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Abstract
In this paper we revisit the Spectre v1 vulnerability and
software-only countermeasures. Specifically, we systemati-
cally investigate the performance penalty and security proper-
ties of multiple variants of speculative load hardening (SLH).
As part of this investigation we implement the “strong SLH”
variant by Patrignani and Guarnieri (CCS 2021) as a com-
piler extension to LLVM. We show that none of the existing
variants, including strong SLH, is able to protect against all
Spectre v1 attacks in practice. We do this by demonstrat-
ing, for the first time, that variable-time arithmetic instruc-
tions leak secret information even if they are executed only
speculatively. We extend strong SLH to include protections
also against this kind of leakage, implement the resulting full
protection in LLVM, and use the SPEC2017 benchmarks to
compare its performance to the existing variants of SLH and
to code that uses fencing instructions to completely prevent
speculative execution. We show that our proposed counter-
measure offers full protection against Spectre v1 attacks at
much better performance than code using fences. In fact, for
several benchmarks our approach is more than twice as fast.

1 Introduction

The discovery of the Spectre attack [60] in early 2018 demon-
strated that speculative execution, hitherto considered a harm-
less performance improvement technique, can be exploited
for leaking sensitive information. Unlike many other microar-
chitectural attacks like Meltdown [22, 64, 91, 92, 101, 103,
105, 109, 113, 114], which were discovered concurrently and
subsequent to the discovery of Spectre, these Spectre attacks—
in particular so-called “Spectre v1” attacks—do not exploit
a CPU bug, but a CPU feature. As a consequence it seems
unlikely that the problems caused by Spectre will be solved
by CPU microcode updates or future hardware. As Carruth
phrased it in an RWC 2020 talk [25], “Spectre "v1" is here for
decades...”. This means that at least for the foreseeable future,
software handling sensitive data will need to protect against

Spectre using software countermeasures. To understand such
software countermeasures, it is useful to describe a Spectre
v1 attack1 as a four-stage process:

S1 The CPU’s branch predictor mispredicts a branch and
the CPU speculatively executes instructions following
this mispredicted branch;

S2 during this speculative execution, secret data is (made)
available in a register;

S3 still as part of speculative execution, this data is trans-
mitted from the register onto a covert channel; and

S4 outside speculative execution—possibly by another
process—the data is read from the covert channel.

As S4 is out of control of the program under attack, coun-
termeasures need to prevent the attack from progressing in
one of the first three stages. Clearly the easiest way to prevent
Spectre attacks is to prevent speculative execution to hap-
pen in the first place, i.e., to stop attacks already in S1. This
can be accomplished by inserting serializing or speculation-
blocking instructions—such as the lfence instruction on In-
tel and AMD CPUs—on the two outcomes of every branch.
This countermeasure has indeed been proposed already in the
original Spectre paper [60, Sec. VII], and has also been imple-
mented in mainstream compilers. Unfortunately it comes with
massive performance decline for typical software [48, 59].

As a cheaper alternative, in 2018 Carruth (following discus-
sions with “Paul Kocher, Thomas Pornin, and several other
individuals”, and based on a core idea by Horn) proposed
speculative load hardening (SLH) [24], a countermeasure that
targets S2. This countermeasure is based on the observation
that the most common way in which secret data becomes
available in a register during speculative execution is through
a speculative load from an unintended and possibly attacker-
controlled location in memory. This is, for example, exactly

1Spectre v1 attacks are often referred to as “bounds check bypass”, but in
this paper we consider v1 in the original broader sense as any attack exploiting
speculative execution following a mispredicted conditional branch.



what happens if an array-bounds check is mispredicted and
data is speculatively loaded out of bounds. The idea of SLH is
to maintain a predicate indicating if the execution is currently
in a mispredicted branch or not. This predicate is then used
to “poison” either the outputs (i.e., values) or inputs (i.e., ad-
dresses) of load instructions. Both variants are implemented
in LLVM since version 8 and both variants prevent possibly
sensitive data from being speculatively loaded into a register
in a mispredicted branch. We will in the following refer to the
variant poisoning loaded values as LLVM-vSLH and the one
poisoning addresses in load instructions as LLVM-aSLH.

SLH never claimed to be a countermeasure against all Spec-
tre v1 attacks, at least not with the broad definition we use
in this paper. Specifically, Carruth [24] lists as one limita-
tion of the approach that it “does not defend against secret
data already loaded from memory and residing in registers”.
Recent work by Patrignani and Guarnieri [82] confirms this
limitation by revisiting the SLH countermeasure from a more
formal point of view. They introduce a formal model captur-
ing Spectre-v1-style leakage and show that poisoning values
loaded from memory is indeed insufficient to protect against
all Spectre v1 attacks. However, they also observe that poison-
ing addresses of loads has the additional effect of closing one
of the most commonly used covert channels, namely address-
dependent cache modifications through loads. In other words,
poisoning addresses also targets S3. They extend this idea and
use poisoning based on the misprediction predicate to also
close the additional covert channels captured by their model,
namely addresses of stores and branch conditions; they call
this variant “strong SLH”. We adopt this naming and will
refer to this variant as SSLH.

However, also Patrignani and Guarnieri [82] leave multiple
questions about SLH unanswered, in particular with regards
to the application of their formal model to the real world:
• Do the differences between the different variants of SLH—

LLVM-vSLH, LLVM-aSLH, and SSLH—actually matter
in practice?

• How much larger is the performance overhead incurred by
SSLH compared to LLVM-vSLH and LLVM-aSLH?

• Does any of the SLH variants indeed protect against all
Spectre v1 attacks in practice. That is, does the formal
model in [82] adequately capture all covert channels acces-
sible in speculative execution?

• If there are any additional covert channels, can we extend
SLH to also close these and if yes, at what cost?

Contributions. In this paper, we set out to answer these
questions. We make the following contributions:
• We give a systematic overview of the different variants

of SLH. We discuss the gap between the theory and prac-
tice and describe how the intricacies of the ISA affect the
efficiency of the implementation of variants of SLH. We
further analyze the security implications of various design
and implementation choices.

• We extend the LLVM implementation of SLH to also sup-
port SSLH and evaluate the performance impact of all vari-
ants on the SPEC2017 benchmark. As expected, stronger
defenses incur larger overheads, but all variants are cheaper
than using the lfence-based countermeasure targeting S1.

• We present a proof-of-concept Spectre v1 gadget that is
not prevented by any of the existing variants of SLH. This
proof-of-concept is the first demonstration that variable-
time arithmetic instructions can also be used as a covert
channel to transmit sensitive data from speculatively exe-
cuted code.

• We present “ultimate SLH” (or USLH for short), an ex-
tension to SSLH that also poisons inputs to variable-time
arithmetic instructions. We claim that this countermeasure
indeed protects against all Spectre v1 attacks and back this
claim by a formal analysis and by highlighting a relation to
protections against classical (i.e., non-speculative) timing
attacks.

• Finally, we implement ultimate SLH in LLVM and evaluate
its performance compared to other variants of SLH and
lfence-protected code. We show that code protected with
USLH is consistently faster than code protected by lfence
and that in some benchmarks it is more than twice as fast.

Responsible disclosure. We disclosed the Spectre gadgets
demonstrated in this paper to Intel, AMD, and Arm. All ac-
knowledged the issue but did not consider that it exposes new
threats in their processors and did not require embargo.
Availability of our software. The LLVM patches for imple-
menting SSLH and USLH are available at https://github.
com/0xADE1A1DE/USLH. The repository also contains some
of our attack code.
Organization of the paper. Section 2 establishes the neces-
sary background on microarchitectural attacks with a focus
on transient-execution attacks and existing software counter-
measures. Section 3 describes the attacker model. Section 4
explains the differences between variants of SLH and our
approach to implementing SSLH. Section 5 presents our at-
tacks. Section 6 introduces ultimate SLH as a systematic
countermeasure against all Spectre v1 attacks and presents
comparative benchmarks. Finally, we conclude in Section 7.

2 Background

2.1 Microarchitectural Attacks

Modern processors consist of a large number of components,
collectively called the microarchitecture, that implement the
instruction set that the processor supports. Program execution
affects the state of the microarchitectural components. At the
same time, the microarchitectural state affects program exe-
cution speed. Consequently, when multiple programs execute
on the same processor, executing one program may affect the
performance of another.

https://github.com/0xADE1A1DE/USLH
https://github.com/0xADE1A1DE/USLH


Microarchitectural attacks [39] exploit these performance
effects to leak sensitive information. Specifically, by moni-
toring program execution speed, an attacker can determine
some of the microarchitectural state and from that infer infor-
mation on other programs executing on the same processor.
Attacks have been demonstrated, exploiting various compo-
nents, such as buses [81, 117, 122], execution ports [1, 18, 20],
data caches [65, 80, 83, 124, 125], instruction and microcode
caches [4, 89, 94], address translation [40, 63, 100], branch
prediction [2, 3, 37, 38, 128], and other components [50, 76].
Constant-time programming. Many of the published
microarchitectural attacks target cryptographic implementa-
tions [2, 3, 4, 14, 31, 40, 42, 65, 66, 76, 80, 81, 83, 84, 117,
125, 126]. Consequently, the cryptographic community de-
veloped constant-time programming, a programming style
designed to curb microarchitectural attacks. The idea behind
constant time programming is to prevent flow of secret data
into variations in microarchitectural states. In practice, this
idea translates into three requirements:
1. No secret-dependent control flow;
2. No memory access to addresses that depend on secret

values; and
3. No variable-time arithmetic instructions with secret-

dependent arguments.
Constant-time coding is considered a de-facto standard re-
quirement for cryptographic code. Cryptographic software
and tools for developing it are often claimed to produce
constant-time code [13, 15, 16, 17, 36, 54, 88] and tools for
validating or enforcing constant-time coding have been devel-
oped [35, 93, 95]. The security of constant-time code has been
proven [10] and attempts to relax constant-time requirements
have been shown vulnerable [76, 96, 97, 126].

2.2 Speculative and Out-of-Order Execution
To improve run-time performance, modern processors em-
ploy a complex execution pipeline. The pipeline consists of
two main stages. The frontend is responsible for fetching in-
structions from memory and decoding them, converting them
to a stream of micro-operations (µops).2 It then issues these
µops to the execution engine. The execution engine receives
the stream of issued µops and dispatches them to execution
units. To improve performance and to exploit instruction-level
parallelism, the order that the execution engine executes the
µops may differ from their order in the program. Instead, the
execution engine uses some variant of the Tomasulo algo-
rithm [110] to track dependencies between µops and dispatch
them to available execution engines as soon as their depen-
dencies are satisfied. After the µops complete execution, the
execution engine retires them to the frontend. The frontend
ensures that µops retire in program order, maintaining the
semantics of the machine code.

2The exact distinction between instructions and µops is largely irrelevant
for this work and so we mostly use the terms interchangeably.

1 if (index < arrayLen) {
2 x = array[index];
3 y = array2[x ⁎ 4096];
4 }

Listing 1: Example of a Spectre v1 Gadget.

When the frontend decodes a branch instruction, it often
does not know what the branch destination or outcome is, e.g.,
because the branch condition is yet to be computed. Rather
than stalling, the frontend predicts the branch outcome and
proceeds to fetch, decode, and execute instructions based on
the prediction. This is called speculative execution. Eventu-
ally, the execution unit executes the branch instruction and
determines the real destination. In the case that the destination
was correctly predicted, execution continues without interrup-
tions. However, in the case of a misprediction, all of the µops
that were incorrectly issued are squashed, any results com-
puted as part of their execution are dropped, and the execution
engine instructs the frontend to resume execution from the
correct destination. Instructions may also be squashed when
abnormal conditions, such as traps and exceptions, occur.

2.3 Transient Execution Attacks

A common consequence of speculative execution is that some
µops get executed although they do not appear in the nominal
program order. While these µops are eventually squashed,
their transient execution may bypass software- and hardware-
based security checks. Because squashing drops the results
computed in transient execution, this was not considered a
security issue. However, transiently executed µops do change
the microarchitectural state and their execution can leak sen-
sitive information [21, 60, 64]. Specifically, Spectre-type at-
tacks exploit transient execution following a misprediction
of control or data flow [5, 12, 18, 29, 56, 58, 60, 62, 68,
75, 98, 102, 107]. Conversely, Meltdown-type attacks ex-
ploit transient execution following abnormal termination of
an instruction, for example, due to a trap or microcode as-
sist [22, 64, 91, 92, 101, 103, 105, 109, 113, 114].

In this paper we focus on the Spectre attack, and in particu-
lar on Spectre v1 [60]. In this variant, the adversary exploits
misprediction of a conditional branch to leak secret informa-
tion. Listing 1 shows the classical case of a Spectre gadget:
the conditional statement at Line 1 nominally preventing exe-
cution of the if body when index is beyond the array bound.
However, if the branch mispredicts, the if body executes
transiently, loading a value from outside the array bound and
accessing array2 at a position that depends on the loaded
value. After executing the gadget, the adversary can check
which offset in array2 has been accessed, using, e.g., the
Flush+Reload technique [125], and from that infer the value
of x, which has been loaded from an arbitrary location. Due
to the popularity of this example, Spectre v1 is also known as



“bounds check bypass”. However, security issues due to spec-
ulative execution of mispredicted branches go deeper [6, 58].

2.4 Countermeasures for Spectre v1
Execution barriers such as the x86 lfence instruction prevent
speculation. Inserting an lfence at each possible outcome of
conditional branches prevents Spectre v1 [48]. However, this
comes at a significant performance cost [48, 59]. The perfor-
mance can improve by only protecting vulnerable branches
and several approaches for identifying those have been pro-
posed [18, 53]. However, these have false negatives [59],
resulting in failures to protect vulnerable branches [53].

Oleksenko et al. [78] introduce false data dependencies
between arguments of leaking instructions and branch con-
ditions to delay the instructions until after the branch is re-
solved. Speculative Load Hardening (SLH) [24, 82] protects
against leaks by tracking the speculation state and masking
values during misspeculation. We discuss SLH in more de-
tail in Section 4. To protect against Spectre attacks from
JavaScript code, browsers reduced the resolution of timers and
disabled shared buffers in an effort of preventing the attacker
from observing the microarchitectural state [45, 87, 116].
However subsequent works showed that attackers do not
need high-resolution timers to carry out attacks [44, 98].
Additionally multiple works propose hardware-based de-
fenses [8, 9, 55, 57, 67, 73, 99, 106, 120, 123, 127]. As these
are not available in commercial processors and cannot be ap-
plied to existing hardware, these are outside the scope of this
work. We refer the reader to [23] for more information about
countermeasures.
Formal approaches. There exist many verification tools
for checking that programs are protected against Spectre
attacks. The overwhelming majority of these countermea-
sures and tools focus on Spectre v1; we refer to [27] for
a recent overview of formal approaches. Many verification
tools [11, 19, 26, 28, 32, 34, 41, 85, 86] are supported by
soundness claims. Informally, soundness is stated with re-
spect to a formal model of leakage, and a security policy
based on this formal model; a typical soundness claim states
that programs that pass verification satisfy the intended pol-
icy; in some cases, soundness only holds for bounded exe-
cutions. Broadly speaking, these policies fall into two dif-
ferent categories: relative policies, requiring that specula-
tive execution does not leak more than sequential execution,
and absolute policies, requiring that speculative execution
does not leak. Additionally, there are many other verification
tools [43, 58, 69, 70, 74, 79, 90, 118, 119, 121] that do not
aim for or are not (yet) supported by formal soundness claims.
In addition to verification tools, there exist many mitigation
tools that automatically transform programs so that they ad-
here to some intended policy; some of these tools come with
a soundness proof [72, 115] whereas others do not (yet) have
such proofs [51, 77, 108]. Finally, our work is most closely

related to [82]. We defer a precise comparison to this work to
the next sections.

3 Attacker Model

We assume a model where some data is tagged as secret. The
attacker does not have direct access to secret data. The only
way they can access it is by invoking some trusted code that
can access this data. When the trusted code executes, it can
leak some of the secret data it processes, e.g., by writing the
secret data to a public variable. Additionally, the victim code
may leak secret data through microarchitectural side channels,
for example, by accessing a memory address that depends on
secret data. We assume that the provider of the trusted code is
aware of the leakage potential and accepts the level of leakage
possible through nominal, non-speculative execution of the
trusted code. We note that our model covers multiple real-
world scenarios that enforce isolation. For example, the secret
data and the trusted code could reside in a different process
or virtual machine, they can be part of an SGX enclave [33],
or the system can use intra-process isolation [52, 104, 112].

For side channel leakage, we assume the typical leakage
model covered by constant-time programming. That is, we
assume that memory accesses leak their addresses, branches
leak their outcomes, and variable-time instructions leak their
arguments. This model is widely accepted for nominal ex-
ecution, i.e. when the program executes in-order with no
speculative execution. For transient instructions, past work
assumed and demonstrated leakage of addresses from mem-
ory access [60] and of branch conditions [18, 30, 128]. In this
work we further demonstrate leakage of information on the
arguments of variable-time instructions executed transiently.

The attacker aims to use Spectre v1 to cause the trusted
code to leak more secret data than it would leak if it were
executed without speculation. For that, we assume that the
attacker can cause any conditional branch in the trusted code
to mispredict. We assume that the attacker cannot cause
mispredictions of indirect branches and return instructions—
effective countermeasures for those are available [47, 111].
We further assume that the processor is not vulnerable to
Meltdown-type attacks [22, 64, 113].

4 Speculative Load Hardening

The main aim of Speculative Load Hardening (SLH) is to pre-
vent data disclosure via microarchitectural channels during
speculative execution of code. For that, SLH tracks a specu-
lation flag whose value depends on the state of speculation.
SLH then uses the speculation flag to “poison” (or “harden”)
sensitive values to ensure that they do not leak. For example,
in the LLVM implementation of SLH, the speculation flag is 0
during nominal execution and is 0xFF...FF while misspecu-
lating. To poison a value, LLVM ORs it with the speculation



flag, ensuring that during misspeculation the poisoned value
is constant and cannot leak.

4.1 SLH Variants Implemented in LLVM
SLH in LLVM is a compiler pass that aims to protect against
Spectre v1 [24]. In particular, LLVM SLH aims to protect
against speculative bypass of tests such as array bound checks.

JC taken
.
.
.
JMP out
taken:
.
.
out:

JC taken
CMOVC -1, %rcx
.
.
JMP out
taken:
CMOVNC -1 %rcx
.
out:

Listing 2: Speculative state tracking in LLVM SLH

Speculation flag. To track the speculative state of the pro-
gram, LLVM SLH uses a register, usually %rcx, as a specu-
lation flag, setting all bits of the register to 0 during correct
execution and to 1 during misspeculation. To achieve that,
LLVM SLH instruments every conditional branch to include
a conditional move (CMOVcc) in each branch, setting the spec-
ulation flag. For the condition of the conditional move, LLVM
SLH uses the inverse of the branch condition for the taken
branch and the branch condition for the non-taken branch.
For example, the branch instruction JC label in the left part
of Listing 2 is taken if the carry is set. When instrumented
(Listing 2 right), LLVM SLH adds a CMOVC -1, %rcx, which
sets all of the bits of %rcx if the carry is set, to the non-taken
branch. This CMOVC is only expected to execute if the branch
is not taken, i.e., if the carry is clear. In the nominal execution,
when the branch is not taken the carry is clear, hence the value
of %rcx does not change. However, if the branch is misspecu-
lated, the CMOVC will execute speculatively even though the
carry is set. Because conditional moves are not speculated, the
value of %rcx reflects the status of misspeculation. Similarly,
for the taken branch, LLVM SLH adds a CMOVNC conditional
move instruction, that sets the speculation flag to all ones in
the case of a misspeculation.

To transfer the speculation flag across function boundaries,
LLVM SLH uses the high bits of the stack pointer. Valid
user-space pointers in the x86-64 architecture have their 16
most significant bits all 0. Before a function call, LLVM
SLH sets these bits from the speculation flag. That is, in
the case of misspeculation, the most significant bits of the
stack pointer are set to 1, invalidating the stack pointer. In
the function prologue, LLVM SLH further adds code that
checks the most significant bits of the stack pointer and sets
the speculation flag accordingly. The same mechanism is used
to communicate the speculation flag on function return.
Poisoning loaded value. Spectre v1 attacks exploit misspec-
ulation to speculatively bypass data validation tests, such as

array bounds checks, and leak the accessed values. LLVM
protects against such bypasses by poisoning values loaded
from memory during misspeculation. Conceptually, the idea
is simple—when a value is loaded from memory, LLVM-
vSLH ORs it with the speculation flag. This, effectively, sets
the value bits to all-one during misspeculation while leaving
the value unchanged during nominal execution.
Poisoning load addresses. Instead of poisoning loaded val-
ues, SLH supports an option to poison all load addresses. With
this option, LLVM-aSLH poisons the values of the base and
index registers of addresses that are not considered fixed (see
below). This provides the protection level that SLH promises,
i.e., a protection against Spectre v1, because the attacker can-
not load data from arbitrary addresses.

Poisoning addresses provides some additional protection
against leakage of secret values that the program has nominal
access to, e.g. values in registers and those loaded from fixed
addresses. Most Spectre attacks use a cache-based covert
channel to communicate the leaked value to the attacker. That
is, the Spectre gadget accesses a memory location that de-
pends on the secret value in order to communicate the value.
Poisoning load addresses ensures that loads in misspecula-
tion use fixed addresses (up to the LLVM SLH definition
of a fixed address; see below) thus these addresses are not
data-dependent.

4.2 Strong SLH
Patrignani and Guarnieri [82] formalize variants of SLH; most
notably they introduce strong SLH (SSLH) and provide a
proof that SSLH indeed protects against all Spectre v1 attacks.
The model used for this proof divides the address space into a
private and a public heap. The attacker can write code that has
unfettered access to the public heap. However, to access the
private heap, the attacker uses a code library that is not under
direct attacker control. This code library can be invoked by
the attacker code and can call attacker provided subroutines.

While the attacker cannot access the private heap, the execu-
tion of the code library can leak the information it processes,
either directly by writing it into the public heap, or indirectly,
through address-based side channels that leak branch con-
ditions and the addresses of memory accesses. A program
is speculatively secure if any information that leaks under
speculative execution also leaks under nominal execution.

In order to compare SSLH to LLVM-vSLH and LLVM-
aSLH in terms of security and performance impact, we set
out to implement this variant. The starting point for this im-
plementation is LLVM-aSLH, but it turns out that in order to
match all the assumptions made by the formal model of [82],
the protections need to go considerably further.
Load address hardening. While both SSLH and LLVM-
aSLH work by hardening addresses of loads, there is a differ-
ence in what loads are protected. SSLH assumes that all ad-
dresses of loads are protected, whereas LLVM-aSLH abstains



from protecting “fixed” addresses. Specifically, an address
is considered fixed by LLVM if both of the memory base
and memory index are values known at compile time. Most
notably this includes addresses that add a fixed offset to the
stack pointer or to the instruction pointer. As the stack pointer
may speculatively store sensitive values, we extend LLVM-
aSLH to also harden those addresses in our implementation
of SSLH. We do not implement hardening of addresses that
add fixed offsets to the instruction pointer. We note that the
security proof of Patrignani and Guarnieri [82] holds even
when fixed addresses are not hardened.
Store address hardening. LLVM-aSLH does not harden ad-
dresses of store instructions. This makes sense when thinking
of SSLH as a countermeasure targeting S2; however, as the
proof of SSLH requires protection at S3, addresses of store
instructions also require protection. We thus add this in our
implementation of SSLH. Store addresses are hardened with
the same logic that we also use for load addresses.
Branch hardening. As an additional covert channel that can
be used to leak secrets in speculative execution, SSLH also
assumes that the conditions of branches are hardened. In our
implementation of SSLH we ensure that branch conditions
depend on the speculation predicate.

The x86 architecture only supports a limited number of
instructions for manipulating the flags. Hence, poisoning the
flags, while possible, is inefficient. Instead of poisoning the
condition flag used by a branch instruction, we look for the
instruction that sets the flag and poison the arguments of this
instruction. Specifically, if the arguments are loaded from
memory, we poison the load address, just as we do for any
memory access. For register arguments, we poison the register
value. As with other instructions, we do not poison immediate
values or fixed addresses.

A summary of the differences between LLVM-vSLH,
LLVM-aSLH, and SSLH is given in Table 1; this table also
includes Ultimate SLH (USLH), introduced in Section 6.

5 SLH Security

In this section we set out to answer two questions. First, do the
more extensive protections of SSLH compared to LLVM-SLH
(both LLVM-vSLH and LLVM-aSLH) matter in practice? Sec-
ond, are the extensive protections offered by SSLH sufficient
to stop all Spectre v1 attacks? We answer these questions by
presenting three Spectre gadgets. The first, which exploits
secret-dependent control flow (Section 5.1), is basically an
adaptation of SMoTherSpectre [18] to Spectre v1. It shows
that unprotected branch conditions can indeed be used as a
covert channel and that hardening them in SSLH thus really
matters. The second and third gadgets demonstrate the use of
arithmetic instructions (Section 5.2) and repeat instructions
(Section 5.3) whose execution time depends on their argu-
ments to build covert channels. These gadgets show that even

the protections implemented by SSLH are not sufficient to
protect against all Spectre v1 attacks.

5.1 Exploiting Secret-Dependent Control Flow
Our first proof-of-concept shows that branches that execute
speculatively can leak their condition. Consequently, poison-
ing the branch conditions is essential. We emphasize that
SSLH does provide protections against the leak of branch
condition whereas LLVM-SLH does not. We note that Spectre
leakage through branch prediction has already been demon-
strated [18, 30, 128].

1 victim(int value, int isPublic) {
2 // Branch training
3 for (volatile int i = 0; i < 200; i++);
4

5 // Safety Check
6 if (isPublic) {
7 if (value == 0) {
8 a2 = a1 | a2;
9 a3 = a2 | a3;

10 ...
11 } else {
12 a1 = crc32(a1, a1);
13 a2 = crc32(a2, a2);
14 ...
15 }
16 }
17 }

Listing 3: Victim function for SMoTher attack

Listing 3 shows the code of the victim. (While the example
shows C code, in practice, to avoid some of the intricacies of
the C compiler, we use equivalent LLVM intermediate code
for this and for the other PoCs we present in this section.)
To facilitate branch training, we use the technique of Röttger
and Janc [98], who observe that branch prediction depends
on branch history. The loop in Line 3 sets a fixed history for
the authorization branch in Line 6. The attacker then invokes
the function twice, each time with value=0 and isPublic=1.
This sets the prediction that the bodies of the if statements
in Lines 6 and 7 should be executed.

The attacker then arranges for the victim function to be
called with isPublic=0 and a secret value. We note that a
nominal execution with isPublic=0 does not leak the secret
value of value. The attacker further arranges for the if in
Line 6 to be resolved slowly, e.g. by flushing the value of
isPublic out of the cache. When the function executes, the
branch training loop sets the branch history to the same state
as in the training. Consequently, the processor mispredicts that
the body of the if in Line 6 will be executed and proceeds



Table 1: Features of different variants of SLH: value is the output (value) of loads masked; addr is the address of load instructions
masked; ind. branch are addresses of indirect branches masked; cond are conditionals used by branch instructions masked;
store are addresses of store instructions masked; SP+imm: are “fixed” addresses of the form stack-pointer plus fixed offset in
load/store instructions masked; IP+imm are “fixed” addresses of the form instruction-pointer plus fixed offset in load/store
instructions masked; rep is the length of rep instructions masked; arith are inputs to variable-time arithmetic instructions
masked.

SLH variant value addr ind. branch cond store SP+imm IP+imm rep arith

LLVM-vSLH ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
LLVM-aSLH ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

SSLH ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
USLH ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

to speculatively execute it. The if is initially predicted to
execute the then block, but because value is available, the if
is evaluated quickly, and in the case that value is 1, execution
proceeds speculatively to the else part of the if statement.
Eventually, the processor evaluates isPublic and detects the
misprediction. It then squashes all mispredicted instruction
and proceeds execution along the correct path.
Attack. The attacker’s aim is to distinguish whether the secret
value is 0 or 1. To achieve that, we rely on the observation
that when value=1, the processor speculatively executes dif-
ferent instructions than in the case that value=0. Specifically,
for value=0 we use a sequence of 48 or instructions, whereas
for value=1 we use a sequence of 48 crc32 instructions.
Port contention spy. To distinguish the execution paths, we
rely on port contention [20]. Specifically, the execution unit
of the processor contains multiple ports, each can execute
some instructions but not others. In particular, or uses ports
0, 1, 5, 6, whereas crc32 uses port 1. Hyperthreads of the
same execution core compete on the ports. Consequently, if
both hyperthreads issue instructions for the same port, port
contention will cause execution delays. Bhattacharyya et al.
[18] show that speculatively executed instructions can also
produce measurable delays. To exploit port contention, our
spy program executes a sequence of 42 crc32 instructions
and measures the execution time of the sequence.
Synchronization. To achieve port contention, we need to
ensure that the spy executes the measurement code at the
same time that the victim executes the distinguishing code.
For rough synchronization, we fork the spy and then the victim
and migrate both to hyperthreads of the same core. However,
forks are not instantaneous and migration takes time. To better
synchronize the processes, we use a shared pointer chasing
approach. Specifically, we create a linked list of 50 cache lines
that is shared between the victim and the spy. Before forking
creates new processes, we flush all of the cache lines of the
linked list from the cache. Upon initialization, both processes
start following the shared linked list from its head to its tail.
Because the linked list is initially out of the cache, following it

requires bringing all of the elements from memory. Moreover,
because the processor must read a list element to determine
the location of the following element, reading the elements
from the memory cannot be parallelized.

The first process to follow the list has to wait for each
element to be read from memory. When it follows the list,
the processor caches the elements. Hence, when the second
process starts following the list, it can advance much faster,
until reaching the first non-cached element. From this point,
both processes progress together, waiting for an element be-
fore advancing to the next. We find that after following 50
elements, both processes reach the tail of the list within 5–10
cycles of each other.
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Figure 1: Spy measurement of port contention on Intel Core
i7-6700K.

Results. We test the code on Intel Core i7-6700K and Core
i5-8265U, both running Ubuntu 20.04. We build the victim
with LLVM-aSLH, the default implementation of clang 13.
We collect 20,000 samples, each consisting of the average spy
measurement over 100 runs of the spy and the victim. Figure 1
shows the distribution of the average measurement for the
cases that the secret value is 0 and 1, when running on the
Core i7-6700K processor. As we can see, when value=1 the
measurements are about 7 cycles longer than when value=0,
and the two distributions are easily distinguishable, allowing
the attacker to determine the secret value.
Vulnerability in real-world software. We implement a gad-
get searching tool and check if the presented secret-dependent



control flow is exploitable in practice. Our tool is an LLVM
backend pass that tracks the propagation of function argu-
ments and maintaining lists of tracked variables that could
potentially contain secrets. The tool searches for functions
that leak information on an argument, but only under specula-
tion. That is, the function meets the following conditions:
• The function contains a conditional branch;
• The code of one of the branch’s outcome contains a second

branch that depends on an argument of the function; and
• The argument does not leak through memory access or

branch condition in any other part of the function.
We apply our gadget-searching tool to the latest available

versions of commonly used libraries. Table 2 reports the result
of the searching. Note that because we do not have any a-priori
method of determining what values are secret, the gadgets we
find do not necessarily leak a secret. However, we do point to
locations that potentially leak under speculation.

Table 2: Number of gadgets found in common software whose
two paths of a branch could potentially be distinguished by
memory accesses or function calls.

OpenSSL
1.1.1q

bash
5.1.16

libgcrypto
1.8.9

musl
1.2.3

python
3.9.14

Found gadgets 359 52 69 48 281

An example of an identified, albeit non-exploitable, gad-
get is the function BN_mul_word in OpenSSL 1.1.1q for big
number multiplication (shown in Listing 4). The function
accepts two arguments: a big number a and an integer w. The
functions bn_mul_words (Line 10) and bn_wexpand (Line
12) are both inlined and thus are not considered function calls.
Two paths (Line 8 vs. Lines 10–14) can be distinguished
through whether the function BN_zero (Line 8) is accessed
or not (e.g., by using Flush+Reload). We test this gadget with
three mitigation options, namely, no mitigation, LLVM-aSLH,
and SSLH. The success rates of distinguishing the two paths
are 98.57%, 95.23% and 50.03% respectively. This highlights
that LLVM-aSLH performs similar to no mitigation while
SSLH does prevent the attack. (Note that 50% is the expected
success rate for a random guess.)

5.2 Exploiting Variable-Time Instructions
We now turn our attention to exploiting instructions whose
execution time depends on their arguments. Passing secret
information as arguments to such instructions can lead to mea-
surable execution time differences, which leak the secret in-
formation [7, 61]. Thus it would appear that such instructions
could be used to leak information from speculative execution.
We emphasize that neither LLVM-SLH nor SSLH prevent
this leakage.
Measuring execution time of misspeculated instructions.
To extract leaked secrets from variable-time instructions, past

1 int BN_mul_word(BIGNUM ⁎a, BN_ULONG w) {
2 BN_ULONG ll;
3

4 bn_check_top(a);
5 w &= BN_MASK2;
6 if (a->top) {
7 if (w == 0)
8 BN_zero(a);
9 else {

10 ll = bn_mul_words(a->d,a->d,a->top,w);
11 if (ll) {
12 if (bn_wexpand(a,a->top+1) == NULL)
13 return 0;
14 a->d[a->top++] = ll;
15 }
16 }
17 }
18 bn_check_top(a);
19 return 1;
20 }

Listing 4: BN_mul_word in OpenSSL 1.1.1q

attacks measure the execution time of some code that con-
tain the instructions. However, this approach cannot work for
measuring the execution speed of misspeculated code. Typi-
cal techniques for accurate time measurement include fence
instructions that ensure that the measured code completed exe-
cution before the measurement is taken [125], but fences also
terminate misspeculation. Consequently, it is impossible to
use time measurements in misspeculation. At the same time,
the execution speed of misspeculated code does not affect the
program’s execution time. Misspeculation terminates when
the processor detects that it misspeculated and the timing of
this detection does not depend on the execution speed of the
misspeculated code.

1 victim(double value, int isPublic) {
2 // Branch training
3 for (volatile int i = 0; i < 200; i++);
4

5 // Boundary Check
6 if (isPublic) {
7 value = sqrtsd(value);
8 value = mulsd(value, value);
9 ...

10 value = sqrtsd(value);
11 value = mulsd(value, value);
12 memory_access(adrs);
13 }
14 }

Listing 5: Victim function for variable-time instructions



Branch racing. Instead of directly measuring the execu-
tion time of misspeculated code, our gadget creates a race
condition between the misspeculated code and the branch
condition. Listing 5 shows an example of the Spectre gadget
we use as a proof-of-concept. The argument value can hold
one of two values, which we call fast and slow. Specifically,
we use 65536 for fast and 2.34e-308 for slow [91].

In the misspeculated branch, the code performs a sequence
of SQRTSD and MULSD instructions on value, which we call the
leak sequence. This sequence is followed by a memory access
(Line 12). The leak sequence is designed so that it repeatedly
computes the square root of the original value of value. On
our i7-6700K machine, executing a single block of SQRTSD
and MULSD on fast takes 17.4 cycles on average, compared
with 22.8 for slow. In our experiments, misprediction lasts
around 240 cycles. Thus, with 11 repetition of the SQRTSD and
MULSD we expect that the leak sequence will complete before
the misspeculation ends when executed with the fast value,
but not when executed with the slow value. Hence, if the
access at Line 12 executes after the leak sequence completes,
the memory access will only happen when value is fast.
Out-of-order execution. Unfortunately, ensuring that the
memory access in Line 12 only executes after the leak se-
quence completes is not trivial. As discussed, the processor
uses out-of-order execution, and will execute an instruction if
all of its arguments are available and there is an available exe-
cution port. The adrs argument of the memory access does
not depend on the computation in the leak sequence. More-
over, load instructions use ports 2 and 3, whereas the SQRTSD
uses port 0 and MULSD uses ports 0 and 1. Consequently, there
is no conflict between the leak sequence and the memory
access, and the processor executes the memory access as soon
as speculation starts.
False dependency. A naive straw-man approach is to ensure
that the memory access is only executed after the leak se-
quence. The idea is to create a false dependency between the
result of the leaky sequence and the address of the memory
access. While none of the existing SLH variants is designed to
protect against leaking instruction timing, the result of using
this approach seems to indicate that LLVM-aSLH and SSLH
protect against leakage, contradicting the analysis.

We note that the false dependency that forces the memory
access to evaluate after the leak sequence also affects SLH’s
detection of fixed addresses. Both LLVM-aSLH and SSLH
poison non-fixed addresses, including the read from addr.
Poisoning affects the gadget in two ways. First, it creates a
dependency between the branch condition and the memory ac-
cess. Consequently, the memory access cannot happen before
the branch condition is evaluated. This creates a race between
resolving the branch and accessing the memory, which the
branch is likely to win both because it is older and because
poisoning needs to execute at least two more instructions:
the conditional move that sets the speculation flag and the
actual poisoning. Moreover, even if the memory access starts

executing before the branch resolves, the location it accesses
is likely to be invalid, blocking the Flush+Reload channel.
We note however that poisoning the address only masks the
access location not the fact that the access happens. Thus,
it may be possible to create a gadget that relies on false de-
pendency that remains exploitable in the presence of address
poisoning. We leave investigating this possibility to future
work. In summary, the straw-man approach cannot be directly
used for measuring the execution time.

5.2.1 Time measurement with resource contention

We saw how to exploit variable-timing instructions together
with a false dependency to create a covert channel for a Spec-
tre gadget. However, due to the false dependency, SLH does
not identify that the address used is constant. Hence, SLH
poisons it, and “unintentionally” protects against the attack.

We now demonstrate a Spectre gadget that exploits variable-
timing instructions without creating a false dependency be-
tween these instructions and the subsequent memory access.
Our gadget relies on creating contention on internal resources
required for scheduling µops execution. We first describe the
relevant steps that the execution engine takes while running a
program. We then explain how our gadget operates.

Reservation stations. Recall that the execution engine of
the processor receives a stream of µops, which it executes.
To exploit instruction-level parallelism, the execution engine
does not execute µops in program order. Instead µops can be
executed in any order that satisfies the data dependencies in
the program. To track the data dependencies of a µop, the pro-
cessor uses reservation stations [46], also known as scheduler
entries in the Intel nomenclature [71]. Thus, µop execution
consists of allocating a reservation station and other resources
required for its execution. The reservation station waits until
all inputs for the µop are available, at which time the scheduler
queues the µop to one of the appropriate execution units.

When µops’ execution takes a long time, the processor may
run out of reservation stations and other resources required
for their execution. When these resources are required for
tracking data dependencies, as is the case with reservation
stations, younger instructions cannot be safely scheduled, and
their execution is stalled even if they do not depend on older
instructions which are pending.

Gadget evaluation. We test the gadget in Listing 5 on an
Intel Core i5-8265U, microcode 0xEA, and on an Intel Core
i7-10710U, microcode 0xE8, both running Ubuntu 20.04 and
both with the CPU governor set to performance. To use the
gadget, we first execute the victim twice with public values,
training the branch. We then flush adrs from the cache and
execute the victim with a ‘secret’ value, which can be either
fast or slow. For this attack execution we delay the evaluation
of isPublic so that the branch in Line 6 mispredicts. Finally,
when the function returns we check whether adrs is cached.



We collect 100,000 samples on each processors, where in
each sample value is randomly chosen as either fast or slow.
Results. The results depend on the number of pairs of SQRTSD
and MULSD instructions we use. With 40 such pairs, the mem-
ory access always executes and we observe that with a high
probability, adrs is cached (99.9% for slow value). When
SQRTSD and MULSD are repeated 55 times, we observe that,
with a low probability, adrs is cached (4.3% for fast value).
However, when the number of SQRTSD and MULSD instructions
is between these values, we find that whether adrs is cached
depends on the chosen value.

Specifically, for 45 repetitions of SQRTSD and MULSD we
find that when value is fast, with a high probability (92.5%
on the i5-8625U and 96.6% on the i7-10710U) adrs is cached.
Conversely, when value is slow, the probability that adrs is
cached is 5.2% and 4.5% for the i5-8625U and the i7-10710U,
respectively. Moreover, building the proof-of-concept with
any of the SLH variants in Section 4 does not avoid the leak.
Discussion. In the gadget in Listing 5, the memory access
in Line 12 does not depend on any of the prior instructions.
Moreover, load instructions use ports 2 and 3, whereas the
SQRTSD and MULSD instructions use ports 0 and 1. Conse-
quently, data dependency and execution unit availability do
not explain the stall of the memory access.

We believe that the cause of the stall is resource exhaustion.
The long sequence of SQRTSD and MULSD instructions con-
sume resources required for scheduling further instructions,
possibly reservation stations. As the execution of the SQRTSD
and MULSD instructions completes speculatively, the processor
frees the resource they consume, gradually releasing younger
instructions to be scheduled. Given sufficient time, enough
SQRTSD and MULSD instructions will complete execution to al-
low the memory access to execute. However, misspeculation
only lasts until the processor computes the branch condition.
Hence, we have a race between detecting the misspecula-
tion and performing the memory access. When the number
of SQRTSD and MULSD instructions is small, the memory ac-
cess always wins the race. When the number of SQRTSD and
MULSD instructions is sufficiently high, detecting the misspec-
ulation always wins. However, when the number is between
these extremes, the winner is determined by the rate at which
the SQRTSD and MULSD instructions are executed—with fast
value, the memory access wins and gets executed, whereas
with slow value, the misspeculation detection wins and the
memory access is not executed.

5.2.2 Leak secret bit-by-bit

We have seen that variable-time instructions can leak infor-
mation through the race between the misspeculation and the
branch resolving. In the following, we demonstrate how our
variable-timing instructions gadget leaks a secret bit-by-bit,
indicating that SSLH fails to prevent leakage in practice.
Bit-by-bit leakage. We present our gadget design in List-
ing 6. Since we aim at leaking a secret bit-by-bit, the function

receives an additional input bit to indicate which bit to leak.
When isPublic=1, the function selects fast or slow based on
the value at position bit of secret, followed by a multipli-
cation, 47 pairs of SQRTSD and MULSD, and a memory access
to a secret-irrelevant address.
Gadget evaluation. We conduct our test on an Intel Core i7-
10710U, microcode 0xF0 running Ubuntu 20.04 and the CPU
governor set to performance. We train the branch at Line 6
by invoking the gadget twice with isPublic=1 . We then
flush the adrs from the cache. After that, we call the victim
function with isPublic=0 and a randomly selected secret.
We check which value, fast or slow, is selected by reloading
the flushed adrs. If the memory is cached, it means that the
fast is selected, thus the tested secret bit is 1. Otherwise, the
tested bit is 0. In our experiment, we compiled the gadget
with no mitigation and with SSLH. We use the value 0xAB
for secret and collect 10,000 samples.
Results. When the gadget is compiled without mitigation, the
attack has the success rate of 82.2% in correctly identifying
that the secret is 0xAB. When the gadget is compiled with
SSLH, the success rate is 75.8%. These results confirm that
variable-time instructions can bypass the SSLH protection
and leaking a secret bit-by-bit is feasible.
Discussion. SSLH fails to protect the gadget in Listing 6
because the branch contains neither control flow transfer nor
secret-relevant memory access. This indicates that protec-
tions against variable-timing instructions require poisoning
the operands of variable-timing instructions. We describe our
solution when we present USLH in Section 6.

1 victim(int secret, int bit, int isPublic) {
2 // Branch training
3 for (volatile int i = 0; i < 200; i++);
4

5 // Boundary Check
6 if (isPublic) {
7 uint64_t tmp =
8 ((secret >> bit) & 1) ? FAST : SLOW;
9 double tmp2 = tmp ⁎ tmp;

10 tmp2 = sqrtsd(tmp2);
11 tmp2 = mulsd(tmp2, tmp2);
12 ...
13 tmp2 = sqrtsd(tmp2);
14 tmp2 = mulsd(tmp2, tmp2);
15 memory_access(adrs);
16 }
17 }

Listing 6: Bit-by-bit leakage via a selection of fast and slow

5.3 Exploiting Repeat Instructions
One of the oddities of the x86 instruction set is repeat in-
structions. Originally added to simplify string and memory



operations, these instructions perform one or more memory ac-
cess and automatically increment or decrement the addresses
they use, so repeated use of the instructions will perform the
operation on successive addresses. Moreover, the instructions
support several repeat prefixes that, when present, cause the
operations to execute in a loop controlled by the %rcx register
and possibly an additional condition on the data processed.
Repeat string operation prefix. The repeat string operation
prefix specifies the number of times a string operation is to be
repeated. This number is implicitly determined by the value
of %rcx (e.g., REP) or ZF flag (e.g., REPZ) [49]. When a repeat
instruction tests the ZF flag, the termination is determined by a
counter register. The number of repetitions affects the amount
of hardware resources consumed by repeat instructions. Un-
der speculative execution, a younger instruction will not be
speculatively executed if the required hardware resources are
not available. Listing 7 presents a gadget demonstrating that
repeat instructions can leak a value of the counter register.

1 victim(int⁎ dst, int⁎ src, int secret,
2 int isPublic) {
3 // Branch training
4 for (volatile int i = 0; i < 200; i++);
5

6 // Boundary Check
7 if (isPublic) {
8 int rep = (secret == 1) ? 50 : 100;
9 memcpy(dst, src, rep);

10 memory_access(adrs);
11 }
12 }

Listing 7: Exploiting REP instruction

Gadget evaluation. With proper instruments, memcpy (Line 9
of Listing 7) could be lowered to REP MOVSB3. The repetition
of REP MOVSB is either 50 or 100, which is determined by
secret via a constant-time selection.

We compile the gadget with SSLH and test it on the i7-
10710U, microcode 0xF0 running Ubuntu 20.04 with the
CPU governor set to performance. We train the branch by
executing the gadget twice with isPublic=1. Then we flush
adrs from the cache and execute the victim. We delay the
evaluation of the branch at Line 7 by flushing isPublic. Dur-
ing the misprediction, the repeat instruction is speculatively
executed while the memory access (Line 10) may or may not
be executed depending on the available hardware resources.
After the execution of the victim, we reload the adrs and
check if it is cached.
Results. We collect 100,000 samples with randomly gener-
ated secret (either 0 or 1). Our results show that when the
secret is 0, adrs is not speculatively accessed with a probabil-

3llc -mtriple=x86_64-linux-gnu -x86-use-fsrm-for-memcpy -mattr=+fsrm

ity of 99.93%. On the other hand, when the secret is 1, adrs
is speculatively accessed with a probability of 97.85%.
Discussion. This experiment confirms that SSLH does not
provide a full protection against Sprectre v1 attacks. Note
that SSLH fails to protect leakages from repeat instructions
because it does not consider variants of REP MOV instructions
as memory-related operations, thus does not harden those
instructions. We introduce our USLH solution in Section 6.2.

6 Ultimate Speculative Load Hardening

The attacks we presented in Section 5 demonstrate that—short
of preventing speculative execution with fences—currently
there are no software-based countermeasures that block all
forms of Spectre v1 attacks. The presented gadgets exploit-
ing variable-time arithmetic and REP instructions are some-
what specific, and are unlikely to be found in real software.
Nonetheless, the risk they present is twofold. First, the gad-
gets show that assumptions made in prior security proofs do
not hold in practice. For example, past works assume that
analyzing the case of maximum misspeculation results in a
worst-case leakage [41, 82]. However these ignore the impact
of instruction timing on the speculation window, as demon-
strated in Section 5.2.1. Second, the history of side-channel
attacks shows that in many cases there are non-obvious ex-
ploits to weaknesses. For example, both Bernstein [14] and
Osvik et al. [80] identify cache banks as a potential security
weakness, but the first practical attack that exploits them was
only published a decade later [126]. Hence, while our exam-
ples are artificial, it is impossible to preclude the presence of
gadgets that exploit similar effects in real-world software.

In this section we extend our implementation of SSLH to
also harden variable-time arithmetic; we call the resulting
variant ultimate SLH (USLH). We show that USLH protects
against all of the gadgets we present in Section 5. Moreover,
because USLH poisons all instructions that may conflict with
constant-time programming [15], we believe that USLH also
protects against future variants of Spectre v1. We first describe
how we implement hardening of variable-time arithmetic. We
then evaluate how USLH blocks leakage from our gadgets.
Last, we evaluate the performance impact of USLH.

6.1 USLH Implementation
USLH is basically SSLH with protection for variable-time
instructions. We now describe how we add this protection.
Hardening repeat instructions. Repeat instructions move
memory blocks from one memory address to another (i.e.,
for the repeat counter %rcx), and thus are not considered as
loading a variable from a memory. As executing repeat in-
structions may leak the number of times they execute, we also
poison %rcx.
Hardening floating-point instructions. For floating-point
instructions, we harden SSE2, vector and X87 floating-point



instructions. For vector and SSE2 instructions, we poison
all arguments. X87 instructions use an internal value stack
for operations. Because we cannot poison the values in the
internal stack, we insert an lfence speculation barrier in every
basic block that uses X87 floating-point instructions.

6.2 Testing USLH Security

Hardening branches. Branch-condition hardening is part
of our implementations of both SSLH and USLH. To demon-
strate the effectiveness of the defense against our control-flow
attack (Section 5.1), we compile the victim function with
USLH and repeat experiment. We run tests 20,000 times
and each time we take the average of 100 samples. The re-
sult, shown in Figure 2, demonstrates that the distributions of
execution times for the cases of a secret value 0 and 1 are in-
distinguishable. This is in stark contrast with the unprotected
case in Figure 1.
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Figure 2: Mitigating V1 SMoTher Attack

Hardening variable-time instructions. We test the two gad-
gets that exploit variable time instructions with USLH. USLH
poisons the arguments of the floating-point instructions (and
variable-time integer instructions such as DIV64). Therefore,
during misspeculation their timings are constant and do not
depend on the value of the secret.

Interestingly, for the false-dependency variant, we never
observe that the memory access executes, even when we re-
duce the length of the leak sequence. We suspect that due to
the false dependency, the dependencies of the memory ac-
cess are only satisfied when the branch condition is evaluated.
At this time the branch gets executed and squashes the tran-
sient execution of the memory access before the latter has the
opportunity to execute.

For the resource contention variant, we observe that when
the number of repetitions of the SQRTSD and MULSD instruc-
tions drops below 26, we always observe the memory access,
and above that threshold we never observe the memory access.
Either way, we cannot distinguish between secret values.
Protecting bit-by-bit leakage. We compile the gadget in
Listing 6 with USLH, which poisons operands of variable-
timing instructions. We run tests 10,000. Every time it identi-
fies that the secret byte is 0x0. Table 3 shows the comparison
among compiling the gadget without mitigation, with SSLH

Table 3: Result (in %) of identifying the secret byte 0xAB.

All
unset

All
correct

1 bit
wrong

2 bits
wrong

3 bits
wrong

4 bits
wrong

>4 bits
wrong

No Mitigation 0.80 82.22 10.47 6.60 0.49 0.09 0.05
Protected by SSLH 5.22 75.82 15.56 4.09 1.38 1.27 0.38
Protected by USLH 100.00 0.00 0.00 0.00 0.00 0.00 0.00

and with USLH. Even though SSLH reduces the attack suc-
cess rate, it does not prevent the leakage. USLH does protect
the leakage; the attack always fails with identifying the secret
to be all zero.
Hardening repeat instructions. Compiling the gadget in
Listing 7 with USLH, the %rcx register is poisoned as shown
in Listing 8. The string operation with repeat prefix are mov-
ing data from one memory address to the another address and
the operands of these instructions are both registers. There-
fore, string operations with repeat prefix are not under the
definition of load data from memory or store data to memory
by LLVM-SLH and SSLH. As a result, all variants of SLH
(excluding the USLH) treat repeat instructions as harmless.
With USLH, the register counter (%rcx) is poisoned. This
suffices to prevent the execution of repeat instructions and
younger instructions. Specifically, when the number of repeti-
tion is not available under speculative execution, the pipeline
is stalled and waits for the availability of the number of re-
peat. We repeat the experiment 100,000 times; adrs is never
accessed regardless of the number of repeats.

CMOVGEQ -1, %r9;update the predicate state
CMPQ 1, %rdx; constant time select
MOVL 50, %rcx
MOVL 100, %ecx
CMOVEQ %rax, %rcx
ORQ %r9, %rcx; poison the counter
REP;MOVSB (%rsi), %es:(%rdi)
MOVQ adrs, %rax

Listing 8: Highlighted instruction is introduced by USLH

6.3 Security Analysis
USLH prevents speculative leakage. More specifically, all
leakage that occurs during speculative execution only depends
on the program text, and not on secret values. As a conse-
quence, programs output by USLH satisfy relative constant-
time, an information flow policy stating that speculative execu-
tion does not leak more than sequential execution [6, 27, 41].

The proof of relative constant-time is established w.r.t.
a formal semantics. Our semantics introduces leakage for
variable-time arithmetic instructions, which was not consid-
ered in prior work [6, 11, 26]. Formally, the semantics is



described by a transition relation ⟨C,b⟩ o−−→
d

⟨C′,b′⟩. The re-

lation says that one step execution under adversarially con-
trolled directive d transitions from configuration ⟨C,b⟩ to
configuration ⟨C′,b′⟩, leading to observation o. The booleans
b and b′ denote if execution is misspeculating; ⊤ corresponds
to misspeculative execution. The directive d is chosen by the
attacker to drive execution of control-flow instructions (we
assume the attacker has control over control flow) and unsafe
memory instructions (we assume that the attacker has control
over addresses of unsafe accesses).

The main technical lemma states that for every C, C′, d
such that ⟨C,⊤⟩ o−−→

d
⟨C′,⊤⟩, the observation o only depends

on the program text, and thus does not leak any information
about C and C′. We provide a formal proof of our claim, in the
setting of a core language, in the full version of the paper.4

6.4 SLH Performance Overhead

In this section we report on our performance evaluation of
the different variants of SLH. For this evaluation we use the
SPEC2017 benchmark, compiled with clang and clang++ at
optimization level O3. All experiments were run on a machine
with an Intel i7-10710U CPU at microcode 0xE8 running
Ubuntu 20.04. We set the performance governor to perfor-
mance and we only test the performance of single-thread
execution. The summary of the results is displayed in Fig-
ure 3. More details can be found in the full version of this
paper.4

As a baseline we benchmark unprotected code and as an
alternative to SLH we also include code protected with the
lfence countermeasure. This countermeasure prevents spec-
ulative execution at each branch and thus systematically pre-
vents Spectre v1 attacks. It is thus a minimum requirement
for any other Spectre v1 countermeasure to achieve better
performance—we see that this is the case for all SLH variants,
and by quite a margin.

Aside from benchmarking the four variants of SLH dis-
cussed in the paper, i.e. LLVM-vSLH, LLVM-aSLH, SSLH,
and USLH, we also benchmark the cost of only computing
the misprediction predicate, but not using it to poison any
values (“Trace Only”). We run this additional benchmark to
obtain a better understanding of what causes most of the slow-
down in SLH: the tracing, which also requires one register,
or the poisoning. We see that both contribute significantly
to the slowdown, but to varying degrees in different bench-
marks. This makes sense, as tracing alone is expected to be
quite costly in branch-heavy code and in scenarios with high
register pressure.

We see that all SLH variants incur a significant overhead,
slowing down some of the benchmarks by a factor of three.
However the difference between the four variants is relatively

4Available at https://eprint.iacr.org/2022/715

small. Unsurprisingly, USLH incurs notable additional over-
head compared to SSLH only in the floating-point bench-
marks. Both SSLH and USLH have a somewhat increased
cost compared to the two implementations in LLVM, but this
cost is not dramatic in any of the benchmarks and it is close
to zero in some. The conclusion we draw from this is that
applications that can afford the slowdown incurred by SLH
are very likely to also tolerate the small additional cost of
USLH. This will give them protection not only against the
exploitation of some common Spectre v1 gadgets, but a sys-
tematic protection against all Spectre v1 attacks at a cheaper
price than using lfence.
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Figure 3: SPEC2017 Summary

7 Conclusion

We revisited speculative load hardening, the most promising
Spectre v1 software-only countermeasure. We analyzed the
differences between three different existing variants of SLH
from a performance and security point of view. We presented
a novel proof-of-concept attack exploiting non-constant-time
arithmetic instructions in speculatively executed code. This
novel attack is not prevented by any of the previously pro-
posed variants of SLH, including the “strong SLH”. The rea-
son is that the underlying model of “strong SLH” overlooks
that variable-time arithmetic may leak in speculative execu-
tion. We showed that SLH can be extended to also protect
against the novel attack and claimed that this variant of SLH
indeed protects against all Spectre v1 attacks—this claim is
motivated by the fact that all sources of leakage considered for
constant-time in the non-speculative domain are eliminated
in the speculative domain. This is proven in a formal model
capturing all these sources of leakage.
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