in this case does not exist. Hence, the resolver gets an
NXDOMAIN response about the requested domain fake.com
(Step 6). Because the response is not validated with DNSSEC,
even though an NXDOMAIN response is received about the
fake.com suffix according to the NXDOMAIN RFC [8], the
resolver may still query about the full domain name (Steps 7
and 8). The final response, which in this case is NXDOMAIN

for the whole queried name, is then saved in the cache (Step
9) and returned to the client (Step 10).

ROOT
name servers

'A' query .com

.com
name servers'A' query fake.com

3

6

5

Client
'A' query test1.fake.com1

'NXDOMAIN' fake.com response

'NXDOMAIN' test1.fake.com
Response10

4

'A' query test1.fake.com
8

7

'NXDOMAIN' test1.fake.com response

2

9

Resolver Cache
Name
Server

Type Value

Resolver Cache
Name Server Type Value

.com NS ns1.com, ns2.com

ns1.com A ns1.com IP
ns2.com A ns2.com IP

test1.fake.com A NX

Figure 10: Querying the authoritative chain using QNAME
Minimisation and saving the result in the resolver cache.

We tested the QNAME Minimisation mechanism on 10
different implementations by querying them multiple times
on the same non-existent domain name, which has our own
authoritative suffix. Then, we recorded the requests received
on our authoritative. We noticed that half of the resolvers
tested did not save the fake.com suffix in their cache but
kept asking about it from the same resolver IP address over
and over again. This led to unnecessary queries between the
resolver and authoritative servers. Table 4 presents the results
of our QNAME Minimisation and describes the querying and
caching mechanisms for each implementation.

Even though fake.com is already known not to exist, this
chain of queries about every subdomain of fake.com received
from the client results in a large number of unnecessary
queries to the subdomain of fake.com. This behavior is mu-
tual to both the “traditional” and QNAME Minimisation tech-
niques. We use this behavior in the NRDelegationAttack to
create a query with a long list of referrals that have the same

suffix (e.g., redrct.com) and direct the resolver to an authori-
tative server that supports NXDDOMAIN-Redirection. This
causes a significant number of queries generated by a single
attack query, resulting in an amplification effect.

Resolver Implementation Querying Mechanism Caching Mechanism

BIND9 (version 9.16.6) QNAME Minimisation only on TLDs Caching only TLDs and the whole query
ADGuard(94.140.14.14) QNAME Minimisation Caching only the whole query
Comodo-Secure(8.26.56.26) QNAME Minimisation Caching all queries but keeps querying the whole prefix even if it is under a non-existent domain
Dyn(216.146.35.35) QNAME Minimisation Caching only the whole query
Cloudflare(1.1.1.1) QNAME Minimisation Caching all queries but keeps querying the whole prefix even if it is under a non-existent domain
OpenDNS(208.67.222.222) QNAME Minimisation Caching all queries but keeps querying the whole prefix even if it is under a non-existent domain
Quad9(9.9.9.9) QNAME Minimisation Caching all queries but keeps querying the whole prefix even if it is under a non-existent domain
VeriSign(64.6.64.6) QNAME Minimisation Caching all queries but keeps querying the whole prefix even if it is under a non-existent domain
Google(8.8.8.8) No QNAME Minimisation Caching only the whole query
Yandex(77.88.8.8) No QNAME Minimisation Caching only the whole query

Table 4: QNAME Minimisation mechanism tested on 10 dif-
ferent open resolvers.

	Introduction
	Basic DNS Mechanisms
	SLIST
	Delegation Response
	Restart Event
	Referral Response Limit

	Threat Model
	NRDelegationAttack
	NRDelegationAttack Construction
	NRDelegationAttack Delegation Options

	NRDelegationAttack Complexity Factor
	Isolated Lab Setup
	NRDelegationAttack Complexity Factor

	NRDelegationAttack Measurements
	Cloud Setup
	Resolver Throughput Under NRDelegationAttack
	NRDelegationAttack Impact on Open Resolvers
	Ethical Statement

	Responsible Disclosure Procedure
	NRDelegationAttack Mitigation Options
	Related Work
	Conclusions
	Appendices
	SLIST
	NXDOMAIN-Redirection Response
	Delegation Tests on .com TLD
	Testing QNAME Minimisation

