
One Size Does not Fit All: Quantifying the Risk of Malicious App Encounters for
Different Android User Profiles

Savino Dambra∗, Leyla Bilge∗, Platon Kotzias∗, Yun Shen†, Juan Caballero‡

∗Norton Research Group †NetApp ‡IMDEA Software Institute

Abstract
Previous work has investigated the particularities of secu-

rity practices within specific user communities defined based
on country of origin, age, prior tech abuse, and economic
status. Their results highlight that current security solutions
that adopt a one-size-fits-all-users approach ignore the dif-
ferences and needs of particular user communities. However,
those works focus on a single community or cluster users into
hard-to-interpret sub-populations. In this work, we perform a
large-scale quantitative analysis of the risk of encountering
malware and other potentially unwanted applications (PUA)
across user communities. At the core of our study is a dataset
of app installation logs collected from 12M Android mobile
devices. Leveraging user-installed apps, we define intuitive
profiles based on users’ interests (e.g., gamers and investors),
and fit a subset of 5.4M devices to those profiles. Our analysis
is structured in three parts. First, we perform risk analysis on
the whole population to measure how the risk of malicious
app encounters is affected by different factors. Next, we cre-
ate different profiles to investigate whether risk differences
across users may be due to their interests. Finally, we com-
pare a per-profile approach for classifying clean and infected
devices with the classical approach that considers the whole
population. We observe that features such as the diversity
of the app signers and the use of alternative markets highly
correlate with the risk of malicious app encounters. We also
discover that some profiles such as gamers and social-media
users are exposed to more than twice the risks experienced
by the average users. We also show that the classification
outcome has a marked accuracy improvement when using a
per-profile approach to train the prediction models. Overall,
our results confirm the inadequacy of one-size-fits-all protec-
tion solutions.

1 Introduction

In recent years, researchers conducted a large number of user
studies to investigate the particularities of security and pri-
vacy practices within specific user communities defined based

on their country of origin [33, 43], age [21, 33, 62], disabili-
ties [5], professions [16,37], economical status [53,57], abuse-
survivor condition [15, 20], and political exposure [25]. One
of the most common takeaways of these studies is that current
security-, privacy-, and digital-safety solutions fail to consider
classes of at-risk users, who, due to their unique user char-
acteristics, might encounter cyber threats more frequently or
may encounter different cyber threats (e.g., more sophisti-
cated) [61].

Prior work discusses the problems of the current one-
size-fits-all approach and how the digital needs of particular
populations receive less attention from the security commu-
nity [58]. Following these invaluable insights, a few recent
works target a specific community [14, 19, 24, 44]. However,
these works should be supported by large-scale studies that
can quantify and compare cyber-risk levels across different
communities. Results from such studies could motivate se-
curity vendors to provide more personalized security and
privacy solutions to help particular at-risk communities. Such
large-scale quantitative analysis for customized security and
risk analysis has been explored in enterprises [54]. However,
enterprises are restricted environments with their own risk
factors such as enterprise size, geographical location, assets
owned, and the industrial sector they belong to [29]. Unfortu-
nately, those indicators do not directly translate to consumers.
Furthermore, the set of computers that belong to an enter-
prise is well-defined. In contrast, large-scale identification
of individual users that belong to the same community (e.g.,
users with shared interests), without a priori user knowledge,
is a challenging problem. Thus, researchers restricted their
analysis to small sets of users that are interviewed about who
they are, what they do, and what they like.

In this work, we perform a large-scale quantitative analy-
sis of the risk of encountering malware and other potentially
unwanted applications (PUA) across user communities. We
group users in the same community if they share interests.
Communities are identified based on information collected in
a privacy-sensitive manner from their mobile devices. Mobile
devices have some unique characteristics that make them a



great source of data to identify user communities. First of
all, mobile devices are most often personal, although there
are known exceptions such as device sharing within house-
holds [9, 36] and in certain geographical locations such as
South Asia [3, 4, 6, 45] and Africa [40]. Being portable, they
are typically kept close to their users throughout their daily
routine and have become an indispensable accessory for many
activities such as getting informed, listening to music, consum-
ing video content, creating art, booking travel, and ordering
food. Furthermore, mobile devices are ubiquitous being used
by 3.8B people, with an average user spending 5.4 hours a
day using them, and 13% of the millennials over 12 hours [1].

In the smartphone world, users install a wealth of mobile
applications (apps for short) on their mobile devices to enable
the above activities. As such, the apps installed on a mobile
device characterize its usage and thus can reveal user inter-
ests, needs, and personality traits, e.g., better than the set of
programs installed in a desktop computer [66]. Motivated by
this, recent studies leverage app installation logs to profile
mobile users and infer users’ gender or age [47, 48, 65, 68],
income [66], and interests [67]. Similarly, at the core of our
study is a dataset of app installation logs collected in a privacy-
sensitive manner by a security vendor from 12M Android
mobile devices (8.6M after filtering).

Our main goal is to shed light on risk factors correlated
with the encounter of malware or PUA, and assess the risk
faced with respect to those factors by different user profiles.
While risk assessment represents one of the cornerstones of
computer security, very few studies provide quantitative find-
ings by leveraging large and real-world empirical data. Our
mid-term goal, on the other hand, is to promote more person-
alized security and to foster personalized risk assessments
that put each user and their specific needs at the center by
abandoning previous models and assumptions that consider
the whole population as a unique entity to protect.

We start by categorizing Android users based on the apps
they install into intuitive user profiles. Identifying user com-
munities in the app installation logs is a challenging problem
as the logs do not contain any information about the users that
own the devices. Prior work has inferred user interests from
app installations by applying unsupervised machine learning
(ML) to cluster devices with similar apps installed [47,48,67].
Unfortunately, due to the ML black-box nature, it is not clear
what user profile each cluster represents. In contrast, we de-
fine intuitive user profiles such as gamers and investors, and
look for devices that fit those profiles. For this, we assume
that users that install multiple apps from some selected cat-
egories (e.g., Games, Finance), have a shared interest and
thus a common profile (e.g., gamer, investor). We also build
profiles for users with more than one interest. For comparison,
we include two additional profiles: average users and users
with mixed profiles (i.e., with strong interests in more than
two categories). The generated profiles cover 5.4M devices.

Our analysis is structured in three parts. First, we perform

single-feature risk analysis on the whole population of 8.6M
filtered users to measure how the risk of malicious app en-
counters is affected by 10 risk factors. As much as our data
allows, we study similar features of previous studies that fo-
cused on the risk estimation of desktop computers and their
users [7,13,30,41,49]. To the best of our knowledge, our work
is the first to explore this topic on the mobile ecosystem. Next,
we investigate whether risk differences across users may be
due to their interests, i.e., to behaviors that users with com-
mon interests may share. For this, we perform a profile-based
risk analysis to assess whether each profile presents cyber
risks that are considerably different than those of the average
users, who are the main target of current security solutions.
Finally, we perform multi-feature risk analysis for investigat-
ing the contribution of risk factors when classifying clean
and infected devices. We observe significant improvements
in the classification accuracies when employing dedicated
profile models to predict the risk scores of mobile devices.
Such risk scores are fundamental for personalized security,
privacy, and online safety solutions. For example, they can be
used to adjust the AV engine settings (e.g., scan frequency)
and to improve security notifications [26, 34, 63].

This paper provides the following main insights:

• The diversity of the application signers and the use of
alternative markets highly correlate with the risk of de-
tecting malicious samples. While less marked, app repu-
tation and update frequency show a not negligible con-
tribution on the total risk.

• Users assigned to specific profiles show significant differ-
ences when compared to the general population. While
some maintain a lower infection rate, others such as
Gamers are more impacted. Profiles also show different
threat sources when measuring the most contributing
categories of applications that are marked as malicious.

• The classification results reflect the inadequacy of one-
fits-all protection solutions. Using a single model, the
accuracy score for some profiles is even worse than 50%,
while for others it reaches upwards of 80%. The outcome
of the per-profile classification approach is significantly
better with an average accuracy of more than 76%.

2 Datasets

This section presents the datasets that constitute the basis
of our study. At the core of our study lies a dataset of App
installation logs from a security vendor with metadata of
apps installed on 12M Android devices. For apps distributed
through the official Play market, we also obtain their market
metadata. We use the Play market category to classify the
apps. We collect VirusTotal (VT) reports of the APKs and
use the AV detection labels in the VT reports for identifying
malware, PUA, and for classifying those into families.



Table 1: Summary of datasets used.

Dataset Data All Filtered
App Installation Logs Devices 12.2 M 8.6 M

Countries 243 243
APKs 34.6 M 8.9 M
Packages 7.9 M 2.2 M
Signers 4.1 M 1.5 M

VirusTotal Reports 4.8 M 875 K

App installation logs. These logs capture metadata about
the presence of apps in 12M Android devices. These logs are
collected from real devices in use by customers of the security
vendor that opted-in to share their data and are anonymized
to preserve customer privacy. We discuss ethical concerns in
Section 7. Each device in the dataset regularly queries a back-
end system to obtain the reputation of the APKs installed in
the device. The dataset includes only app metadata and not the
actual APK files. The dataset covers four months from June
1st, 2019 to September 30, 2019. It consists of file metadata
such as APK hash, APK package name, the signer (i.e., the
SHA256 of the public key in the APK’s certificate), and the
name of the parent package that installed the APK. The parent
information is obtained via Android’s PackageInstaller class
using the PackageInstaller.getInstallerPackageName method.
Parent information may not be available for all apps. For exam-
ple, apps that come pre-installed on the device or sideloaded
apps installed via the Android Debug Bridge (ADB) may not
have parent information. The dataset also contains a list of
countries from where a device has connected to the backend
service, obtained through geo-location of the device’s IP ad-
dress. An APK may have been queried by the same device
more than once. We obtain the earliest date that an APK is
observed in a device and use it as an approximation of the
installation time for that app version. As shown in Table 1, the
dataset contains 34.6M APKs that belong to 7.9M packages
collected from 12.2M Android devices in 243 countries.

Play market. For app categorization, we use Play market
metadata, namely the app’s category. The Play market meta-
data was collected in February 2020 by trying to download
the app’s public webpage using its package name. Of the
7.9M packages in the app installation logs, 24% (1.9M) were
present in the Play market. This fraction is similar to that mea-
sured in previous works [22, 30]. Apps not in the Play market
include AOSP packages, apps pre-installed by the vendor or
carrier, apps available in the past but since removed [59], and
apps distributed through alternative vectors (e.g., other mar-
kets, browser downloads). After filtering apps not installed by
the user (see Section 3) the percentage of categorized apps on
the filtered dataset raises to 53%.

VirusTotal. We query the hash of APKs in VirusTotal
(VT) [56]. VT offers a commercial API that given a file hash
returns file metadata and the list of detection labels assigned

by a large number of AV engines used to scan the file. Unfor-
tunately, given VT’s API restrictions, we could not query all
APKs. To minimize any bias and to increase our coverage we
query the ten most prevalent APKs for each app signer and all
APKs that install other apps. In total, we collect VT reports
for 14% (4.8M) of all the APKs and 31% (2.5M) of all apps
in the dataset. However, after the dataset filtering is done (see
Section 3), we remain with VT reports for 10% (875K) of
all APKs and 20% (443K) of all apps. On a per-device level,
we measure that for 35% of the devices we have obtained
VT reports for at least 20% of the installed apps. We include
the whole distribution of the per-device VT coverage in the
extended version of the paper [17]. We use the AV labels from
the VT reports to identify malware and PUA.

3 Dataset Preparation

Device and app filtering. Before performing the risk analysis,
we apply a number of filtering steps on the app installation
logs and then identify malware and PUA among the remaining
data. At a high level, the filtering comprises four steps and has
two goals. First, three filters are applied for removing devices
that do not capture real user behavior. These include devices
used for tasks such as app testing or research, and devices for
which there is not enough information to capture the behavior
of its user (e.g., devices with very few apps). As done by
previous work [44], we empirically selected these thresholds
by analyzing the distribution of installed apps per device and
looking for outliers for varying outlier cutoff values. Then, a
fourth filter aims at removing apps that have not been installed
by the user (e.g., OS apps, pre-installed apps) and thus cannot
be used to characterize the user. We outline their technical
details below.

• The first filter removes devices with an excessive number
of installed apps since they are most probably devices
used for testing purposes. More specifically, we filter out
60K devices that have more than 500 apps installed.

• The second filter removes devices that query the back-
end system only once within our analysis period. These
devices likely uninstalled the AV app promptly after in-
stallation. No full scan was likely performed on those
devices and therefore there is limited visibility on their
list of apps. This step removes 1.9M devices.

• The third filter removes devices with a very small num-
ber of installed apps, e.g., devices that turned off the
telemetry consent. This step removes 1.4M devices with
less than 15 installed apps including the OS and other
system apps.

• The fourth filter removes apps whose installation is not
rooted on a decision by the device user. In Section 5, we
perform a systemic risk analysis to investigate whether



certain user profiles diverge from the risk models made
for the whole population. For this, we group users based
on the kinds of apps they install on their devices. How-
ever, not every app on a device has been installed by its
user. Some apps are already present when the device is
acquired such as those belonging to the Android Open
Source Project (AOSP) and those pre-installed by the
device manufacturer and the carrier [22]. Other apps may
be downloaded without user intervention by system-level
apps, e.g., as part of firmware upgrades [8]. Since the
user did not originate the installation of those apps, their
presence does not provide information about user inten-
tions. Thus, they should not be included in the user’s
categorization. However, identifying user-installed apps
is challenging. OS restrictions prohibit apps from moni-
toring such events. System-level apps are installed under
a system partition (e.g., /system, /vendor, /oem), but the
installation path is not available in our dataset. To ad-
dress this issue, we consider as user-installed apps those
installed from the official or alternative markets. The
intuition is that AOSP and system-level apps are not dis-
tributed through markets, but come pre-installed and are
updated through firmware upgrades [8]. We may miss
user-installed apps distributed through other vectors such
as IM and browser downloads. But, according to a prior
study, 93% of app installations come from markets [30].
Thus, this filter will maintain a good representative list of
user-installed apps for each device. To identify market-
originated apps, we match the parent package against
a list of 122 market packages (and their signers) pro-
duced in prior work [30]. We detail limitations of our
user-installed app detection in Section 7.

As presented in Table 1, the final filtered dataset contains
8.9M APKs from 2.2M packages found on 8.6M devices.

Malware and PUA detection. To measure the risk of mal-
ware and PUA installations, we first need to identify them
in the dataset. A common practice is to collect AV detection
labels from VT and consider malicious any sample flagged
(i.e., assigned a non-empty label) by at least a threshold num-
ber of AV engines. A higher threshold reduces false positives
due to a few AV engines making an incorrect determination,
but may increase false negatives. Recent work has shown that
threshold values between 2 and 14 are good for stability and
for balancing precision and recall [69]. We use a threshold of
at least 4 AV engines, which is within the recommended range
and has been used by a variety of other works [28, 30, 31].
From the 4.8M APKs for which a VT report was collected,
28.8% (1.5M) have zero detections, 12.8% (681.4K) between
one and three detections, and 58.5% (3.1M) have at least
four detections and thus will be the focus of the risk analysis.
To distinguish between malware and PUA, we feed the VT
reports of the 3.1M detected apps to the AVClass malware la-
beling tool [46]. AVClass outputs the most likely family name

for the sample and also classifies the sample as PUA or mal-
ware based on the presence of PUA-related keywords (e.g.,
grayware, adware, pua, pup). AVClass classifies 73.4% of the
3.1M APKs as PUA and the remaining 26.6% as malware.

4 Android User Risk Factors

This section details our global risk analysis on the whole pop-
ulation for identifying risk indicators and their contribution.

To assess the cyber risk of users, previous works have in-
vestigated a wide range of features [7, 13, 30, 41, 49]. Those
features can be grouped into five classes: features that mea-
sure the volume of online activity (e.g., number of websites
browsed or files downloaded); those reflecting the diversity of
a user’s online behaviors (e.g., category of websites browsed
and programs downloaded); those capturing the reputation
of entities the user interacts with (e.g., program publishers,
browsed websites); those capturing software updates (e.g.,
vulnerability patching rate); and geographical features (e.g.,
user country). In this section, we test to what extent similar
risk trends affect Android users. We focus on feature classes
because we cannot use exactly the same features evaluated
in prior work since our platform, dataset, and analysis time
period are considerably different.

We measure how 10 features, representative of the above 5
feature classes, correlate with malicious encounters in the An-
droid ecosystem. For this, we build three Generalized Linear
Models (GLMs) [12], each of them modeling 10 independent
variables (one per feature) by using a binomial distribution
and a logarithmic link function. Each model captures respec-
tively the outcome of detecting (1) any malicious app (i.e.,
malware or PUA), (2) only malware, and (3) only PUA. Once
fitted to the data, each model outputs a Log-Odds distribution
for the dependent variable Y that expresses the odds of a ma-
licious encounter as a linear combination of the 10 features.
The extent to which each feature influences a malicious en-
counter is captured by its regression coefficient. We reduce
granularity by bucketing each feature into quartiles (i.e., 4
bins). We set the first bin as reference, a common choice in
related works [52, 55], and express the odds ratios of other
bins with respect to the reference.

To select the best model, we test different GLM configu-
rations and analyze the outcome of several goodness-of-fit
quantities (Pseudo R-Squared, Log-Likelihood, Dispersion)
in addition to controlling for feature dimensionality by em-
ploying the Akaike Information Criterion (AIC). Table 2
summarizes the results and we discuss each feature class in
the following paragraphs. In addition, in section A.1 of the
Appendix, we conduct an in-depth analysis to evaluate how
the identified factors differ between the best and worst de-
vices in our dataset (i.e., clean devices exhibiting no signs
of malicious apps for all the period of our experiments, and
outlier devices that report a very high number of malicious
detections)



Table 2: Increase in odds of encountering malware, PUA or any form of malicious application (PUA & malware) according to
our binomial regression model. All values have significance p < 0.0001

Feature Class Bin Reference Odds ratios
PUA Malware PUA & Malware

Applications Volume
31-52 15-30 1.24 1.15 1.24
53-102 15-30 1.31 1.28 1.33
>102 15-30 1.36 1.62 1.38

Activity days Volume
6-20 2-5 1.13 1.07 1.14

21-49 2-5 1.36 1.30 1.37
>49 2-5 1.38 1.51 1.41

Signers Diversity
26-50 1-25 1.89 1.80 1.91
51-75 1-25 3.94 3.29 4.00
>75 1-25 9.22 7.03 9.42

Application categories Diversity
13-16 1-12 0.77 0.69 0.75
17-20 1-12 0.52 0.48 0.50
>20 1-12 0.40 0.38 0.38

Update rate Updates
Medium High 1.19 1.46 1.22

Low High 1.53 1.91 1.58
Very Low High 1.99 2.75 2.07

% Apps from Alternative markets Distribution
26%-50% 0%-25% 0.92 0.78 0.90
51%-75% 0%-25% 1.82 1.47 1.78

>75% 0%-25% 8.21 12.03 7.68

Alternative markets Distribution
1 0 1.08 0.97 1.09

2-4 0 1.57 2.04 1.64
>4 0 12.74 12.99 17.94

App prevalence Reputation
Medium Low 0.76 0.79 0.78

High Low 0.74 0.82 0.77
Very High Low 0.69 0.69 0.71

Countries Geography
2 1 1.22 1.26 1.21

3-5 1 1.47 1.60 1.44
>5 1 2.32 2.40 2.27

Continent Geography

Africa False 1.54 1.65 1.58
Asia False 0.97 0.92 0.96

Europe False 0.62 0.58 0.62
North America False 0.60 0.49 0.60

Oceania False 0.61 0.41 0.59
South America False 1.11 1.33 1.19

Volume. Previous work has shown that the volume of online
activity is highly correlated with the number of malicious
encounters in Windows hosts [7] and in the Web [13]. We
examine 2 volume features: the number of installed apps (i.e.,
package names) and the number of days the device is active.
We observe a similar risk increase among Android users on
both features. The overall risk is similar to the PUA encounter
risk given the higher PUA prevalence (73%) in the dataset.
Similar to other platforms, the more extensive use of a device
increases the attack surface and thus the risk, although the
risk increase is moderate compared to other classes.

Diversity. We examine two app diversity features: the number
of app signers and the number of app categories. The num-
ber of app signers represents a reliable risk indicator: users
with apps belonging to 51–75 publishers have 4 times the
probability of reporting malicious encounters compared to
those installing apps from less than 25 publishers. The risk

is 9 times higher when compared to users with apps from
more than 75 publishers. The risk increase is much more pro-
nounced for publisher diversity than for app volume, likely
because installing many apps from benign publishers does
not lower the security posture. Surprisingly, the number of
app categories negatively correlates with malware encounter
risk. Previous work has shown that the Play market hosts a
smaller fraction of malicious apps [30]. Thus, this result could
be explained by the high number of apps (47%) that are not
available in the Play market and thus are uncategorized.

Updates. Previous studies measured the impact of patching
speed on encountering malware on Windows hosts [7]. To ex-
amine this risk factor in Android, we measure for each device
the ratio R between the number of distinct package names
and the number of APKs installed. A ratio of 1 indicates a
single version for each app, i.e., a low update rate. Ratios
close to 0 indicate users who maintain an up-to-date device



with multiple versions for each app. We consider the follow-
ing four update rate levels (i.e., bins) based on the inverse of
the ratio: High (R≤ 0.25), Medium (0.25 < R≤ 0.50), Low
(0.50 < R≤ 0.75), Very Low (R > 0.75). The results reflect
a steady risk increase as the update rate decreases. Frequent
software updates can lower the risk of a malicious encounter
by over 50%.

Distribution. A recent study measured that 3.2% of the apps
installed from alternative markets were PUA or malware [30].
We include as a feature the fraction of apps installed from
alternative markets so that it can be compared with other
feature classes. Indeed, this feature represents one of the most
indicative risk factors. Downloading more than 75% of apps
from alternative markets increases the risk of a malicious
encounter 12 times. We also examine a second feature which
counts the number of alternative markets in the device. We
find negligible difference when comparing devices with zero
alternative markets (i.e., only the Play market) and those with
a single alternative market. This indicates that the often pre-
installed device vendor market does not significantly increase
user risk. On the contrary, when more than four alternative
markets are installed, the risk increases 12 times indicating
the existence of alternative markets with much higher risk.

Reputation. To capture reputation we use the app preva-
lence, i.e., the number of devices where the app has
been installed. We uniformly split the prevalence interval
[1,max(prevalence)] into 4 bins and assign them prevalence
labels Very High, High, Medium and Low. The results show
that using popular apps lowers the risk of a malicious en-
counter, but the decrease is very small. Compared to other
feature classes, app reputation correlates less with the chance
of a malicious encounter.

Geography. Prior work has shown that the number and types
of malicious software that hosts encounter greatly vary across
countries [10, 11, 52, 64]. We examine two geographical fea-
tures: the number of countries each device connects from
and the user’s continent. The number of countries a user
connects from increases the risk in all three models. In par-
ticular, users connecting from more than 5 countries have a
risk of being exposed to malicious apps over two times higher
than users always connecting from the same country. Such
users may be exposed to threats that are specific to some ge-
ographical locations such as Brazilian banking trojans [10]
or malware that may not be distributed to specific countries
(e.g., Russia) [11]. It is worth noting that such users may in-
clude privacy-sensitive users that use a virtual private network
(VPN) to connect to the Internet, and due to the VPN usage
may be exposed to threats they may not otherwise encounter.

Finally, we examine risk differences when connecting from
different continents. The reference bins for each continent
are users that do not connect from that continent. Africa and
South America are the two continents with a higher risk than
their baseline. Previous work has measured higher malware

encounter risk for African desktops [38], which we confirm as
well for Android devices. On the other hand, there is a positive
trend for users connecting from Oceania, North America, and
Europe, whose risk is 40% to 60% lower than their baseline.

Summary: The diversity of publishers signing the apps and
the use of alternative markets are the highest risk factors for
Android users. Other factors such as app update rate, device
usage, app prevalence, and geographical location are also
important to define Android user risk. Furthermore, there
are significant risk differences among users in different bins
with respect to the same factor.

5 Profile-Based Risk Analysis

As shown in Section 4, there are significant differences in risk
among users with respect to the same risk factor. In this sec-
tion, we investigate whether such risk differences may be due
to user interests, i.e., users with common interests may share
similar risk behaviors. To this end, we propose a profile-based
risk analysis that first groups users based on shared interests
and then examines differences between selected user profiles.
Section 5.1 details the user profile creation and Section 5.2
the profile-based risk analysis.

5.1 Creating the Profiles
Prior work has inferred user interests by applying unsuper-
vised machine learning (ML) to cluster users with similar
installed apps [47, 48, 67]. Unfortunately, the black-box na-
ture of ML techniques makes it difficult to understand what
type of user each cluster represents. Thus, those works typ-
ically analyze selected clusters for which the authors can
come up with an easy-to-interpret explanation. In contrast,
we assume that users that install multiple apps from the same
category in the Play market (e.g., Games, Finance) have a
shared interest in the category and thus an easy-to-interpret
common profile (e.g., gamer, investor). To determine if a de-
vice exhibits an interest in a category, we select a threshold
number of installed apps corresponding to a device being
above the 10th percentile of all devices installing apps from
the category. For example, 10.02% of devices have installed
at least 13 games while 9% of devices have installed at least
14 games. Thus, 14 is selected as the threshold for the Game
category as a device with at least 14 games installed is in the
top 10% of its category, and thus its owner is likely a gamer.

Table 3 shows the prevalence of each Play market category
in our dataset using two metrics: the percentage of devices
with at least one app installed from the category and the frac-
tion of all apps available in the Play market that belong to the
category. The third column reports the fraction of malicious
APKs and serves as an indicator of how much a category
may be targeted by malicious developers. The rightmost col-
umn captures the threshold for the category. For the smallest



Table 3: App category prevalence. Fraction of devices with at
least one app from the category; fraction of all apps available
in Play from this category; fraction of malicious APKs in the
category; and category threshold.

Category Devices Apps Malicious ThresholdAPKs

Communication 95.37% 0.50% 0.66% 9
Tools 94.48% 1.45% 1.89% 16
Productivity 88.61% 0.84% 0.81% 12
Entertainment 81.72% 1.41% 1.58% 8
Social 77.98% 0.46% 3.61% 5
Music and audio 77.90% 1.36% 1.58% 6
Shopping 75.49% 0.70% 0.25% 8
Finance 73.29% 0.76% 0.38% 8
Travel and local 67.12% 0.78% 0.40% 7
Video players 66.59% 0.15% 1.96% 4
Game 65.84% 2.97% 4.07% 14
Photography 65.66% 0.47% 3.12% 5
News and magazines 65.11% 0.52% 0.63% 5
Lifestyle 63.51% 1.48% 0.90% 6
Maps and navigation 54.53% 0.34% 0.75% 4
Books and reference 50.89% 1.18% 3.39% 4
Health and fitness 49.75% 0.86% 1.37% 4
Business 46.11% 1.60% 0.34% 4
Food and drink 39.96% 0.71% 0.27% 4
Education 38.37% 2.29% 2.18% 4
Personalization 35.94% 1.05% 2.02% 3
Weather 34.96% 0.09% 0.83% 3
Sports 25.36% 0.45% 0.91% 3
Medical 17.42% 0.38% 0.65% 2
Auto and vehicles 15.71% 0.22% 0.88% 2
Comics 12.12% 0.05% 1.57% 2
House and home 9.73% 0.14% 0.45% 2
Libraries and demo 8.41% 0.06% 0.81% 2
Art and design 7.24% 0.18% 5.87% 2
Events 3.62% 0.15% 0.10% 2
Dating 2.65% 0.05% 0.46% 2
Parenting 2.51% 0.04% 0.91% 2
Beauty 2.30% 0.13% 1.38% 2

categories (i.e., Dating, Parenting, Beauty) the threshold
would be one app, which would be too sensitive to noise. For
these small categories, we raise the threshold to two. For the
interested reader, the extended version of the paper [17] re-
ports the percentage distribution of devices installing apps for
each category, which was used for selecting the thresholds.

We build single-category profiles for users with a single
interest and multi-category profiles for users with multiple in-
terests. We first build 33 single-category profiles, one for each
Play category. Devices in a single-category profile exhibit
only interest in that category (i.e., other category thresholds
are not reached). We handle users with multiple interests
by building multi-category profiles. In particular, we build
528 two-category profiles, each for a combination of two cat-

egories. For example, the Games-Finance profile captures
devices that are above the 10th percentile of Games installa-
tions and also of Finance apps installations, but not above
the 10th percentile for any other category. The more shared
interests in a profile, the less devices satisfying the profile.
We avoid building profiles with more than two categories
since they would represent too few devices —e.g., there are
only 8 two-category profiles with more than 10k devices—
and would be more difficult to interpret. Instead, we create
an additional Mixed profile that consists of devices with
more than two interests. We also build an additional Average
users profile that consists of devices with an average (i.e.,
within one standard deviation from the mean) number of apps
in each category and use it as a baseline in the analysis.

In total, our analysis covers 563 profiles. We assign a single-
category profile to 20.7% of the devices in the filtered dataset
and a two-category profile to 11.3%. The average users profile
covers 7.0% of the devices and the mixed profile another 5.5%.
The remaining 55.5% of devices are not profiled and thus are
excluded from the profile-based experiments.

One caveat in our profiles is that only 53% of all apps in
the filtered dataset are available in the Play market. Thus, we
may miss user interests that only manifest in uncategorized
apps. However, the vast majority of devices has apps from the
Play market with a mean of 47 (median of 37) Play apps per
device. The extended version of the manuscript [17] shows
the whole distribution of Play market apps per device in the
Appendix.

5.2 Profile-based risk

We start our profile-based analysis by examining the mali-
cious app encounter rate in each profile. Table 4 lists the top-
10 profiles sorted by malicious app encounter rate, (among
those with at least 10k devices) and the same data for the
Average users and Mixed profiles. For each profile, the ta-
ble shows the number and fraction of devices that encounter a
malicious app (malware or PUA), as well as the fraction that
only encounter malware and that only encounter PUA. The
right part of the table shows the fraction of malicious APKs
from the same categories of the profile, and the number and
fraction of devices with at least one encounter due to apps
in the profile categories, e.g., the fraction of devices from
the Entertainment-Game profile with encounters due to ei-
ther games or entertainment apps. The last row of the table
provides aggregated statistics for all 563 profiles including
those that have less than 10k users. We also release in an
enriched version of this paper similar statistics extended to
all the profiles with at least 10k devices [17]. In addition, an
anonymized repository contains complete statistics for all the
563 profiles [2].

The average malicious app encounter across all profiles is
14.55%, almost two times higher than the one of the Average
users (8.65%). Similarly, the malicious app encounter rate



Table 4: Malicious-app encounter rate of average users, mixed profile, and top-10 profiles sorted by malicious app encounter rate
among profiles with at least 10k devices.

Profile Size Encounter Malware PUA Malicious APKs Malicious Encounters
malicious apps only only from profile apps from profile apps

Social-Video Players 17,184 6,034 (35.11%) 7.41% 81.27% 23.42% 2,248 (37.26%)
Entertainment-Game 16,998 5,354 (31.50%) 9.30% 77.94% 46.12% 2,909 (54.33%)
Photography-Video Players 10,993 3,123 (28.41%) 10.79% 78.67% 24.32% 955 (30.58%)
Video Players 106,723 27,543 (25.81%) 8.73% 79.29% 17.25% 8,245 (29.94%)
Education-Game 14,769 3,633 (24.60%) 9.33% 77.92% 27.01% 1,542 (42.44%)
Comics-Game 13,549 3,317 (24.48%) 8.38% 81.49% 40.62% 1,646 (49.62%)
Game 235,434 48,903 (20.77%) 10.53% 79.22% 34.97% 21,100 (43.15%)
Mixed 470,383 93,407 (19.86%) 10.92% 79.70%
Books-Education 12,024 2,267 (18.85%) 12.31% 77.06% 6.63% 297 (13.10%)
Social 99,176 18,497 (18.65%) 10.96% 81.68% 1.62% 434 (2.35%)
Business-Finance 16,242 3,000 (18.47%) 14.10% 78.60% 12.88% 410 (13.67%)
Average users 599,483 51,885 (8.65%) 12.01% 73.14%

Overall average 6,846 990 (14.55%) 10.67% 79.20% 13.72% 151 (16.55%)

for the top-10 profiles of Table 4 is more than double the one
of the Average users, i.e., from 35.11% for Social-Video
Players to 18.47% for Business-Finance. On the other
side of the spectrum, profiles such as Comics have much fewer
encounters (5.41%) than the Average users (8.65%), even
though the number of devices in the profile is considerably
high (36.4k). As shown in Table 3, this can be explained by the
fact that Comics apps are less often detected as malicious with
respect to other categories, such as Game, Art and design,
and Social. Nevertheless, the profile Comics-Game reveals a
much higher encounter rate (24.48%) than the overall average
(14.55%), underlining the fact that users’ interests in multiple
categories can amplify their risk. These results highlight that
one-size-fits-all cybersecurity solutions might not be suitable
for everyone since users with specific interests (e.g., games,
video, social) may be exposed to significantly higher risks.
In terms of the threat class, all profiles are affected by PUA
roughly seven to eight times more than by malware.

Some app categories may be targeted more frequently by
malicious developers than others, and thus have a larger frac-
tion of malicious apps. For example, the last column of Table 3
shows that 5.87% and 4.07% of all the APKs in the Art and
design and Game categories are flagged as malicious. Prior
work also identifies the Game category as the one in the Play
market that hosts the most malicious APKs [60]. Thus, users
whose interests fall into those highly abused categories, have
a higher risk of encountering malware. Indeed, according to
the last column in Table 4, more than 50% of users in the
Entertainment-Game profile encounter malware from one
of those two categories. Overall, 5 of the top-10 profiles in Ta-
ble 4, have encounters from malicious apps in their categories
at least twice higher than the average of all profiles (16.55%),
indicating that users in those profiles have a higher intrinsic
risk due to their interests.

We further investigate the source of the risk by identifying
for each profile the top-4 application categories where the
most number of malicious apps come from. In Table 5, we
report the results for the same set of 12 profiles identified
in Table 4. We release the results for all the profiles with at
least 10k users in the extended version of the paper [17] and
the full measurement on all the profiles in an anonymized
repository [2]. On average, the biggest offenders are Tools,
Game, Music, and Video Players. The Tools category is
the most prevalent threat source for 5 of of the profiles in
Table 5, and among the top-4 for all profiles with more than
10k devices [17]. Other categories frequently appearing in
the top-4 are Game (86% of the profiles) and Video Players
(59%). However, for some profiles, their defining categories
contribute the most. In particular, 211 (37%) over all gen-
erated profiles and 12 of the 35 profiles with at least 10k
users, have their own category as the top threat source. For ex-
ample, the Health and Fitness, Photography, Weather,
Finance, and Shopping profiles have a higher risk of mal-
ware encounters due to their interests, rather than due to the
categories of apps that are more likely to be bringing mali-
cious apps compared to the others.

In addition, we perform profile-based odds ratio analysis
on the same set of selected profiles of Tables 4 and 5 and
report the results in Table 6. The same results for the profiles
larger than 10k devices are reported in the Appendix of the
extended version of the paper [17]. Similarly to Section 4,
we bucketize each feature into quartiles, however here our
odds ratio analysis is performed separately for each profile.
Due to space constraints, we do not report detailed risk analy-
sis results separately for PUA and malware, PUA-only, and
malware-only encounters. Instead, Table 6 summarizes the
results comparing the risk estimation of the second bin with
the last bin. Since the sizes of the bins are different among



Table 5: Top-4 categories responsible for malicious-app encounters for average users, mixed profile, and top-10 profiles sorted by
malicious app encounter rate among profiles with at least 10k devices.

Profile Top-categories
1st 2nd 3rd 4th

Social-Video Players Video Players (50.46%) Tools (21.8%) Game (5.68%) Entertainment (3.49%)
Entertainment-Game Game (55.54%) Entertainment (17.99%) Tools (7.98%) Music (5.18%)
Photography-Video Players Video Players (26.33%) Photography (24.07%) Tools (17.84%) Music (6.74%)
Video Players Video Players (46.9%) Tools (19.27%) Game (7.53%) Music (4.44%)
Education-Game Game (56.05%) Tools (10.62%) Entertainment (6.03%) Video Players (5.08%)
Comics-Game Game (67.02%) Video Players (8.61%) Tools (7.51%) Music (5.12%)
Game Game (64.04%) Tools (8.02%) Entertainment (7.56%) Video Players (5.42%)
Mixed Tools (25.37%) Game (13.51%) Video Players (10.00%) Music (8.35%)
Books-Education Tools (23.64%) Game (11.2%) Education (10.47%) Video Players (9.38%)
Social Tools (31.0%) Video Players (22.05%) Game (9.83%) Music (5.06%)
Business-Finance Tools (31.08%) Finance (13.2%) Business (11.58%) Video Players (8.72%)
Average users Tools (30.35%) Game (16.83%) Video Players (16.23%) Entertainment (5.90%)

Overall average Tools (22.19%) Game (12.58%) Music (7.27%) Video Players (7.18%)

Table 6: Comparison of the odds ratios of installing PUA and/or malware between the baseline and the last bin for the average
users, mixed profile, and the top-10 user profiles among those with at least 10k users sorted by malware encounter rate.

Feature Social Entertainment Photography Video Education Comics Game Mixed Books Social Business Average
Video Players Game Video Players Players Game Game Education Finance users

Apps 1.55 1.02 0.71 1.19 1.11 1.06 1.48 0.69 1.68 1.27 0.86 1.39
Activitydays 1.88 1.33 0.98 1.66 1.03 1.31 1.25 1.32 1.04 1.46 1.13 1.50
Signers 1.42 3.91 3.60 2.53 4.15 3.47 3.05 3.26 2.53 2.38 3.28 3.64
AppCateg. 0.79 0.65 0.41 0.42 0.78 0.56 0.70 0.47 0.67 0.52 0.85 0.41
Updaterate 1.15 1.87 1.48 2.21 1.79 3.23 2.33 1.70 1.43 1.48 1.05 3.28
%AppsAM 1.71 2.82 3.72 2.10 33.08 3.41 6.53 26.78 19.48 1.88 11.38 4.14
Alt.Markets 2.94 2.62 4.41 2.44 3.46 3.63 2.63 2.36 1.65 1.65 1.78 1.28
AppPrev. 0.63 0.77 0.85 0.87 0.77 0.80 0.75 0.70 0.69 0.48 0.73 0.61
Countries 0.40 1.17 1.15 1.55 1.08 1.03 1.09 1.18 1.15 0.30 1.41 1.26

profiles, it would not be accurate to do comparisons among
the absolute numbers presented in the Table. Our goal here is
to identify trends for each profile. Cells with underlined val-
ues correspond to opposite trends compared to our findings in
Section 4. Cells with bold values, on the other hand, represent
features with significant impact on users risk.

One of our findings in Section 4 is that as volume-
based features (e.g., total number of apps, active days)
increase, so do the odds of a malicious encounter.
While this remains the same for most user profiles, there
are three profiles (Photography-Video Players, Mixed,
Business-Finance) for which we observe the opposite trend
with a slight difference. We observe a similar phenomenon
for the two profiles related to social media (Social and
Social-Video Players), in which the odds of malicious
encounter decrease as the number of countries the device
connected from increases.

This analysis further illustrated that risk profiles signif-
icantly vary for users with particular interests. In some

cases, we observe reverse correlations for the same features
among profiles as well as dramatically different impact of
the same features on different profiles. The most evident
examples of the latter are the Education-Game, Mixed, and
Books-Education, profiles for which the fraction of the apps
installed from alternative markets can increase the risk up to
33 times with respect to those that install less in their class.

Summary:
The per-profile risk analysis results suggest that the risk pro-
files of the investigated categories are significantly different
compared to the global risk analysis results. Although in gen-
eral they share similar trends, we observe opposite trends for
some of the features. Furthermore, the contribution of some
of the indicators such as the number of apps installed from
alternative markets can be much more significant for some
profiles while not very important for the others.



Table 7: Classification accuracy of whole-population and per-profile models tested on average users, mixed profile, and on the
top-10 profiles among those with at least 10k users sorted by malware encounter rate.

Profile
Whole-population model Per-profile models

Avg improvementPUA or Malware PUA PUA Malware PUA
Malware only only Malware only only

Social-Video Players 50.40% 64.64% 48.30% 82.43% 78.35% 69.23% 22.22%
Entertainment-Game 50.10% 62.89% 49.80% 68.00% 63.16% 61.29% 9.89%
Photography-Video Players 53.00% 63.23% 61.27% 66.27% 80.00% 62.90% 10.56%
Video Players 48.50% 50.10% 53.10% 73.20% 82.16% 67.24% 23.63%
Education-Game 45.80% 70.00% 51.10% 74.04% 62.90% 69.47% 13.17%
Comics-Game 48.00% 70.11% 49.70% 75.76% 77.27% 81.25% 22.16%
Game 53.50% 49.60% 48.80% 64.38% 64.22% 72.22% 16.31%
Mixed 50.30% 51.40% 52.90% 72.16% 68.42% 67.03% 17.67%
Books-Education 61.78% 63.98% 61.61% 80.95% 70.00% 81.58% 15.05%
Social 52.30% 49.60% 47.30% 54.76% 75.29% 70.21% 17.02%
Business-Finance 49.60% 58.67% 62.33% 62.12% 53.85% 70.59% 5.32%
Average users 51.90% 49.50% 51.50% 84.35% 83.56% 77.91% 30.97%

Overall average 52.19% 62.34% 52.89% 69.84% 70.14% 71.65% 14.74%

6 Multi-Feature Risk Analysis

In previous sections, we have shown that particular users’
interests result in different risk profiles and that risk can sig-
nificantly vary among users. We believe our findings can
assist the security community and the designers of security
solutions on providing tailored protections to users who need
it the most. In this respect, we provide a concrete example
of how our profiling strategy and the differences among pro-
files impact the classification task of devices that encounter
malicious apps. To this end, we compare two machine learn-
ing (ML) classification approaches: using a one-size-fits-all
classifier trained on the whole population (i.e., without any
profiling) and using per-profile classifiers, each trained on
a profile’s population. For both approaches, we create three
classifiers for identifying devices that install (1) any malicious
app (i.e., malware or PUA), (2) malware, and (3) PUA.

For the whole-population classifier, we use 86 features: 15
features correspond to those discussed in Section 4 with the
Countries feature being one-hot encoded, 37 boolean features
that capture whether the device belongs to one of the pro-
files with more than 10k users discussed in Section 5 and
reported in the extended paper [17], 33 features that measure
the number of apps installed for each Play market category
in Table 3, and one feature capturing the absolute number of
uncategorized apps (i.e. Unknown). This classifier outputs a
clean state or the presence of malicious installations for each
device independently of their profile: we then link back the
device to one of the 37 profiles to analyze per-profile perfor-
mance. The per-profile classifiers use 49 features, the same as
the whole-population classifier minus the 37 boolean features
that indicate the user profiles.

We select a Random Forest (RF) classifier for the ex-

periments because this learning method produces easier-to-
interpret models and because prior work that builds prediction
models for cyber incidents has shown it tends to outperform
other classifiers (e.g., [7, 35, 49]). We tune the RF hyperpa-
rameters by looking at the Out of Bag (OOB) error during the
training phase. Our dataset converges by employing 225 tree
estimators with 20 as maximum tree depth, and the maximum
number of features to consider when splitting each branch
being the square root of the number of features.

Since the number of devices for each profile differs, the
dataset used to train and test the whole-population model is
obtained by sub-sampling each of the profiles and by further
balancing the ratio between clean and infected devices. For
each model, we sub-sample multiple times and average ac-
curacy results. We use the same users selected at this step
for building the per-profile models. We include the exact
dataset sizes of all models in the enriched version of the
manuscript [17].

Table 7 presents the classification accuracy for both ap-
proaches when tested against profiles of Tables 4 and 5. The
enriched version of this manuscript [17] reports tests for all
the profiles with at least 10k devices. We observe a clear
improvement on identifying risky devices when the models
are trained per-profile rather than on the whole population:
the average classification accuracy for any malicious app en-
counter (PUA or malware) increases on average from 52.19%
to 69.84%. This holds for all the profiles and all the threat
types, although for some profiles the impact of the profiling
is much higher than others. For example, the classification of
Average users devices would benefit from a leap in accu-
racy of over 30% compared to using a one-size-fits-all classi-
fier. In a similar way, a dramatic accuracy improvement hap-
pens on the Video Players category where 23.63% more



Table 8: Top-5 features of the classifiers trained on the whole-population, average users, mixed profile, and on the top-10 profiles
sorted by malware encounter rate among the profiles with at least 10k users.

rank
Feature

model
Unique Average users Mixed Game Players

Video Social Video Players
Social

1st Signers - 9.76 Unknown - 19.93 Avg prev. - 7.56 Unknown - 16.5 Unknown - 10.83 Unknown - 10.83 Unknown - 11.69
2nd Unknown - 8.93 Avg prev. - 9.92 Signers - 6.9 Apps - 8.6 Signers - 9.02 Avg prev. - 8.65 Avg prev. - 11.16
3rd % apps AM - 5.61 Signers - 7.11 Update rate - 6.19 Signers - 6.7 Avg prev. - 7.32 Days - 6.48 Apps - 6.76
4th Apps - 5.39 Update rate - 6.91 Days - 5.89 Avg prev. - 6.33 Apps - 6.97 Apps - 5.64 Signers - 6.22
5th Update rate - 5.15 Apps - 5.66 Apps - 4.67 Update rate - 5.77 Update rate - 5.78 Signers - 5.19 Update rate - 4.64

rank
Feature

Game
Entertainment

Finance
Business

Game
Education

Game
Comics

Education
Books

Video Players
Photography

average
Overall

1st Unknown - 8.82 Update rate - 7.73 Unknown - 8.87 Unknown - 12.78 Avg prev. - 10.27 Avg prev. - 8.52 Unknown - 8.18
2nd Signers - 8.57 Days - 6.97 Signers - 7.43 Signers - 7.07 Unknown - 9.85 Signers - 7.48 Avg prev. - 7.51
3rd Apps - 7.3 Avg prev. - 6.78 Update rate - 7.21 Apps - 6.45 Days - 7.54 Unknown - 6.99 Signers - 7.1
4th Days - 7.07 Unknown - 5.23 Apps - 6.68 Avg prev. - 5.9 Signers - 7.0 Apps - 5.52 Update rate - 5.86
5th Game - 6.22 Apps - 4.82 Days - 6.09 Game - 5.85 % apps AM - 6.97 Update rate - 5.48 Apps - 5.39

devices are categorized correctly. The least amount of ac-
curacy improvement occurs for Productivity (0.53%) and
Lifestyle (0.38%). For these cases, there is alignment be-
tween the accuracy score of the model specifically trained for
that population and the one trained on the whole population,
although the classification score is always higher in the for-
mer case. For these profiles, the classification of clean and
devices that encounter malicious apps might be more com-
plicated. This strongly suggests that such populations would
benefit even more from specific models (e.g., dividing it into
sub-categories, combining them with other categories etc.).
We indeed notice an accuracy score barely above the output
of a random classifier (i.e., 50%) for 19 of the 37 profiles with
at least 10k devices [17]; even worse, the outcome is lower
than 50% for 12 profiles when predicting the devices that
encounter malware or PUA. Once again, such findings further
indicate the need of dedicated methods for those users.

The results also show different accuracy across pro-
files. For example, Social-Video Players (82.43%), and
Books-Education (80.95%) achieve much higher classi-
fication accuracies compared to Social (54.76%) and
Business-Finance (62.12%) profiles. This might suggest
that for some of the identified populations the users installing
malicious apps have a more diversified set of features with
respect to clean ones, thus helping the classification task. For
other profiles with lower accuracy, this difference might not
be fully captured by the features at our disposal, thus making
it harder to classify the set of clean devices from the rest.

Feature importance. We also analyze the contribution of
individual features for all the trained classifiers. We rank
feature importance by assessing the Mean Decrease in Im-
purity (MDI) and tabulate the average of their relative im-
portance in the three cases (e.g., considering malware, PUA,
and malware or PUA) in Table 8. The extended version of
the manuscript [17] reports the feature importance for all the
profiles with more than 10k devices. For the whole popu-

lation classifier, the most contributing features are: signers,
uncategorized apps, the percentage of apps from alternative
markets, the number of apps, and the update rate. For the per-
profile classifiers, important features change for each profile.
On average, the number of unclassified apps (i.e., Unknown)
is the most important feature, followed by the one reflecting
the average application prevalence (i.e., Avg prev.), the di-
versity of signers (i.e., Signers), the frequency of updates
(i.e., Update rate), and the number of installed apps (i.e.,
Apps). The relevance of different features that are not so char-
acteristic for other profiles explains why the classification
accuracy significantly improves when employing a specific
model rather than a unique solution that has to generalize on
multiple profiles. While the order of the list and magnitude of
each feature importance differs significantly among different
profiles, we observe that in general the volume- and diversity-
based features (e.g., signers, app category and number, days
of activity, and average prevalence) remain on the top of the
list across profiles.

Summary: The multi-feature risk analysis unveils important
differences among profiles when attempting to distinguish
clean devices from those that install malicious apps. For some
of the profiles, the classification accuracy shows a substantial
improvement when employing a dedicated model, often due
to the difference importance of features compared to the other
profiles. Overall, volume- and diversity-based features are the
most relevant indicators across profiles.

7 Discussion and Limitations

Ethical considerations. The data in the app installation logs
comes from human subjects. It is collected by an AV engine
installed on Android devices belonging to real users. The
telemetry only includes users who voluntarily install the prod-
uct, accept the company’s privacy policy [42], and opt-in to



share their data. Users can revoke their consent at any time by
modifying the app settings. Data is anonymized on the device
before being sent to a central system. The telemetry data only
identifies users through numeric anonymized identifiers that
do not enable us to trace back to the originating device or its
user. We do not attempt to deanonymize users or to profile
specific users focusing instead on aggregated risk profiles.

How our results help the security community. The mid-
term goal of our work is to promote more personalized secu-
rity. But, our results can also be applied in the short term. One
concrete application is to adjust the AV engine settings accord-
ing to the risk profile. For example, the frequency of the scan
and the scan level (i.e., whether all files are scanned or only
a subset) could be increased for devices exhibiting profiles
with a high risk of malicious encounters. Another applica-
tion is to deactivate unneeded security warnings, which create
habituation that desensitizes users to other important warn-
ings [32]. For example, if a device has a Parenting profile,
the AV engine could avoid notifying the user about parental-
control apps installed, while keeping the notifications for other
users since such apps can be abused as stalkerware [39]. The
profiles could also be used to provide personalized security
“nudges”, i.e., warnings that try to entice a user action with-
out forcing the user. In Android, AV engines cannot remove
detected malicious apps by themselves (unless pre-installed
with the required privilege) and thus nudge users to remove
the detected apps. However, such nudges are not currently
effective, as recent work shows that Android malware and
PUA is only removed on average 24 days after the first detec-
tion [51]. Previous work has shown that personalization can
improve security nudges [26, 34, 63] and the inferred profiles
could be used towards that goal.

Device-user mapping. A user could own multiple devices
and a device could be shared among multiple users. When
a user has multiple devices in the dataset, our analysis will
assign profiles separately to each device, and if the devices
are used for different tasks, the analysis will infer different
profiles for each device, e.g., one for the gaming device, an-
other for the work device. Since the device belongs to a single
user, the inferred profile will be correct, but we will miss the
fact that the user has other interests that manifest in the other
device. Prior work has shown that mobile phone sharing is
common within households [9, 36] and in certain geographi-
cal locations such as South Asia [3, 4, 6, 45] and Africa [40].
When a device is shared among multiple users, and each user
installs its own apps, the inferred profiles may not uniquely
correspond to one user, e.g., an inferred Games-Finance pro-
file may be due to one user of the device being a gamer and
another being an investor. It is also possible that a profile is
inferred due to the accumulation of partial interests from mul-
tiple users, especially for app categories with low thresholds.
We acknowledge this limitation, although it is worth noting
that only 0.25% of devices in the filtered dataset come from

Bangladesh, Pakistan, and Kenya and that the security vendor
clients are biased towards North America, Europe, and Japan,
where device sharing is not as popular as in South Asia and
Africa. In addition, devices shared in households may have a
dominant owner that the inferred profiles correspond to.

Profile interpretability vs coverage. In contrast to previous
ML clustering approaches our profiles are easy to interpret
since they capture devices exhibiting one or two interests
based on the categories of installed apps. The downside is
that we can only profile one third of the devices. We favor
interpretability over device coverage because we believe that
personalized security requires a good understanding of the
user, but personalization does not necessarily need to be ap-
plied to every user (e.g., average users).

Selection bias. Our dataset comes from a single security ven-
dor and thus has a selection bias towards the geographical
distribution of the security vendor’s users. While the dataset
has great geographical visibility (i.e., users from 243 coun-
tries) some countries like China or Indonesia may be under-
represented with respect to their population. The dataset only
covers users that have an AV engine installed and have explic-
itly enrolled in data sharing. Other users, e.g., those that do
not invest in security solutions or those that decline the collec-
tion due to privacy concerns, may have different risk profiles
that we cannot analyze. Our data captures only a partial view
of user behavior. It captures whether the user installed an app,
but does not capture how frequently the app is used, and it
does not cover other user behaviors such as Web browsing.

Analysis biases. Our VT querying, app categorization, and
app filtering may have introduced other biases. First, due to
VT API limits, we could not query all apps in the dataset. This
prevents us from detecting all malicious encounters and thus
we underestimate the malicious encounter rate for each profile.
However, due to the size of our dataset and the query process,
we believe that the relative encounter rate among profiles
should not be significantly affected. Second, we categorize
over 500K apps available on the Play market on February
2020. But, these are only 53% of all apps in the filtered dataset.
This prevents us from detecting additional profiles that may
only manifest through apps distributed through alternative
vectors. Still, devices in the filtered dataset have a mean of
47 categorized apps (median of 37), allowing us to identify a
profile for one third of the 8.9M devices. We plan to address
how to categorize apps not in the Play market in future work.
Finally, we filter apps that are not installed from markets as
a proxy for removing apps whose installation is not rooted
on a user decision. Such filtering may incorrectly remove
user-installed apps when a market is missing in our list of
122 market package names and if the user installed the app
through other vectors such as web downloads or the ADB
bridge. However, after the filtering, our dataset is still large
containing 8.9M devices and 2.2M apps.



8 Related Work

Security risk analysis and prediction. Multiple works have
focused on the prediction of security incidents on different
platforms. Canali et al. [13] analyzed the browsing behavior
of 160k users and crafted 74 features for predicting users that
visit malicious websites. Sharif et al. [49] proposed a similar
system, that instead of long-term prediction, is capable of
predicting exposure to malicious content seconds before the
actual exposure. Their system is evaluated using HTTP traffic
from 20.6K users.

Shen et al. [50] proposed a system for predicting the instal-
lation of malicious applications on Android by observing the
apps installed by the user as well as from users with similar
behaviors. Their system is evaluated on a dataset of 1.8M real
Android users. Other works focus on the prediction of mal-
ware encounters on Windows. Bilge et al. [7] propose Risk-
Teller, a system that predicts malware encounters on Windows
enterprise hosts using 89 features.The system is evaluated on
telemetry data collected from 600K machines from 18 enter-
prises. This study also uses classifiers for predicting malicious
encounters on Android using similar features. But, our goal
is not to improve the state of the art in terms of prediction
accuracy. Instead, we build various classifiers for users of
specific profiles (e.g., gamers, investors) and do comparisons
among them as well as against a generic classifier to identify
the differences in the importance of features.

Other research lines analyze the various risk factors affect-
ing users’ security posture. Simoiu et al [52] analyzed 1.2
billion phishing and malware attacks against Gmail users and
explore risk correlations for six factors, country of access,
user age, security posture, prior risk exposure, type of device,
and email activity. Similar to this study, we investigate cor-
relations of 10 risk factors on 8.6M Android users. Kotzias
et al. [30] analyzed the unwanted apps prevalence (malware
and PUA) and distribution on 12M Android devices. Their
study showed that Play market is the largest app distribution
vector of both benign and unwanted apps, and installations
from alternative markets are on average five times riskier than
Play market with varying risks depending on the alternative
market. Our work confirms that apps installed from alterna-
tive sources rather than the official Play market represent one
of the most indicative risk factors of our model. However, in
this work, in addition to distribution-related risk factors, we
analyze five more types of risk factors related to volume, app
diversity, updates, reputation, and geography.
Security posture of at-risk populations. Arguments in favor
of specialized solutions for vulnerable and at-risk populations
have shifted the security research community interest towards
that direction [58]. Warford et al. [61] recently analyzed prior
work on the digital-safety experiences of at-risk populations
and developed a framework of contextual risk factors and
protective practices. Consolvo et al. [16] conducted a qualita-
tive analysis of the security issues of 28 people involved with

the US political campaigns and provided recommendations
on security improvements. Similarly, McGregor et al. [37]
analyzed the security practices of 15 journalists from the
US and France via semi-structured interviews. Other works
have followed a similar qualitative approach to analyze the
security and privacy needs of vulnerable populations like hu-
man trafficking survivors [15], victims of intimate partner
violence [20], residents at homeless shelters [53], undocu-
mented immigrants [25], and proposed recommendations for
improving the ways that such groups interact with technology.
At last, some studies focused on the needs of specific age
groups. Frik et al. [21] identified common threat models, mis-
conceptions, and mitigation strategies for older adults (65+).
Wisniewski et al. [62] performed an analysis of the online
risk experiences of 68 teens for two months. Lastdrager et
al. [33] focused on training children of Dutch primary school
to distinguish phishing from non-phishing pages. Inspired
by these studies, we perform an empirical quantitative analy-
sis of risk factors for different profiles of users and provide
further evidence that one-size-fits-all cybersecurity solutions
might not be suitable for everyone since users with specific
interests (e.g., games, social, education) may be exposed to
significantly higher risks.

Android User profiling. An extensive body of prior work
attempts to profile Android users for different purposes [66].
These studies analyze the smartphone interactions of users
to learn various characteristics about them like demographic
attributes such as gender and age [47, 48, 65, 68], personal
interests [67], psychological status like the users stress lev-
els [23], and lifestyle related information [27]. It is common
for those studies to do their profiling using the list of installed
apps [47, 48, 67] but also using app usage information like
the number of times an app is launched or the amount of
time spent on each app [18]. In our study, we also use the
list of installed apps for creating user profiles. But, instead
of predicting specific characteristics of users, we perform a
comparison of the security posture among profiles and the
most important risk factors.

9 Conclusions

Over the past years, a growing number of researchers have
studied the digital-safety needs of particular user communi-
ties, highlighting the inadequacy of current one-size-fits-all
security solutions. These works are usually qualitative and
limited in size. To fill this gap, we perform a quantitative
risk analysis that compares the risk of encountering malicious
apps (malware and PUA) for different profiles of Android
users. Leveraging telemetry data of a popular security vendor,
we analyze the impact of different risk indicators. We build
easy-to-interpret user profiles and show how there exist risk
differences across users due to their interests. Finally, we iden-
tify important differences among profiles when attempting



to distinguish clean devices from those that install malicious
apps. We hope our findings can motivate the security commu-
nity to address the security and privacy needs of particular
at-risk communities and offer more personalized solutions.
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A Additional Results

A.1 Best vs Worst Devices

In this section, we validate the importance of the risk indi-
cators identified in section 4 by performing a comparison
between the best and the worse-in-class users in terms of
malicious apps encounters. In the following paragraphs, we
describe the selection criteria for each group, the insights un-
veiled when composing the two classes, and the results of the
analysis.

Identifying devices with the best devices in our dataset
requires more criteria beyond simply selecting devices with
no malicious encounters. We decide to use the first 8 risk fac-
tors as criteria and select users from the riskiest buckets for
each factor in the GLMs (Table 2). The rationale is that users
who have risky behaviour but do not encounter any malicious
apps may represent users that are very security conscious. We
observe that there is no single device that falls in the riski-
est bucket of all risk factors. To investigate which are the
most critical features that filter out the majority of devices,
we compute and report in Table 9 the percentage of clean
and infected devices after applying the riskiest condition for
each feature. For example, we compute the percentage of
devices with more than 102 installed apps, since this value
resulted to have the highest odds ratios (Table 2). We find
out that the number of alternative markets and the percent-
age of applications downloaded from unofficial markets are
very discriminative for the two sets, as only 214 and 19K
devices fulfill these conditions for over 7.5M devices. On the
contrary, applying those constraints to the set of devices that
report at least one malicious application, produces a larger
population of users. This indeed confirms the goodness of
the model results and the importance of these two risk indica-
tors. Although less pronounced, we also observe the signers
number to have a much higher impact when looking at the
clean subset: in this case, selecting devices with more than 75
signers brings the percentage of considered devices down to
14.92% while it keeps the one of the counterpart to 37.96%.
For our initial task, since applying all the constraints would
result in an empty dataset, we decide to relax the strictest ones
(e.g., number of signers, alternative markets, and percentage
of apps downloaded from them): our group of clean devices
with a high-security profile accounts for 19k records (0.25%
of the total).

On the contrary, to isolate at-risk users in the former group,
we first check the percentage of malicious APKs with respect
to the total number of installed APKs on devices that report at
least one malicious sample. Among those, we then compute
outliers by selecting users whose ratios exceed a threshold
identified by the 95% quantile: out of 1.1M devices with at
least one detection, we select 63K devices whose malicious
APKs represent at least 5% of the total number of applications.

Overall, the risk-factor analysis of the best and worst de-

Table 9: Number and fraction of clean and infected devices
that fall in the riskiest bin of each feature.

Feature Riskiest bins
Clean Infected

Applications 1,680,125 (22.27 %) 467,676 (41.55 %)
Activity days 2,092,531 (27.73 %) 336,172 (29.87 %)
Signers 1,125,362 (14.92 %) 427,298 (37.96 %)
Application categories 1,986,501 (26.33 %) 188,374 (16.73 %)
Update rate 1,868,476 (24.76 %) 365,541 (32.47 %)
% Apps from AM 18,984 (0.25 %) 36,809 (3.27 %)
Alternative markets 214 (0.01 %) 1,671 (0.15 %)
App prevalence 1,771,623 (23.48 %) 395,999 (35.18 %)

vices confirms the higher relevance of a few indicators than
others. In particular, the most marked difference is the one
related to the percentage of applications downloaded from
alternative sources: while for clean users this accounts for 8%,
for at-risk devices the percentage is above 42%. In addition,
we find the average number of application signers being 42
for the best and 73 for the worst devices, with the average for
the whole population being around 50.
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Figure 1: At-risk users, Clean and Average users categories
distribution

To dive deeper into the differences between the two groups,
we compute the percentage of installed-application categories
and plot their distribution in Figure 1. For this task, we do
not consider in the computation the categories of malicious
applications. The analysis of the figure reveals a non-uniform
distribution in the two populations: remarkable cases are the
high prevalence of Unknown apps for at-risk users and the one
of Game APKs into the group of clean users.
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