
Bilingual Problems: Studying the Security Risks Incurred by Native Extensions in
Scripting Languages

Cristian-Alexandru Staicu
CISPA Helmholtz Center
for Information Security

Sazzadur Rahaman
University of Arizona

Ágnes Kiss
CISPA Helmholtz Center
for Information Security

Michael Backes
CISPA Helmholtz Center
for Information Security

Abstract
Scripting languages are continuously gaining popularity

due to their ease of use and the flourishing software ecosys-
tems surrounding them. These languages offer crash and mem-
ory safety by design. Thus, developers do not need to un-
derstand and prevent low-level security issues like the ones
plaguing the C code. However, scripting languages often al-
low native extensions, a way for custom C/C++ code to be
invoked directly from the high-level language. While this fea-
ture promises several benefits, such as increased performance
or the reuse of legacy code, it can also break the language’s
guarantees, e.g., crash safety.

In this work, we first provide a comparative analysis of the
security risks of native extension APIs in three popular script-
ing languages. Additionally, we discuss a novel methodology
for studying the misuse of the native extension API. We then
perform an in-depth study of npm, an ecosystem that is most
exposed to threats introduced by native extensions. We show
that vulnerabilities in extensions can be exploited in their em-
bedding library by producing reads of uninitialized memory,
hard crashes, or memory leaks in 33 npm packages simply
by invoking their API with well-crafted inputs. Moreover, we
identify six open-source web applications in which a weak
adversary can deploy such exploits remotely. Finally, we were
assigned seven security advisories for the work presented in
this paper, most labeled as high severity.

1 Introduction

Originally, the primary use case for modern scripting lan-
guages [57] like Python, Ruby, or JavaScript was the de-
velopment of web applications. Recently, though, they be-
came tremendously popular, general-purpose programming
languages with powerful emerging use cases like TensorFlow
for machine learning in Python or Electron.js for portable
desktop applications in JavaScript. This development is sup-
ported by massive open-source ecosystems such as npm, PyPI
and RubyGems. There is a large body of work identifying a

plethora of security risks that affect these software reposito-
ries [6,24,27,30,66,76], which in turn, can impact real-world
websites [65]. However, prior work only considers security
risks present in the scripting code, thus, ignoring the important
cross-language interactions in these ecosystems.

Native extensions are a convenient way to allow low-level
functionality to be directly invoked from a scripting language.
Package managers like npm, pip or gem enable smooth usage
of such extensions by compiling at install time the extension’s
binary [3–5]. The binary is loaded on-demand at runtime in
the scripting code’s process, unlocking cross-language coop-
eration. In this way, developers can expose hardware capa-
bilities that were originally beyond the reach of the scripting
language. Native extensions also enable the reuse of mature,
legacy code written in low-level languages. Databases like
SQLite1 or cryptographic libraries like OpenSSL2 are often
exposed using native extensions. Finally, native extensions
aid the development of performance-critical code in low-level
languages. For instance, a non-negligible part of TensorFlow
is written in C++ and exposed to Python through bindings.

One can think of native extensions as the democratization
of the binding layer, which glues the language engines with
their surrounding environment. Previous work [19, 29] dis-
cusses the security risks incurred by this layer and provides
evidence that vulnerabilities are prevalent even in binding
code of popular runtimes like Node.js. This type of code is
usually developed by highly-skilled developers, whereas na-
tive extensions can be written by anyone. As one may expect,
writing reliable native extensions is difficult since subtle bugs
may arise at the language boundary. The main culprit for this
are the fundamental differences in representing data in the
two languages, e.g., weak dynamic typing vs. strong static
typing. Moreover, a mistake in an extension may propagate
in the ecosystem, affecting several libraries that depend on it
or even compromising production-ready applications.

Let us consider the example in Figure 1 to illustrate
how bugs may arise when using native extensions. The

1https://www.sqlite.org
2https://www.openssl.org/
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(a) JavaScript client of the package nativepad

1 let nlib = require(’nativepad’);
2 nlib(’foo’); //returns "foopad"
3 nlib(’foo\0bar’); //returns "foo" followed by

three uninitialized bytes
4 nlib(true); //returns 4 uninitialized bytes
5 nlib({toString: 42}); //hard crash (segfault)

(b) JavaScript code for the package nativepad

1 let addon=require(’bindings’)(’addon.node’);
2 module.exports = (str) => {
3 if (!str)
4 throw ’Invalid string’;
5 return addon.Pad(str);
6 }

(c) C++ code for the native extension

1napi_value Pad(napi_env env, napi_callback_info info) {
2napi_status status;
3size_t argc = 1, strSize;
4napi_value args[1], result;
5status = napi_get_cb_info(env, info, &argc, args, NULL

, NULL);
6assert(status == napi_ok);
7napi_get_value_string_utf8(env, args[0], NULL, NULL, &

strSize);
8strSize = strSize + 4;
9char myStr[strSize];
10napi_get_value_string_utf8(env, args[0], myStr,

strSize, NULL);
11strcat(myStr, "pad");
12napi_create_string_utf8(env,myStr,strSize ,&result);
13return result;
14}

Figure 1: Example of a hypothetical npm package called nativepad (b), its native extension (c) and a client invoking it (a). The
dashed arrows show the data flows between the three components.

nativepad package uses a native extension to pad a given
string to the right with the literal "pad". Its native exten-
sion in Figure 1c employs four calls to the extension API:
one at line 5 to retrieve the arguments, one at line 7 to get
the length of the first argument, one at line 10 for convert-
ing the JavaScript string into a C one, and finally one call
at line 12 to convert the C string back into a JavaScript one.
Additionally, the extension allocates the memory to store the
padded string and performs the string concatenation using
strcat. The JavaScript code of the nativepad package in
Figure 1b is trivial, performing a simple null check on the
input and invoking the Pad function of the native extension.
Now, let us consider a client in Figure 1a that invokes the ex-
ported function with different arguments. Note that the client
is oblivious to the use of native extensions, i.e., the require
statement in line 1 would be exactly the same for loading a
“pure” JavaScript package. When invoking nativepad with
a well-behaved string, the padding is performed as expected.
However, when the null terminator (\0) is present in the string,
the native extension exposes uninitialized memory. Though it
leads to string termination in C, the JavaScript runtime treats
this character as any other character, i.e., counts it towards
the string length. Even more surprising behavior emerges,
e.g., a hard crash of the Node.js process, if unexpected values
(e.g., Booleans or certain object literals) are provided. Such
outcomes may surprise users, potentially leading to security
incidents, e.g., denial of service.

While the considered example does not follow the best
practices of the native extension API, e.g., checking the ar-
gument type or the return value, we believe that the runtime
should be robust enough to protect against such a misuse. We
notice that there is a large design space for a native extension
API and that different design decisions make programming

with the obtained API more dangerous than others. To explore
this design space, we study the native extension API in three
popular scripting languages and show that misuse is possible
in each of them. However, there are significant differences
across languages. The Node.js API is by far the most permis-
sive, allowing several types of misuse, such as calling a native
extension with insufficient arguments or integer overflow for
numeric values exchanged across the language boundary.

To study the security implications of using native exten-
sions, our methodology first identifies misuse in open-source
libraries. To that end, we perform both intra-procedural and
cross-language static analysis. We propose a simple yet effec-
tive way of constructing cross-language graphs that combines
the two functions closest to the language boundary. We then
perform demand-driven data-flow analysis on open-source
web applications to study the impact of the library-level prob-
lems at the application level.

In our evaluation, we first perform an empirical study of
the prevalence of misuse in 6,432 npm packages with na-
tive extensions. We show that even popular packages are
prone to misuse, and we provide evidence that an attacker can
cause real harm to web applications by leveraging the bugs
introduced by API misuse. Concretely, we provide proof-of-
concept exploits for 33 npm packages, showing that attackers
can break the language guarantees by manipulating the in-
puts to these packages (strong attacker model). Moreover,
we identify six open-source web applications in which hard
crashes can be caused remotely (weak attacker model). We
were assigned seven CVEs for our findings, most labeled as
high severity.

In summary, we provide the following novel contributions:
• We are the first to thoroughly analyze the security risks of

native extensions in scripting languages. Several design



decisions enable vulnerabilities and burden the developer
with the task of using the API in a secure way.
• We present a novel methodology that enables the study of

vulnerabilities caused by misuse of the native extension
API. We show how cross-language static analysis can be
used for automatic vulnerability detection.
• We provide evidence that vulnerabilities caused by native

extensions are present in open-source software packages
and that they also affect web applications using them.

2 Threat Model

We assume that attackers have neither control over the na-
tive extension’s code nor the privilege to execute arbitrary
scripting language code. Developers of extensions are not
malicious, but they might inadvertently introduce vulnerabili-
ties in their code. We consider a native extension vulnerable
if it can be used in a way that breaks the guarantees of the
scripting language. For example, if it can crash the process,
read/write to unintended locations, or execute arbitrary code.
Note that native extensions may also be used to hide mali-
cious payloads in supply chain [30] or protestware [2] attacks.
Our goal is to demonstrate the dangers of native extension
vulnerabilities, even if the developers are honest. Therefore,
detecting supply chain abuse attacks are out of scope for this
work.

We propose two attacker models. First, for analyzing pack-
ages with native extensions in isolation, we assume a strong
attacker model, in which attackers are able to control any
argument passed to a library with native extensions, as well
as their number. However, only objects that can be serial-
ized as JSON are allowed as arguments, and no modifica-
tions of the builtins are permitted. For example, our setting
does not allow attacker-defined functions or modifications of
Object.prototype. Thus, even this strong attacker model
is much weaker than the one used in prior work on JavaScript
bindings [19, 29], where the authors assumed that attackers
could inject arbitrary code in the engine. Ultimately, we aim
to identify vulnerabilities within native extensions that can be
triggered remotely under a weak attacker model, where we
assume a web attacker that can only provide inputs to a web
application through its HTTP interface. These inputs may
propagate to a native extension and trigger a vulnerability in
its implementation.

Package managers for scripting languages exhibit a signifi-
cant amplification effect for vulnerabilities [32, 54, 76]. We
note that this effect also increases the significance of native
extension vulnerabilities. Since package managers do not
have any privilege restriction in place or a transparency mech-
anism to warn about the usage of security-sensitive APIs, they
may transitively depend on libraries with native extensions
without being aware of this fact. Attackers, thus, can exploit
vulnerabilities caused by native extensions in client packages.

3 Misuse in Different Languages

To shed light on the pitfalls of existing native extension APIs,
we build several simple extensions in three different scripting
languages. These extensions are deliberately vulnerable, at-
tempting to stress the corner cases of the API, e.g., by omitting
type checks on values coming from the scripting language.
We then attempt to break the safety of the scripting language
by providing well-crafted values to the vulnerable extension’s
methods, i.e., we assume a strong attacker model in this sec-
tion. Finally, we observe whether the API actively tries to
prevent the exploitation and if so, in which way. For creat-
ing the list of misuses, we draw inspiration from the work of
Brown et al. [19] for JavaScript bindings. However, we also
add several misuses specific to native extensions, e.g., read-
write local variables. For the study, we use Node.js 15.4.0,
Python 3.8.5, and Ruby 2.7.0p0. For Node.js we consider two
different native extension APIs, i.e., Nan3 and N-API4, due
to their prevalence in open-source projects.

In Table 1, we provide an overview of our findings. We
mark each misuse type with a unique identifier (Mi) and will
use these throughout the paper referring to them. One can see
that there is a lot of variation among the considered languages,
i.e., while some prevent most of the misuses by construction,
others put the burden of using the API in a safe way on the
developer. Nevertheless, none of the languages prevents all
misuse. For example, a crash in the native extension com-
promises the availability of the application relying on it in
all considered APIs. Below, we discuss in detail each misuse
class and how they are handled by different APIs.

Error containment. As mentioned earlier, scripting lan-
guages follow a no-crash philosophy. For example, in the case
of division by zero, Ruby and Python produce an exception
that can be gracefully handled in a try-catch block, while
JavaScript simply outputs the Infinity value. Moreover, in
Node.js, developers often rely on a process-level exception
handler that prevents any unexpected exception from crashing
the application. We believe that this crash avoidance mental-
ity has to do with the main use case of scripting languages,
i.e., writing web applications, for which availability is one
of the most important requirements. Native extensions can
violate this no-crash philosophy in two ways: by producing
low-level crashes (M2) that terminate the whole process or by
leaking low-level exceptions (M1) that cannot be handled by
a try-catch block in the scripting language. Let us consider
the int64-napi npm package that wraps the int64 C type.
It provides a divide method that can be invoked as follows:

const int64 = require(’int64-napi’);
const Int64 = int64.Int64;
try {
int64.divide(10, 0); // hard crash of Node.js
} catch(e) { } // never invoked

3https://www.npmjs.com/package/nan
4https://nodejs.org/api/n-api.html
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Table 1: Different misuses of the native extension API and their prevalence in the considered languages. means that the API
allows the misuse, that the API partially allows it, and that the API prevents the misuse. We estimate the severity based on
the impact a given misuse might have on the security, privacy, or availability of a web application.

Type Id Misuse Node.js-N-API Node.js-Nan Python Ruby Severity

E
rr

or
s M1 Not catching C++ exceptions * N/a Low

M2 Not handling runtime errors in C/C++ Medium

A
rg

um
en

ts M3 Passing arguments with a wrong type High
M4 Passing wrong number of arguments High
M5 Not accounting for different semantics of \0 High
M6 Passing arguments that overflow numeric types High

R
et

. M7 Missing return statement Low
M8 Declaring interface methods that return void Low

M
em

. M9 Returning uninitialized memory values Medium
M10 Mismanagement of cross-language pointers Low

H
ig

h-
le

ve
l M11 Producing unexpected side-effects in the runtime High

M12 Blocking the runtime with slow cross-language calls Medium

L
ow

-l
ev

el

M13 Reading outside of an allocated buffer High
M14 Using a pointer after it was freed High
M15 Freeing a pointer twice High
M16 Failing to deallocate unused memory Low
M17 Interpreting user input as format string High

* Python’s extension support is mainly intended to be used with C. Nonetheless, we used the distutils builtin package to compile a C++ extension and
simulate an unhandled C++ exception.

This code snippet produces a hard crash that cannot be han-
dled in the corresponding try-catch. Such an outcome may
surprise users that consider a catch clause as a universal safety
net. Similarly, if there are C++ exceptions that are not prop-
erly handled by the native extension, there is no way for the
scripting language to catch them. We saw this behavior in all
the languages that support C++ native extensions.

Argument translation. Since the analyzed scripting lan-
guages are weakly-, dynamically-typed, while C/C++ is
strongly-, statically-typed, the native extension API has to
assist the user in translating between these two type systems.
In Ruby, one needs to specify the number of arguments at
extension declaration time. In contrast, in Python, the API for
retrieving the arguments mandates that the user specifies the
number of arguments (M4) and their type (M3). Any violation
of these specifications would result in aborting the current
method invocation. By contrast, in Node.js, both considered
APIs specify that the users should voluntarily check the argu-
ments’ types and their number and decide when to proceed.
As seen in Figure 1, this may lead to serious problems such as
processing strings with negative length or, even worse, user-
provided values considered as object pointers. We direct the
reader to [19] for an extensive discussion about the impli-
cations of breaking type safety in V8-based runtimes. We
further stress the fundamental differences in the way errors
are signaled in the different scripting languages. Whenever a

mismatch is detected between the requested type for a value
and its dynamic type, Python and Ruby stop immediately
with an exception. One of the two considered native extension
APIs for Node.js, N-API, returns a non-empty status code,
while the other, Nan, does not detect the mismatch. Even
when the types are correctly aligned, problems are still caused
by the different ways a given type is represented in the two
languages. While the null terminator \0 can appear in valid
strings of the considered scripting languages, in C, it marks
the end of a string. Hence, if such characters are allowed to
freely cross the language boundary (M5), as is the case in
Node.js, they may allow attackers to strip important informa-
tion from a value or to cause confusion about the string length
as illustrated in Figure 1. Ruby and Python refuse to continue
with the invocation when such characters are detected. A sim-
ilar issue appears when a numeric value overflows (M6) due
to a mismatch in the types’ capacity. This case is prevented
again by Ruby and Python but allowed in Node.js. An integer
overflow may invalidate important checks performed in the
scripting language, e.g., val>0, since the invariant may not
hold anymore for the translated value.

Missing return. To our surprise, there are also subtle bugs
involving the return value of a function. A missing return
statement (M7) causes a hard crash when reading the return
value in Python, Ruby, and N-API. This may surprise devel-
opers who expose the native extension directly to their clients



and never test for such corner cases. Returning null values
from the extension does not cause problems in the analyzed
languages, but declaring the return value as void (M8) causes
a hard crash on method invocation in Python.

Memory issues. Similarly to the example in Figure 1, na-
tive extensions may expose non-initialized memory areas to
the scripting language (M9). Such memory locations may
contain sensitive user information available in the process. In
N-API and Python, one can expose both uninitialized string
values and buffers. On the contrary, Ruby and Nan seem
to initialize such memory areas with null bytes proactively.
Memory issues may also appear due to the garbage collector
not freeing pointers to interface objects exchanged across
the language boundary (M10). For primitives, all considered
APIs prevent this by default. Python, however, makes it easy
to overwrite this behavior by claiming ownership of certain
pointers. While this is not a problem by itself, carelessly us-
ing this feature may compromise the availability of the entire
application. Another interesting case is classes being exposed
from C/C++ to the scripting language. When using Node.js
(N-API), the garbage collector does not free references that
are declared using Napi::Persistent API. As discussed
further in Section 5.2, we identify several real-world libraries
that are misusing this API, causing memory leaks.

High-level issues. Most of the considered APIs expose
only opaque pointers to the C/C++ world. That is, the native
extensions cannot directly access the exact memory location
of an object, nor can they modify it without the aid of the API.
In Ruby, however, one can obtain a raw pointer that allows the
modification not only of the argument passed to the extension,
but also of other variables defined in the same memory region
(M11). In this way, a problematic extension may access or
even alter encapsulated values. Considering that many de-
velopers use native extensions for heavy computation, e.g.,
cryptographic operations, it is somewhat surprising that the
default behavior of all the considered APIs is to invoke the
extension synchronously (M12). That is, the main thread of
the scripting language is blocked until the native extension
computes. This may lead to serious availability issues if an at-
tacker can control the amount of work the extension performs,
especially in Node.js.

Low-level issues. Finally, we consider a handful of low-
level vulnerabilities in our study to see if different APIs hinder
their exploitation or not. To our dismay, in N-API, we could
exploit a textbook buffer overflow (M13) to overwrite local
variables defined in the native extension. We also note that use-
after-free (M14) is allowed in most of the languages, but Ruby
seems to initialize the freed memory areas with null bytes (we
observe a similar behavior in case of uninitialized memory
(M9)). A double free (M15) always triggers a core dump, and
a format string vulnerability (M17) is usually prevented by the
compiler. However, in Node.js, only a warning is produced,
while the compilation is aborted in other languages. Finally,
none of the APIs make any effort to prevent or detect memory

leaks in the extension code itself (M16).
Summary. As an artifact of the presented study, we provide

a set of benchmarks as supplementary material5, exemplifying
each misuse in a separate native extension for all considered
scripting languages. We believe that this suite can be useful
both for users trying to understand the pitfalls of each API
and for language designers to inform their design decisions.

Considering the presented findings, we conclude that there
is a lot of variation in implementing native extensions in vari-
ous languages. Some APIs put a lot of effort into preventing
users from misusing them, while others are more permissive.
Node.js, in particular, seems to be very liberal in its API’s
design, outsourcing most of the safety checks to the devel-
opers. We filed a security issue summarizing our findings to
the Node.js developers, who appreciated our report as infor-
mative. They argue that the identified issues are not security
problems of the API but of the packages misusing it. As we
show in Section 5.2, this relaxed design decision is the main
enabler for several security issues in popular npm packages.
The Node.js maintainers promised, however, to fix some of
the identified issues, e.g., the behavior responsible for M6.
While the misuses presented in this section aim to emulate re-
alistic user interactions, the reader may wonder whether such
cases appear in practice and, if so, if they affect real-world
applications. We now proceed to designing a methodology
for studying this aspect.

4 Methodology

While native extensions can be directly integrated into (web)
applications, we believe it is more common for these exten-
sions to be first encapsulated in a package. Hence, we propose
two levels of static analysis to detect native API misuse vul-
nerabilities. We depict our analysis pipeline for Node.js and
npm in Figure 2, but we believe it can be easily adapted for
other scripting languages and their ecosystems. First, we run
a package-level analysis to detect vulnerable npm packages
due to insecure native extensions under the strong attacker
model. We propose running both simple, intra-procedural
analyses, but also cross-language ones. Specifically, we cre-
ate a common representation for both C/C++ and JavaScript
code present at the language boundary to detect problematic
native extensions within a package. After finding a vulnerable
package, we use inter-procedural backward data-flow analysis
to study its impact on applications that use the package under
the weak attacker model assumption.

4.1 Package analysis
Since most native extensions we encountered are relatively
small, and many misuses can be formulated as flow prob-
lems, we propose specifying the misuse detection as a graph

5https://www.staicu.org/native-extension-risks
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Figure 2: Overview of our methodology for identifying native extension vulnerabilities and for studying their impact.

traversal problem on the data-flow graph. However, as we
show in Section 5, this may lead to a significant number of
false positives because the analysis does not have information
about how data is handled in the upper layer, i.e., in the script-
ing language. Hence we also propose unifying the data-flow
graphs of the two languages.

Intra-procedural analysis. The first step of our analysis
is to create a data-flow graph of the target functions. Our defi-
nition for such a graph is very permissive: nodes N represent
lines of the program, and edges E depict explicit information
flows. For instance, the green part of Figure 3 shows the data-
flow graph for the example in Figure 1c. The nodes represent
statements, and the edges represent data flows between them.
We argue that the exact representations may vary as long as
the semantics of the edges are preserved.

We then associate special meaning to particular nodes in
the graph. n0 is the root node of the graph where the traversal
starts from, corresponding to the method definition statement
in the source code. Thus, it has outer edges towards all the
nodes in which parameters are referenced. S is the list of sink
nodes that the analysis is interested in, while S is the list of
sanitizers that invalidate a given flow to the sink.

Our analysis reports a security vulnerability if and only if:

• ∃ s ∈ S such that n0 s,
• @ s ∈ S such that n0 s,

where a b represent a path from a to b on the graph.
We note that the presented analysis is not argument-sensitive,
if any data flow to the sanitizer is detected, the flow to the
sink is considered safe. This pragmatic design decision can
lead to many false negatives in practice. Nevertheless, in this
work, we do not aim for a complete solution to the described
problem but to show the feasibility of an automated detection
technique in this domain.

Cross-language analysis. We observe that many relevant
API calls, e.g., sanitizers, happen in the two functions that are
closest to the language boundary: one in JavaScript and one
in C/C++. For identifying such pairs, we search for calls to
the native extension API that map low-level functions to their
high-level names. All the considered APIs in Section 3 require
such calls during the initialization of a native extension. Let
us assume we want to expose the Foo function from C/C++

to the scripting language, with the name "foo". The syntax
used by the considered APIs for binding the two entities is:

JS2

JS3

str

JS5

str

C1

 Cross-language call

C11

C5

info

C7

 args[0]

C10

args[0]

C6

 status

C8

 strSize strSize

 myStr

C12

 myStr

C13

 result

Figure 3: A cross-language data-flow graph for our example
shown in Figure 1. We depict the JavaScript nodes with blue
and the C/C++ ones with green. Numbers denote line num-
bers in Figure 1. With red we mark a potential location for
sanitization in the JavaScript front-end.

1 // Node.js-Nan
2 Set(module, New<v8::String >("foo"),
3 New<v8::FunctionTemplate >(Foo));
4 // Node.js-N-API
5 napi_define_properties(...,{"foo",...,Foo,...}});
6 // Ruby
7 rb_define_method(module,"foo",Foo,1);
8 // Python
9 PyModule_Create({...,{"foo",(PyCFunction)Foo

},...});

Once we identify this mapping, we merge the data-flow graphs
of the two functions by adding an edge from the node in the
JavaScript graph corresponding to the native extension call to
the definition node of the invoked C/C++ function. Finally,
we perform the same analysis described above on the obtained
cross-language graph.

Let us consider Figure 3 that shows the cross-language data-
flow graph corresponding to the native extension in Figure 1.
We assume that we are interested in detecting unchecked
type conversions. By applying our analysis starting from
JS 2, we can detect a path to C7 that corresponds to a call
to napi_get_value_string_utf8(), i.e., the sink. Since
there is no statement either in JavaScript nor in C/C++ that
checks that the type of the argument is string (sanitizer), the
analysis produces a warning for this case. Let us assume that



in line 3 of Figure 1b there is a type check instead of a null
check. Our cross-language analysis is path-insensitive, i.e., if
we detect a flow from the source to a sanitizer, we consider
the usage safe. Therefore, the analysis would detect a flow
to the sanitizer marked with a dashed red circle, i.e., in JS 3,
and would not produce a warning.

Implementation details. For extracting the data-flow
graphs, we use Joern [75] for C/C++ files and Google Clo-
sure Compiler6 for JavaScript. We instruct Joern to output the
code property graph as a dot7 file and further pre-process it by
only preserving the data-flow edges. We also add edges from
the function definition node, i.e., the first node, to the nodes
accessing the info[*] and args[*] objects, which are the
arguments coming from JavaScript. Joern fails to detect these
edges because the arguments do not appear verbatim in the
function declaration. For the Google Closure Compiler, on
the contrary, we build our custom compiler pass to extract
def-use pairs from its internal representation and output them
in a dot file. We run both Joern and the Closure-based analysis
with a budget of 15 minutes per analyzed package.

To find the two functions at the language boundary, we first
perform a simple static analysis of the JavaScript code to de-
tect which of the exposed C/C++ functions are called directly
and in which JavaScript function. We then proceed by resolv-
ing these calls by analyzing the C/C++ code and identifying
API calls to functions such as napi_define_properties
described above. Once we identify the two functions, we re-
trieve their corresponding dot representations and merge them
as described earlier. We then analyze the obtained graph and
output security violations. Thereafter, we manually verify
each security violation by attempting to exploit the misuse
through the package’s API. In case of success, we proceed
to study the vulnerability’s impact on real-world web appli-
cations. Additionally, whenever we identify an exploitable
violation, we proceed to manually look for other misuses in
that package, under the assumption that misuses tend to occur
together.

Security Modelling. Our current prototype is targeted to-
wards studying an important subset of the misuses identified
in Table 1: missing type checks (M3, M4). For M3, we specify
the list of sinks based on the APIs we studied in Section 3
and the list of sanitizers based on idiomatic type checks in
the two languages, together with the APIs provided by N-API
and Nan for type checking. We provide the complete list of
sinks and sanitizers in Appendix A. For M4, we additionally
consider checks on number of arguments as sanitizers. The
supplementary manual analysis step described above allows
us to identify misuses that go beyond (M3, M4) once an initial
missing type check is identified in a given package.

6https://developers.google.com/closure/compiler
7https://en.wikipedia.org/wiki/DOT_(graph_description_

language)

4.2 Application analysis

The existence of native extension vulnerabilities in npm pack-
ages motivated us to investigate their impact on Node.js web
applications. Specifically, after manually confirming the vul-
nerabilities found in Section 4.1, we study their exploitability
in the web application context. We formulate the detection of
web applications using vulnerable packages as a flow problem,
which can be automatically detected. To make our analysis
scalable, we chose to use static analysis over dynamic anal-
ysis. This is because dynamic analysis requires running an
application to monitor its runtime behavior [11, 29, 62]. Man-
ually setting up and running a diverse set of Node.js web
applications with their heterogeneous software and library
dependencies are infeasible.

Therefore, we build a new demand-driven, def-use-based,
static data-flow analysis framework for JavaScript, named
FlowJS, for our needs. Finally, we use FlowJS on Node.js
applications to detect exploitable uses of insecure native ex-
tensions. It is worth noting that demand-driven data-flow anal-
ysis has already been proven to effectively detect various
kinds of API misuse in other languages [17, 35, 61, 64]. In
this section, we discuss different components of our FlowJS
framework. Note that FlowJS guarantees neither soundness
(i.e., absence of bugs) nor completeness (i.e., absence of false
alarms). However, like other practical static analysis tools, it
favors completeness and efficiency over soundness. This de-
sign choice is acceptable for our use case since our goal is to
run FlowJS scalably on a large number of web applications.

Rule specification. Our analysis takes rule specifications
as input, which are manually created for a given vulnerable
native extension API. A rule specification contains the API of
interest and a callback function to check its misuses. The API
definition consists of the function name and the parameter of
interest. For example, to detect unsanitized inputs from the
network to the function run(query, data) of the sqlite3
package, one might specify the rule as follows.

IsMisuse
po : run(_, data), P : {pi}, s.t. pi po,∀i ∈ [1, |P|]

if req or req.body ε P then true else false
Here, IsMisuse is the callback function that takes P as

input and outputs true if misuse is found and false otherwise.
po is the API definition, and P is the set of all unsanitized
influences on po. req is the object containing the request data
to the server. represents the direct influence on po. Our
demand-driven analysis starts from the API invocation to find
all program entities that influence it.
Intra-procedural backward data-flow analysis. An analy-
sis to find the data flows to a given program point (invocations
of the defined APIs) is known as backward data-flow analysis.
We build our intra-procedural backward data-flow analysis on
top of Google Closure Compiler’s internal data-flow analysis
framework. Closure’s data-flow analysis framework provides
an implementation of the worklist algorithm [58, 61]. To cal-
culate data flows at a given program point, we implemented a

https://developers.google.com/closure/compiler
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)


flow-insensitive def-use analysis by using the Abstract Syntax
Tree (AST) representation of the code provided by the Clo-
sure Compiler. Definition (in short, def ) of a variable x is an
instruction that writes to x. Use of a variable y is an instruction
that reads y. An analysis that utilizes the def-use relationship
of variables is known as def-use analysis. Our def-use analysis
collects direct influences and avoids any orthogonal function
invocations. This is because we use FlowJS to find raw in-
puts from the network or file system (Section 5.3), where
processing is typically performed with orthogonal function
calls.
Call-graph generation. We implement our call-graph gener-
ator on top of Google Closure’s AST traversal algorithm. We
traverse the AST to find function definition and invocation
nodes and collect all the caller-callee relationships within a
JS file. We represent anonymous function definitions with
their line number and the starting position. For this prototype
implementation, we do not handle function aliasing.
Inter-procedural backward data-flow analysis. Our anal-
ysis starts by finding all the call sites of the provided API
invocations. It then runs intra-procedural backward data-flow
analysis on all the caller functions using the given call sites.
We run the process recursively by following the caller-callee
chain upward. Then, we stitch all the intra-procedural data-
flow summaries to form inter-procedural data-flow results.
Finally, FlowJS invokes the rule-specific callback functions
on these results to find misuses.

5 Evaluation

To study the security impact of native extension misuse and
the feasibility of its automatic detection, we first present an
empirical study of missing type checks (M3, M4) in npm
packages (Section 5.1). We then identify multiple zero-day
vulnerabilities in real-world packages and report them to their
maintainers (Section 5.2). Finally, we show that vulnerabili-
ties in libraries can be exploited remotely in web applications
(Section 5.3).

5.1 Missing type checks in npm

As discussed in Section 4.1, we study the feasibility of au-
tomatic misuse detection by focusing on an important class
of misuses: missing type checks (M3, M4). This allows us
to draw relevant conclusions about our hypothesis without
investing tremendous engineering effort into modeling the
APIs corresponding to all the misuses in Table 1.

Setup. To identify packages likely to contain native ex-
tensions, we analyze the entire npm graph available on 9th

of February 2021. We consider all the packages that di-
rectly depend on five popular helper packages that are widely
used for developing native extensions: bindings, node-gyp,
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Figure 4: Cumulative distribution function (CDF) for the per-
formance of data flow graph extraction, for the two languages.
For any number of seconds between 0 and 900, we depict the
ratio of the packages that have finished (or timed out) by then.

prebuild-install, node-addon-api and nan. While this
approach may have some false negatives, it is a cost-effective
way to identify packages of interest without the need to down-
load and analyze all the 1.5 million packages on npm and
instead, allocate more resources for the in-depth study. In
total, we download 7,605 npm packages that comply with the
aforementioned requirement. Of these, we identify 1,173 false
positives that do not contain any C/C++ code. After exclud-
ing these packages, we are left with 6,432 packages that we
further use in our study. We believe that this is a large enough
sample for drawing conclusions about how native extension
APIs are used in Node.js. For each package, we download
and analyze its latest version at the time of our study.

In Figure 4, we show the time used by our prototype to
extract the JavaScript and the C/C++ graphs. We run all our
experiments on a server with 64 AMD EPYC 7H12 cores,
2TB of memory, and running Debian 11. For 75% and 93%
of the packages, the analysis finishes in less than 10 seconds
for native and JavaScript parts, respectively. This shows that
the proposed approach scales well and packages with native
extensions tend to have more complex C/C++ code than
JavaScript. For 69 packages, the graph extraction times out
while analyzing the C/C++ part, while for 34 packages it does
so for the JavaScript part. Since this represents less than 0.5%
of the considered packages, we deem it is a minor shortcoming
of our current prototype, and not a fundamental limitation of
the proposed methodology.

To investigate the effect of missing type checks (M3), we
first search in all the C++ files for calls to type conversion
APIs. We note that there are multiple ways in which argu-
ments coming from JavaScript can be converted to a given
type, e.g., *.As<Type>, *.To<Type>, and not all of these
APIs react in the same way to misuse, but they all proceed
with an unsafe value. In Figure 5, we depict the total number
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Figure 5: Number of packages explicitly converting values to
various C/C++ types.

of packages that explicitly convert values to a given type. Cast-
ing to object, number, or string types are the most prevalent
conversions, performed by 77% of the packages. The rela-
tively low number of functions (16.3%) shows that at most
one in three packages perform non-blocking, asynchronous
operations (M12), as these operations require a function object
as an argument to be invoked upon completion.

We then perform intra-procedural analysis on the C/C++

native extensions, namely on the output .dot graphs of Joern,
for detecting missing type checks. In total, we identify 2,802
packages with type conversions, of which 1,669 have a flow
to the conversion API. Of these, 939 were type-checked in
the native extension code, and 730 were not.

To evaluate our tool’s effectiveness at finding flows to rel-
evant APIs, we perform a controlled experiment with single
C++ functions, all containing a flow to the target APIs. We
collect a set of 25 functions from real-world packages, aiming
for a diverse set of code constructs, e.g., macros, different
APIs, intermediary variables, or chained calls. We then run
our tool on these benchmarks and detect a flow in 21 of them
(84% recall). One failure was due to Joern’s imprecise data
flow graph that failed to capture an important data flow step,
one due to a missing sink, and two due to our analysis’ in-
ability to handle type checks or sinks present in macros or
functions. We provide the set of microbenchmarks in the sup-
plementary material to assist replication. We also verify all
the produced flows and find a single false positive caused by a
lack of path sensitivity (95% precision). We conclude that our
prototype can handle a wide range of code constructs present
in real-world code, producing a manageable amount of both
false positives and negatives. We next proceed to identify
zero-day vulnerabilities.

To this end, we concentrate on three APIs that produce hard
crashes on misuse. Since we want to validate each finding
manually, it is easier to judge the presence of a crash than the
success of other types of payloads, e.g., the effect of integer
overflow. We note that most work in the fuzzing domain
uses similar testing oracles. In Figure 6, we show the total
number of npm packages that contain detected data flows
to (i) *.ToLocalChecked(), which is a method on the V8’s
Maybe type that concretizes a given value, (ii) APIs for casting
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Figure 6: Packages with flows to type conversion APIs. The
first bar represents unsanitized flows while the second one
depicts sanitized flows. We further split unsanitized flows in
different categories based on our manual inspection.

to Buffer, and (iii) APIs for casting to function. We depict
both sanitized (grey bar on the right) and unsanitized flows
(colorful bar on the left) and further categorize unsanitized
flows based on their exploitability after manual verification.

During our manual analysis, we first verify if there is a
JavaScript check that protects the reported vulnerable end-
point (“type check in JavaScript” in Figure 6). We then verify
if, indeed, there is an unsanitized flow in the C/C++ part,
i.e., that there are no method calls that perform sanitization
that was missed by our intra-procedural analysis (“false pos-
itives”). We then proceed with the installation of the given
package on our machine, which turned out to be a very chal-
lenging task. We were unable to install the majority of the
reported packages (“unable to verify”) due to several rea-
sons: legacy code not running in our considered Node.js run-
times, missing hardware, different operating system, miss-
ing installed libraries. To maximize the number of packages
that we can install, we attempt installing with five different
Node.js versions: 15.4.0, 14.15.0, 12.22.1, 8.17.0, 0.12.18.
For the packages that we could install, we attempt to write an
exploit that produces a hard crash (“exploited”). If we fail to
do so, we reanalyze the code and assign it to one of the other
categories mentioned earlier.

Figure 6 shows first of all that 63% of the packages with a
flow to type conversion APIs, also type check the arguments.
Out of these, 82% do so in C/C++, showing that checking
often occurs in the proximity of the API usage. These find-
ings are good news since they show that most developers
are aware of this best practice of the API. We successfully
exploit 38 flagged packages, showing the feasibility of our
automated approach. We identify a total of 22 clear false
positives, all of them caused by type checks placed in differ-



Table 2: The most important npm packages for which we
identified a zero-day vulnerability. Vulnerabilities M2 and M9
were found through manual inspection of flagged packages.

Package Name #Downloads9 Misuse Remote
Exploitability Status

bignum 5,091 M3 Yes CVE-2022-25324
ced 1,765 M3 No CVE-2021-39131

libxmljs 28,629 M3 Yes CVE-2022-21144
sqlite3 452,737 M3,M9 Yes CVE-2022-21227

pg-native 92,436 M3 Yes CVE-2022-25852
utf-8-validate 917,251 M3,M4 No Reported

@discordjs/opus 63,007 M2,M3,M9 Yes CVE-2022-25345
fast-string-search 25 M3 Yes CVE-2022-22138

time 1,701 M3 Yes Reported
bigint-buffer 159,067 M3 No Reported

ent functions / macros. This implies a false positive rate of
6%, in line with our controlled experiment. It also suggests
that our lightweight analysis design (path-insensitive, intra-
procedural) is adequate for the problem at hand. However,
these results should be taken with a grain of salt since, for the
majority of the reports, we could not verify their exploitabil-
ity empirically, and thus, we rely on manual code analysis to
judge whether the report is a false positive or not.

The main benefit of performing cross-language analysis, as
described in Section 4.1, is to automate the first part of our
manual process: the analysis should assign all the packages
assigned to “type check in JavaScript” in Figure 6 (depicted
in blue) to the grey bar. Another more subtle benefit is the
improvement in user experience for the analyst. We often
found ourselves switching between the C/C++ file and the
JavaScript part of a package during manual analysis. A cross-
language visual representation of the code would significantly
ease this process. Using our prototype, we analyzed 6,401
cross-language flows and detected 300 flows to the sink. Out
of these, 144 sanitize in C/C++, 45 sanitize in JavaScript,
22 sanitize in both, and 111 do not perform any sanitization.
We provide the obtained cross-language data-flow graphs in
the supplementary material of this paper8 to increase confi-
dence in our analysis method. Furthermore, we show graphs
for three examples in the full version of our paper [67, Ap-
pendix A]: an unsanitized flow, a flow sanitized in JavaScript,
and one sanitized in both languages.

5.2 Zero-day vulnerabilities
We identify a total of 33 libraries for which we can exploit a
misuse through their public API, i.e., under the strong attacker
model. In Table 3, we show the list of npm packages for which
we could trigger a hard crash, their reach in the ecosystem,
and the API we used for the exploit. We remind the reader that
we use the hard crashes as a testing oracle, indicating a poten-
tial security problem. Some of these packages do not compile

8https://www.staicu.org/native-extension-risks
9Weekly downloads at the time of writing

10As defined by Zimmermann et al. [76].

Table 3: Npm packages in which we identified a previously
unknown hard crash. The endpoint represents the package’s
method that we use for the proof of concept. With #main# we
depict the default method exposed by the package.

Package name Version Reach10 Endpoint
@alien.sh/signals 1.0.0 1 Register

bigint-hash 0.2.2 3 update
bigint-buffer 1.1.5 97 toBigIntLE

bignum 0.13.1 168 powm
binary-diff 1.0.0 1 #main#
bkjs-utils 0.2.8 1 getUser

ced 0.0.1 3 #main#
csac-ed25519 0.0.3 1 Verify

csocket 1.0.3 1 send
cuckaroo29b-hashing 1.0.0 1 cuckaroo29b

fast-string-search 1.4.1 1 indexOf
gs-node-lmdb 0.9.0 1 Cursor

int64-napi 1.0.1 3 divide
jitterbuffer 0.1.14 3 put
libasar_enc 1.0.0 1 #main#

libxmljs 0.19.7 237 parseXml
multi-hashing 1.0.0 10 scryptjane

node-crc 1.3.0 4 crc64iso
node-lzma 0.1.0 1 compress
pg-native 3.0.0 92 query

libpq 1.8.9 4 $execParams
node-mbus 1.2.1 3 #main#
phin-ecdh 1.0.0 1 encrypt

pixel-change 1.0.0 2 #main#
rapid-crc 1.0.10 2 crc32c
roaring 1.0.6 6 _initTypes

sbffi 1.0.4 1 getNativeFunction
sendto 1.0.3 1 #main#
sqlite3 5.0.1 1905 run

termios-fixedv12 0.1.9 2 getattr
time 0.12.0 56 setTimezone

utf-8-validate 5.0.8 551 #main#
zopfli-node 2.0.3 1 deflateSync

with the latest Node.js version and require a legacy version of
the runtime instead. Others require a specific library on the
operating system before installation. On our setup we could,
however, meet such strict constraints by acting on the compi-
lation error we observed on unsuccessful installation attempts.
We reported all these issues to the package maintainers.

We emphasize our most important findings in Table 2, high-
lighting the identified misuse types. In all the 33 libraries, we
first detect an issue caused by careless type conversions (M3,
M4), and for three of them, we identify additional types of
misuses (M2, M9), using the supplementary manual analysis
described in Section 4.1. To confirm that all the identified vul-
nerabilities caused by misuse are indeed security-relevant and
worth fixing, we approached the maintainers of the library to
report our findings. We describe below the disclosure process
and the outcome of these interactions.

https://www.staicu.org/native-extension-risks


Vulnerability disclosure. We reported the discovered vul-
nerabilities to the maintainers using their email address pro-
vided in the package description. We have received a few
responses and a CVE with this strategy, and after the grace
period of six months has passed, we worked together with
Snyk11 to report the vulnerabilities affecting the most high-
profile packages depicted in Table 2. This disclosure strategy
has resulted in an additional six CVEs. All CVE-assigned
high-profile packages have also been fixed, thanks to our
disclosure efforts. The maintainer of utf-8-validate dis-
missed our report saying that it is unlikely that an attacker can
trigger this bug remotely, while we are still pending responses
for the other two we reported. Six CVEs were assigned a high
severity label, and one of them medium. These interactions
show that developers acknowledge the risks posed by native
extensions and are willing to mitigate it when provided with
actionable reports. Below we discuss three examples illustrat-
ing security-relevant consequences that can be obtained by
exploiting the identified native extension misuses.

Uninitialized memory. Let us consider a type confu-
sion vulnerability with surprising security implications.
fast-string-search is a package that promises to be “10
times faster than the indexOf function of a Node.js string”.
Using our automated approach, we detect missing type checks
corresponding to the two arguments of the indexOf method.
The sequence of API calls for retrieving the string from
JavaScript is very similar to the one in Figure 1. Thus, if
an attacker passes numbers instead of strings, a very large
string length is retrieved in the first native extension call,
which will then crash the process when trying to allocate a
C string that large. After investigating further, we notice that
the compiler reuses memory locations between API calls and
hence, strings can be leaked between calls:

const fss = require(’fast-string-search’);
fss.indexOf("My password is Foo123#", "is");
let res = fss.indexOf(1, "Foo123");
console.log(res); // prints 15

Let us assume the call in line 2 is performed using the user’s
arguments, while the one in line 3 uses arguments under
the attacker’s control. The first call correctly returns 12, the
position of the substring "is" in the larger string containing the
password. The second call, though, passes an invalid string
as a first argument and a password guess as second argument.
In this case, the libraries reuse the argument provided in the
first call, thus the result of the second call is 15 - the position
of "Foo123" (passed in the second call) in the string "My
password is Foo123#" (passed in the first call). Therefore, the
attacker can guess parts of the user’s password in this way.
In general, when presented with invalid arguments, this npm
package reuses uninitialized memory as input. Exploiting
such bugs in real systems can have a detrimental impact on

11snyk.io

user’s privacy, similar to that of vulnerabilities caused by
the deprecated Buffer constructor12. We believe this is an
extremely dangerous behavior for a third-party package in
a scripting language. Most users of such packages are not
familiar with such subtle memory-related bugs and would
not expect to see them surface in their scripting language.
We again stress that developers can import native extensions
carelessly with npm install fast-string-search, most
of them probably not knowing that they use native code under
the hood. We also note that this bug is not possible in any of
the other scripting languages we analyzed in Section 3, and it
is a consequence of the permissive API design of Node.js.

Hard crash. Let us consider the following proof of concept
using the modular exponentiation in the bignum package:

1 let bignum = require(’bignum’);
2 try {
3 bignum(10).powm(1, {});
4 } catch(e) {
5 console.log(e); // never executed
6 }

When this API is provided with an object literal instead of
a number, it instantly crashes the Node.js process, without
the possibility of recovering, e.g., error handling. Prior work
reports that Node.js’ parallelism relies on a single point of
failure, i.e., the event loop [26, 65]. In the context of web
applications, the impact of a hard crash on the server side
is an instant halt of the server. This implies dropping all
pending requests and hence loss of precious data. Restarting
the server may take several seconds in which user requests
cannot be served, seriously impacting the availability of the
server. If, however, the server runs as part of a cloud platform
with autoscaling, a new server instance needs to be spawned
immediately and the current one has to be restarted. By send-
ing multiple such requests, an attacker can mount a Yo-Yo
attack [18], causing significant economic damage.

Memory leak. Let us consider the following example,
showing a memory leak in one of the analyzed packages:

1 const { OpusEncoder } = require(’@discordjs/opus’)
2 while (1) new OpusEncoder(48000,3);

When monitoring the memory consumption for this simple
code snippet, we observe a linear growth, indicating the lack
of garbage collection. After a few seconds, the machine be-
comes extremely slow, and then the process crashes. While
this example is artificial, if this package is used as part of a
web application and such objects are created in response to
user requests, the attacker can mount a memory-based DoS
attack. This would, in turn, slow down or even stop the event
loop like in the case above, causing a hard-to-diagnose per-
formance problem that would impair Node.js’ parallelism.

12https://snyk.io/blog/exploiting-buffer/
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The root cause of the problem is the ObjectWrap API13

in Node.js (N-API), in particular the Napi::Persistent
method, which impairs the garbage collector. Therefore, fix-
ing the indicating problem requires migrating away from that
API or from all the packages using it. We found a similar
problem in the sqlite3 package.

5.3 Impact on web applications
Vulnerabilities in native Node.js extensions motivated us to
measure the problem’s impact on web applications’ security.
In this section, first, we present our application selection cri-
teria and pre-processing steps. Then, we discuss our findings.
Note that, given a web application using a vulnerable exten-
sion, FlowJS can be used to detect if the vulnerability can be
exploited remotely. However, since it requires prior knowl-
edge about the vulnerability, we only run experiments on the
manually confirmed ones.

Application selection and pre-processing. For this ex-
periment, we select seven most used (> 1,000 downloads)
vulnerable extensions from Table 2 that can be exploited
remotely: sqlite3, libxml, bignum, time, pg-native,
discord/opus and bigint-buffer. Next, our goal is to
measure their impact on web applications that are using them.
For each extension, we retrieve their dependent applications
from GitHub. We download at most 300 repositories per vul-
nerable package, consisting of in total 1,993 Node.js appli-
cations (Table 4). Note that a dependent repository does not
imply a web application. However, sorting web applications
from others would require manual effort, which we conserva-
tively employ – if and only if FlowJS reports an alert.

Our current prototype, FlowJS, can only analyze one
JavaScript file at a time. To find vulnerabilities across mul-
tiple files, FlowJS requires the files to be merged. We use
Google Closure Compiler to merge all the JavaScript files
from a repository before running FlowJS. However, setting
up a repository properly for Closure, would require properly
setting up the custom module dependencies, proper handling
of duplicate variable declarations, etc., which requires non-
trivial manual efforts. Without such efforts, Closure success-
fully merged 1,141 out of 1,993 repositories. If Closure fails to
merge files for a repository, we analyze each of the files sepa-
rately. Note that this is a fundamental limitation of single-pass
compiler platforms like Closure that we used to implement
FlowJS. They work on the boundary of one translation unit
(TU)—at the file level, and miss cross-TU flows. Solving
this issue would require designing a multi-pass analysis of
our own, which comes with its own challenges (similar to
merging files by Closure).

Exploitable misuses as program flows. A common prop-
erty of all the selected native extension APIs is that the vulner-
ability can be triggered if an attacker can control the input to
them. In web applications, an attacker can control the request

13https://nodejs.org/api/n-api.html#object-wrap

Table 4: Vulnerable applications per package. TP refers to
true positives.

Package Criteria (Sinks) #Repos #Misuses #Exploitable
(Total/TP) (Total/TP)

sqlite3 run(_, data) 283 4/3 4/3
libxml parseXml(xml) 296 2/2 2/2
bignum powm(_, pow) 293 0/0 0/0
time setTimezone(tz) 298 0/0 0/0
pg-native query(_, values, _) 270 1/1 1/1
discordjs/opus encode(data) 272 0/0 0/0
bigint-buffer toBigIntLE(buff) 282 0/0 0/0
Total – 1,993 7/6 7/6

data. If unsanitized request data is passed to those APIs, then
an attacker can turn the vulnerabilities into exploits. Based
on this insight, we use FlowJS to find unsanitized flows from
request data to the vulnerable APIs. We report a misuse if an
element of the network request directly influences the API
parameter of interest. In Table 4, we provide the APIs corre-
sponding to each rule specification.

Our findings. To find misuses corresponding to each of
the selected APIs, we create the corresponding rule speci-
fication. Then, we run FlowJS with the rule specifications
on the selected GitHub repositories. Table 4 presents the
summary of our experimental findings. FlowJS reported four
exploitable vulnerabilities in four applications (out of 283)
using sqlite3, two vulnerabilities in two applications us-
ing libxml, and one vulnerability in one application using
pg-native. FlowJS did not find any vulnerabilities in any
other categories. Our manual investigation shows that six out
of seven alerts in six applications are true positives (Table 4).
In the false positive case also, data from the request attributes
are directly passed to the sqlite3 API, however, before do-
ing so, a type check is performed. Since our current imple-
mentation of FlowJS is not path-sensitive, it cannot detect
such type-checking constraints. Therefore, it raised an alert.
We show the source code of the false positive and additional
details in the full version of our paper [67, Appendix C]. We
also ran FlowJS to find how often libxml is used on content
read from local files. Our analysis found 27 such cases, which
may be security-relevant for some web applications.

Below we provide an example misuse of sqlite3’s run
API, detected by our approach. This code is protected against
SQL injection by the use of prepared statements. However,
the vulnerability we identified in sqlite3 allows attackers
to trigger hard crashes remotely, e.g., by providing the value
{toString: 23} for the img attribute of the request’s body.

1 server.post("/", (req, res) => {
2 const {img,title,cat,desc,link} = req.body
3 const query = ‘INSERT INTO ideas (image, title,

cat, desc, link) VALUES (?,?,?,?,?)‘
4 const values = [img,title,cat,desc,link]
5 db.run(query, values, function(err) {
6 if(err)
7 return res.send("Erro no banco de dados")
8 return res.redirect("/ideias")
9 })

10 })

https://nodejs.org/api/n-api.html#object-wrap


Our results show that after identifying an exploitable mis-
use in an npm package, an adversary can further detect vul-
nerable endpoints of open-source web applications that rely
on this package. To prevent such exploitation, it is crucial for
the community to detect and patch vulnerable npm packages.

6 Discussion

Impact of security findings. Our success with identifying
high-severity vulnerabilities in native extensions of popular
libraries implies that even well-maintained libraries struggle
with using native extensions securely. The empirical evidence
clearly shows that most bugs are caused by the permissive
nature of Node.js. Hence, we recommend that maintainers of
this runtime reassess whether this design is in the best interest
of their users.

Feasibility of the weak attacker model. Prior work
[19, 29, 38, 42, 60] assumes a strong adversary that can run
arbitrary high-level code to exploit bugs in the native layer.
To the best of our knowledge, we are the first to propose a
methodology for finding low-level vulnerabilities that can
be exploited remotely by weak, web attackers. By showing
the feasibility of this scenario, our findings raise concerns
about a hidden attack surface of web applications written in
scripting languages. Code analysis tools should challenge the
assumption that low-level code is trustworthy. Additionally,
the community should continuously vet packages with native
extensions for both vulnerable and malicious code.

Extensibility of the prototype. The developed prototype
is by no means a complete solution for identifying security
problems caused by native extensions in scripting languages.
There are several components that can be improved by fu-
ture work. We opted in our design for a path-insensitive,
intra-procedural analysis. While very scalable, this strategy
results in a non-negligible number of false positives, which
can be reduced by employing more sophisticated analysis
techniques. Also, while this simple analysis may suffice for
identifying missing type checks, it is not enough for detect-
ing more complex problems, such as use-after-free or buffer
overflow. That is because type conversions often appear at
the language boundary, while unsafe buffer operations may
appear anywhere in the program. While we provide initial
evidence that cross-language analysis can aid analysts in the
vulnerability detection task, we recognize that this method
might be costly for practitioners in its current form. A taint
summarization approach [12, 68] might scale better. Simi-
lar limitations exist in FlowJS too. This is because to run
large-scale analysis we traded precision and soundness for
scalability. For example, FlowJS is flow- and path-insensitive,
which hurts its precision. Additionally, incorporating alias
analysis in FlowJS would result in better soundness.

Applying our methodology to other languages. We be-
lieve that our high-level methodology that emphasizes the
analysis of libraries can be applied to any other scripting

language. To add support to our prototype for other script-
ing languages, one can reuse the C/C++ extraction and the
post-processing of the dot graphs, i.e., the graph traversals.
However, for each scripting language, one would additionally
need: (i) a data flow extraction tool that can produce graphs
in the dot format, (ii) a way to identify the program loca-
tions in which the native extensions are invoked so that the
cross-language graphs can be generated, and (iii) additional
modeling to identify security-relevant sinks and sanitizers.
While this can be done with sufficient engineering effort for
all the languages studied in Section 3, we believe that our
results for npm suffice for drawing conclusions about the
feasibility of the methodology.

7 Related Work

Binding layer and engine issues. Vulnerabilities in
JavaScript engines and in binding layer code seriously un-
dermine the security guarantees of the language [19, 60]. An-
alyzing this code got a lot of traction recently [19, 21, 29, 37,
38,50,59,60,73]. The work in this domain can be categorized
in two groups: fuzzing-based [1, 29, 37, 38, 50, 59] and static
analysis-based [19, 21] approaches. Holler et al. proposed
LangFuzz [38], which found 105 severe vulnerabilities in
Mozilla’s JavaScript interpreter. Given a set of seed programs,
LangFuzz generates test cases by combining fragments of the
seed programs. Instead of seed programs, Mozilla Security’s
FunFuzz [1] generates test cases from context-free grammars.
The main limitation of these solutions is the lack of semantic-
awareness. Han et al. [37] fixes this problem by proposing
a code combining mechanism that uses a def-use analysis
to find snippets with important semantic dependencies. Fav-
ocado [29] is the first fuzzing-based tool to detect binding
layer bugs. Favocado extracts semantic information from the
API references and uses this to generate semantic-aware test
cases. Sys [21] is an analysis framework that combines static
analysis and selective symbolic execution to identify low-
level vulnerabilities in browser code. The most closely related
work to ours is Brown et al.’s [19] approach to find binding
layer issues in JavaScript runtimes. Specifically, they describe
various bugs that undermine crash-, type- and memory-safety
of the scripting language and propose using lightweight static
checkers written in µchex [20]. By using these checkers, they
detect high profile vulnerabilities in the analyzed runtimes,
showing the severity of the problem. In this work we study
native extensions, which democratize the access to low-level
code to non-expert users. Our results confirm that many of
the issues introduced by Brown et al.’s [19] are also prevalent
in this new setting. However, Brown et al. [19] use a much
stronger attacker model that assumes that JavaScript code is
untrusted, hence there is no need for cross-language analysis.
On the contrary, we assume that the JavaScript part is benign,
but vulnerable. We also consider languages beyond JavaScript
to understand how API design decisions can enable misuses.



Unsafe APIs uses. Almanee et al. [10] show that devel-
opers have an inertia to update vulnerable native libraries
in Android apps, which consequently makes these apps vul-
nerable. Zimmermann et al. [76] show that the problem is
prevalent in the Node.js ecosystem as well. Mastrangelo et
al. [54] show that third-party library developers use unsafe
Java virtual machine APIs for the sake of performance, which
seriously undermines the security guarantees provided by
the language. Evans et al. [32] show that the use of unsafe
Rust features is widespread as well. To minimize the im-
pact of unsafe Rust, Liu et al. propose XRust [32], which
ensures data integrity by logically dividing the safe and un-
safe memory allocations into two mutually exclusive regions.
Studies showed that there is a widespread tendency to mis-
use non-native APIs as well. For example, Java developers
often misuse common platform-provided library APIs, e.g.,
Crypto APIs [7, 31, 46, 61], SSL/TLS APIs [33], Fingerprint
APIS [17], as well as non-system APIs [77].

Node.js security. Analyzing the security of the Node.js
ecosystem has been a very active research field recently. Re-
lated work studies several threats in this ecosystem: reg-
ular expression denial-of-service [23–26, 65], code injec-
tions [34, 40, 66], path traversals [36], trivial packages [6, 47],
prototype pollution [52, 53, 63], hidden property abuse [74],
sandbox escape [8], vulnerable dependencies [28], APIs [69]
and supply chain attacks [30, 76]. While not strictly Node.js-
specific, the adoption of WebAssembly may also pose addi-
tional risks for the runtime [51]. Existing solutions for re-
ducing the attack surface of web applications using third-
party code include package vetting [30, 66], compartmental-
ization [72], and debloating [43]. Recently, Bhuiyan et al. [16]
propose SecBench.js, a suite of known vulnerabilities with
exploits for Node.js, but this suite does not include low-level
vulnerabilities. We are the first to study in depth the native
extensions’ risks in Node.js’ context.

Comparative analysis of scripting languages. Related
work studies various security issues across multiple languages.
Decan et al. [27] and Kikas et al. [41] were the first to ana-
lyze the structure of third-party dependencies in various pro-
gramming languages, and draw conclusions about interesting
trends. More recently, Duan et al. [30] proposes a technique
for detecting supply chain attacks for the same set of scripting
languages we consider in our work. As discussed in Section 6,
by integrating the same data flow analysis tools used by Duan
et al. [30] and by modelling additional sinks and sources, our
prototype can be extended to support Python and Ruby as well.
Nonetheless, we are the first to perform an in-depth security
study of an equivalent API in different scripting languages.

Cross-language program analysis. Researchers study
various static analysis approaches to augment the insights of
non-Java code to detect cross-lingual vulnerabilities in Java
and Android applications [13, 14, 22, 48, 49, 70, 71]. Nguyen
et al. built a cross-language program slicing framework to
analyze PHP, HTML and JavaScript code in the same con-

text [56]. Brucker et al. propose static cross-language call
graphs for hybrid JavaScript/Java mobile apps. There has
been attempts to build cross-language dynamic taint analysis
platforms as well [15, 44, 45]. Alimadadi et al. propose an ap-
proach to model temporal and behavioral information in full-
stack JavaScript applications to detect cross-stack bugs [9].
Recently, Hu et al. [39] study the usage of native extension
API in Python, while Monat et al. [55] propose a sophisticated
static analysis for detecting cross-language bugs in Python.
We are the first to perform cross-language analysis in the
context of native extensions security.

8 Conclusions

In this work, we first systematically analyze the pitfalls of
using native extensions in three scripting languages. We show
how a failure to adhere to best practices can cause serious
problems such as an exploitable buffer overflows or modi-
fications of encapsulated values of the scripting language.
We further propose a methodology to systematically detect
misuses of a native extension API. By leveraging that, we
show how the security problems propagate in the dependency
chain, first to the enclosing library, and then to the web ap-
plication relying on it. We show that many libraries fail to
type check arguments coming from the scripting language
and that attackers can cause uninitialized memory reads, hard
crashes or memory leaks by providing well-crafted inputs to
the library API. In total, we create proof-of-concept exploits
in 33 real-world npm packages and show that some of the
vulnerabilities could be exploited remotely in open-source
web applications. This paper is first of all a warning for de-
velopers: native extensions in third-party code may violate all
your assumptions about the safety of the scripting language
you use. To put it more poetically, tell me what you include,
so I can tell your language guarantees.
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A Sinks and sanitizers used by our prototype

Below, we enumerate the sinks and sanitizers used by
our prototype for detecting missing type checks. For
conciseness, we use the metavariable #type# for spec-
ifying several sinks or sanitizers from the same fam-
ily, e.g., instead of listing napi_get_value_int32() and
napi_get_value_string_utf8(), we use the notation
napi_get_value_#type#() to refer to APIs of that form.

Set of sinks (all in C/C++):

• napi_get_buffer_info()

• Buffer::Data()

• Buffer::Length()

• *.As<#type#>

• *.To<#type#>

• *.To#type#()

• *.ToLocalChecked()

• *::Cast()

• napi_get_value_#type#()

Set of sanitizers:

• (C/C++) napi_is_#type#()

• (C/C++) napi_typeof()

• (C/C++) Nan::Check()

• (C/C++) *.HasInstance()

• (C/C++) *.Is#type#()

• (JavaScript) typeof

• (JavaScript) Buffer.isBuffer()
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