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Abstract
As the majority of Internet traffic is encrypted by the Trans-
port Layer Security (TLS) protocol, recent advances lever-
age Deep Learning (DL) models to conduct encrypted traffic
classification by automatically extracting complicated and
informative features from the packet length sequences of
TLS flows. Though existing DL models have reported to
achieve excellent classification results on encrypted traffic,
we conduct a comprehensive study to show that they all have
significant performance degradation in real diverse network
environments. After systematically studying the reasons, we
discover the packet length sequences of flows may change
dramatically due to various TCP mechanisms for reliable
transmission in varying network environments. Thereafter,
we propose Rosetta to enable robust TLS encrypted traffic
classification for existing DL models. It leverages TCP-aware
traffic augmentation mechanisms and self-supervised learn-
ing to understand implict TCP semantics, and hence extracts
robust features of TLS flows. Extensive experiments show
that Rosetta can significantly improve the classification per-
formance of existing DL models on TLS traffic in diverse
network environments.

1 Introduction

Network traffic classification aims to organize various traf-
fic into different categories, which is fundamental and vi-
tal for network management and security. A number of net-
work security tasks have been built on top of it, such as
application identification [53, 56, 65], website fingerprint-
ing [46, 49, 51, 52], malicious flow detection [33, 37, 38], and
user profiling [16, 23]. With the fast-growing need of user
privacy protection and the wide usage of the Transport Layer
Security (TLS) protocol, a majority of the Internet traffic has
been encrypted [12]. Traditional rule-based methods that ex-
amines packet payloads are becoming increasingly ineffective
in classifying encrypted network traffic [6, 34].
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Recent advances [16, 33, 38, 49, 51, 52] are leveraging deep
learning (DL) techniques to conduct generic traffic classi-
fication. Particularly, as the packet payloads are converted
into pseudorandom values after TLS encryption [36], a num-
ber of studies [7, 35, 46, 49–51] design various deep learning
models to automatically extract complicated and high-level
features from packet length sequences, which possess rich and
discriminating implicit information of the encrypted flows.
Besides, it is convenient and low-cost to measure and derive
packet length sequences in real-world large-scale networks,
even supporting real-time traffic classification tasks [5, 6].

Though these DL models have been reported to achieve
excellent classification results on encrypted traffic [3,7,13,14,
41,49], e.g., 98% classification accuracy [49], the performance
of these models for various traffic classification tasks in the
real-world diverse network environments is still not clear. We
should note that when they are deployed in a real network
for TLS traffic classification, they will face diverse network
environments that are time-varying and unpredictable. For
example, the packet loss rate and network delay may suddenly
arise due to the burst of network traffic [48, 63]. Actually, the
environment of one network can be changed complexly due to
the joint effect of multiple factors, such as traffic burst [48,63],
traffic engineering [22, 54], partial network failures [2, 64],
and network updates [11, 45].

In this paper, we conduct a systematic study to check
if existing deep learning models can effectively classify
TLS encrypted traffic in diverse network environments. We
study six different DL models including Deep Fingerprinting
(DF) [51], FS-Net [35], Transformer [57], SDAE [4,7,46,51],
CNN [7, 46, 49, 51, 59], and LSTM [7, 46, 51, 59] that rely
on packet length sequences to classify encrypted traffic. We
conduct experiments not only with the replayed traffic from
two typical TLS traffic datasets [19, 39] in diverse network
environments, but also with real TLS traffic that is gener-
ated by visiting popular websites and running online network
applications in diverse Internet environments. Our experi-
ments confirm that all these DL models can achieve excellent
results with the offline TLS traffic dataset for various clas-



sification tasks, including website fingerprinting, malicious
flow identification, VPN traffic identification, and applica-
tion fingerprinting. However, the performance of all models
drops remarkably when they are tested in different network
environments, e.g., about 53% accuracy drop at worst.

We find that the remarkable performance degradation re-
sults from the dramatic change of packet length sequences of
the same flow in different network environments. For exam-
ple, a TLS encrypted flow with the packet length sequence
[q1,q2,q3,q4] may change to [q3,q2,q1,q4] due to high packet
loss in another network environment. However, existing DL
models fail to understand that the two different packet length
sequences in different network environments actually orig-
inate from the same flow. Furthermore, we notice that the
changes of packet length sequences follow the TCP specifica-
tions in different network environments, since TLS connec-
tions are built on the TCP protocol. Consequently, different
TCP mechanisms ensuring reliable transmission in diverse
network environments cause three major changes of packet
length sequences, i.e., packet subsequence shift, packet subse-
quence duplication, and packet size variation. Thus, if a model
can be aware of these regular packet sequence changes with
TCP semantics, robust TLS encrypted traffic classification in
diverse network environments may be achieved.

To this end, we develop Rosetta that is capable of enhanc-
ing robust TLS encrypted traffic classification for existing
deep learning models. The main idea is to learn implicit TCP
semantics from carefully crafted traffic and generate effective
feature vectors that represent robust features of TLS flows in
diverse network environments. Hence, existing deep learning
models can leverage these feature vectors to achieve robust
TLS encrypted traffic classification. Rosetta consists of two
modules: TCP-aware traffic augmentation and traffic invari-
ant extractor. We develop TCP-aware traffic augmentation
algorithms based on a thorough understanding of TCP mecha-
nisms that may affect packet length sequences of flows. Hence,
we can generate massive flows that reflect how TLS flows
may change in various network environments. The traffic in-
variant extractor applies self-supervised learning to extract
robust features by projecting flow variants into a proper hid-
den space, reducing the distance among feature vectors of
flow variants from the same flow. Consequently, flow variants
coming from the same flow will have similar feature vectors.

We conduct extensive experiments to evaluate the effective-
ness of Rosetta. The results show that Rosetta significantly
improves the performance of existing deep learning mod-
els on traffic classification in diverse network environments
with both replayed and real TLS flows. We further evaluate
its classification robustness under different packet loss rates
and different delays. Without enabling Rosetta, the classifi-
cation accuracy of existing models drops remarkably when
packet loss rates and delays increase. For example, the ac-
curacy drops from 99% to 55% when the delay is increased
from 0 to 50 ms. When Rosetta is enabled, the accuracy can

always maintain above 86%. Moreover, we compare our TCP-
aware traffic augmentation algorithms with classical data aug-
mentation methods, including Random Mask (RM) [17] and
Random Swap (RS) [60] that have been widely used in the do-
mains of Natural Language Processing (NLP) and Computer
Version (CV). With RM and RS, the average F1-score is less
than 47% in six different network environments. With our
TCP-aware traffic augmentation, the average F1-score is 87%.
The results demonstrate that TCP-aware traffic augmentation
is more effective on extracting robust features of TLS flows
in different network environments.

In summary, we make the following contributions:

• We conduct comprehensive experiments to show that
mainstream DL models cannot robustly classify TLS
encrypted traffic in different network environments.

• We propose Rosetta that can enable robust TLS en-
crypted traffic classification for the DL models based
on TCP-aware traffic augmentation mechanisms and
self-supervised learning.

• We conduct extensive experiments to demonstrate the
effectiveness of Rosetta on improving the encrypted traf-
fic classification performance of existing DL models in
various network environments.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 evaluates the mainstream
deep learning models in diverse network environments and
analyzes the performance degradation of the models. Sec-
tion 4 presents the design of Rosetta, including five TCP-
aware traffic augmentation algorithms and the traffic in-
variant extractor. Section 5 evaluates the effectiveness of
Rosetta. Section 6 discusses the limitations of Rosetta. Sec-
tion 7 concludes the paper. For the research community
to utilize our tool, we release the source code in Github:
https://github.com/sunskyXX/Rosetta.git.

2 Related Work

Encrypted Traffic Classification. Though there are stud-
ies [3, 13, 14, 20, 38, 41] relying on experts to extract
and select effective features of encrypted flows, recent ad-
vances [16, 27, 33, 34, 36, 38, 49, 51, 52, 62] focuses more on
automatic feature extraction and encrypted traffic classifica-
tion through deep learning from raw traffic inputs. Particu-
larly, as packet length sequences of encrypted flows poss rich
and discriminating implicit information, various deep learn-
ing models are presented to classify encrypted traffic from
packet length sequences. Cao et al. [7] employ CNN, LSTM,
and SDAE to fingerprint applications of Software Defined
Networking (SDN) from packet length sequences of TLS en-
crypted control traffic. Shen et al. [50] accurately fingerprint
decentralized applications using graph neural networks based



Table 1: Different Network Environments for Relayed Traffic

Network Type Env. ID Sender Loc. Receiver Loc. Access mode

Wired

θ0 Local LAN Local LAN

Ethernet
θ1 China China

θ2 Korea China

θ3 USA China

θ4 China China Wi-Fi

Wireless θ5 China China 4G LTE

θ6 China China 3G WCDMA

on packet length sequences of encrypted flows. Many stud-
ies [46, 49, 51] leverage deep learning to achieve automatic
website fingerprinting from packet length sequences of en-
crypted Tor traffic. Liu et al. [35] present Flow Sequence Net-
works (FS-Net) to learn representations from packet length
sequences and achieve accurate encrypted traffic classification.
They can achieve high accuracy on encrypted traffic classifi-
cation with traffic datasets tested in an offline environment.
Cherubin et al. [10] further evaluate website fingerprinting
in a real-word online network environment. However, it does
not systematically evaluate how the performance of website
fingerprinting changes in diverse network environments. In
contrast, our work conducts the systematical study to evaluate
the performance of the existing models in diverse network
environments with various TLS traffic classification tasks,
including website fingerprinting, malicious flow identifica-
tion, VPN traffic identification, and application fingerprinting.
We also present Rosetta to enable robust encrypted traffic
classification in diverse network environments.
Data Augmentation Techniques. Data augmentation has
been widely used in the domains of Computer Vision (CV)
and Natural language processing (NLP), which can increase
training data diversity without collecting more data. There are
a number of image augmentation techniques in CV, including
geometric transformations [40], kernel filters [29], mixing
images [28], random erasing [66], and feature space augmen-
tation [18]. Due to the unique features of languages, NLP
applies predetermined transform rules [25, 60] to augment
data, such as token-level random perturbations [60]. Besides,
researchers [17, 21, 31, 47] train different models to augment
NLP data according to downstream tasks. For example, Back-
translation [47] generates data by translating a sequence into
another language and then back into the original language.
Recent advances [15, 30, 42] apply Generative Adversarial
Networks (GAN) to conduct data augmentations. Our work
differs from them as we focus on how to augment TLS traffic
with TCP semantics in diverse network environments.

3 Measurement Study

In this section, we perform a systematic study on the perfor-
mance of six representative deep learning models on TLS

encrypted traffic classification when being trained in one net-
work environment and then deployed in different network
environments. We first conduct experiments with replayed
TLS flows from two typical traffic datasets that have been
widely used for traffic classification based on deep learning.
We further conduct experiments with real TLS flows that are
generated by visiting popular websites and running real appli-
cations. All experiments demonstrate the similar performance
degradation of existing traffic classification methods when
training and deploying in different network environments. Fi-
nally, we analyze the reasons of the performance degradation.

3.1 Experiments with Relayed TLS Traffic

3.1.1 Experiment Setup

Diverse Network Environment Construction. We leverage
a sender host and a receiver host on the Internet to replay TLS
encrypted flows between them. By changing the locations of
the two hosts, the flows can experience real diverse network
environments. This is because the sender and the receiver
are in different networks and the routing paths of the flows
are also different. Therefore, we create four diverse wired
network environments by changing the sender location to four
different countries, which is shown in Table 1. Besides, we
create three different wireless access network environments
by changing the access mode of the sender to Wi-Fi, 4G LTE,
and 3G WCDMA. For simplicity, we name the above different
network environments as θ0 to θ6, respectively.
Replayed TLS Traffic Collection. Our experiments lever-
age two typical TLS encrypted traffic datasets, i.e., CIRA-
CIC-DoHBrw-2020 [39] and ISCX-VPN [19]. They have
been widely used for traffic classification based on deep learn-
ing [8, 34, 36]. CIRA-CIC-DoHBrw-2020 has 249,750 mali-
cious flows and 917,300 benign flows. ISCX-VPN has 16,007
VPN-encapsulated flows and 22,716 non-VPN encapsulated
flows. To better simulate application behaviors and make
flows experience diverse network environments, we extract
the payloads and timestamps of each packet from encrypted
flows. As the dataset contains retransmitted packets, we re-
order the packet according to their timestamps and remove
the duplicate packets. Based on the timestamps, we send the
payloads via TCP sockets established in different network
environments θ0 to θ6, respectively. Here, we replace the orig-
inal source and destination IP addresses with the sender and
receiver IP addresses in our experiments.

To replay the traffic in wireless network environments, we
use a WIFI router that connects to the Internet, and the sender
host further connects to the WIFI router. To replay the traffic
in the access mode of 4G LTE or 3G WCDMA in the wireless
network environment, we mount a cellphone supporting 4G
LTE and 3G WCDMA to the sender host via USB, and we
configure the cellphone to act as a network adapter for the
sender host. Thus, the host can access the Internet through the



Table 2: Results on Classifying Replayed TLS Flows from CIRA-CIC-DoHBrw-2020 in Different Network Environments.

Different Wired Network Environments Different Wireless Access Network Environments
Model θ0 θ1 θ2 θ3 θ4 θ5 θ6

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

CNN 99.89% 99.84% 98.21% 98.20% 53.16% 34.91% 57.04% 36.32% 87.47% 87.03% 74.42% 71.52% 53.26% 34.96%

SDAE 95.47% 95.46% 91.47% 91.47% 56.21% 43.40% 55.75% 36.04% 88.11% 88.03% 82.11% 81.42% 55.16% 41.73%

LSTM 95.26% 95.25% 87.68% 87.47% 53.05% 35.07% 57.04% 36.57% 82.00% 81.19% 70.84% 67.34% 53.58% 36.08%

DF 99.89% 99.84% 98.42% 98.41% 53.26% 34.75% 58.03% 36.72% 88.00% 87.57% 74.95% 72.17% 53.37% 35.00%

FS-Net 92.11% 92.10% 90.74% 90.71% 61.16% 52.11% 58.10% 39.66% 88.84% 88.76% 83.68% 83.30% 56.84% 44.50%

Transformer 99.56% 99.36% 98.28% 96.00% 62.22% 54.12% 57.04% 42.00% 93.74% 91.35% 85.62% 83.12% 54.27% 47.57%

On Average 97.03% 96.98% 94.13% 93.71% 56.51% 42.39% 57.17% 37.89% 88.03% 87.32% 78.60% 76.48% 54.41% 39.97%

cellular networks that the cellphone provides. In each network
environment, we capture the packet length sequences of the
replayed flows through the receiver host with tcpdump and
feed them into deep learning models for classification.
Model Training and Testing. We consider six representa-
tive deep learning models in our experiments, i.e., Denoising
Autoencoder (SDAE) [58], Convolutional Neural Network
(CNN) [32], Long-Short Term Memory (LSTM) [26], Deep
Fingerprinting (DF) [51], FS-Net [35], and Transformer [57].
The first three models achieve good results in website fin-
gerprinting based on encrypted traffic [46]. DF improves the
performance of website fingerprinting in the situation where
the traffic is mixed with artificially added noise. FS-Net learns
representative features from encrypted flows and enforces ac-
curate traffic classification. Transformer has been one of the
state-of-the-art methods in various classification tasks. To
explore the performance of the encrypted traffic classification
models in diverse network environments, we first train and
test them with packet length sequences of flows captured in
the network environment θ0. In the training network environ-
ment θ0, the ratio on the number of flows in the training set,
validation set, and testing set is 6:2:2. Next, we test all the
trained models with packet length sequences of flows captured
in the other network environments, i.e., θ1 to θ6. Similarly, we
train the classification models in the network environments
θ1 to θ6, respectively, and test against the other six different
network environments. Here, following the general settings
of existing methods [51, 52], we fix the length of the input se-
quence, i.e., any sequence longer than 100 will be truncated to
100, and any sequence shorter than 100 is padded with zeros.
Besides, as different flows are naturally unbalanced [34, 35],
we use the original ratio of different flows to train and test the
existing models on TLS traffic classification in the real-world
network environment. This is also the typical way where most
of the existing studies apply [34, 35].

3.1.2 Experimental Results

Degraded Classification Performance. We apply two met-
rics, i.e., accuracy (AC) and F1-Score (F1), to evaluate the
traffic classification results. As shown in Table 2, all six deep

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F
Similarity (%)

DF
SDAE
CNN
FS-Net
LSTM
Transformer

(a) Similarity between θ0 and θ3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

Similarity (%)

DF
SDAE
CNN
FS-Net
LSTM
Transformer

(b) Similarity between θ0 and θ5.

Figure 1: CDF of the cosine similarity for all pairs of feature
vectors between two different network environments.

learning models achieve more than 92% accuracy and F1-
Score for the replayed CIRA-CIC-DoHBrw-2020 flows in the
network environment θ0. Note that all the models are trained
in the network environment θ0. However, when applying these
well-trained models in other network environments (i.e., θ1 to
θ6), we observe a significant drop in their performance1. For
example, the F1-Score of CNN drops from 99.84% in the net-
work environment θ0 to 34.96% in the network environment
θ6. We can see that the average accuracy of all the models
decreases by 2.9% at least to 42.62% at most in the network
environments θ1 to θ6, and the average F1-Score decreases by
3.27% at least and 58.09% at most. The experimental results
with the replayed flows from ISCX-VPN demonstrate similar
results. Please refer to Table 12 in Appendix C for detailed
results. It is obvious that different network environments can
significantly affect the traffic classification results of exist-
ing deep models. The results demonstrate that existing deep
learning models fail to enable robust TLS encrypted traffic
classification in diverse network environments.
Varying Feature Vectors in Different Network Environ-
ments. The layer before the last output layer of a deep learning
model will generate a feature vector that contains the hidden
abstract features of the input sample. We extract the feature
vectors of the replayed flow in each of the seven different net-
work environments to see if the existing deep learning models

1For simplicity, we only show the results using θ0 as the training network
environment. The results are similar when using other environments as the
training environment.
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Figure 2: Distribution of feature vectors between two different
network environments.

can extract robust hidden features. Specifically, we collect a
pair of feature vectors for the replayed flows in two different
network environments and calculate their cosine similarity.
Figure 1 shows the Cumulative Distribution Function (CDF)
of the cosine similarity for all pairs of feature vectors between
two different network environments. Figure 1a demonstrates
that more than 30% pairs of feature vectors between the two
network environments θ0 and θ3 have less than 70% cosine
similarity for most models. There are a few pairs of feature
vectors that have less than 10% cosine similarity for the FS-
Net model. It shows that the extracted features for a replayed
flow in different network environments are remarkably biased.
Figure 1b demonstrates similar results for the feature vectors
between network environments θ0 and θ5.

To better illustrate how the feature vectors change in differ-
ent network environments, we apply the t-SNE [55] method
to project high-dimensional feature vectors extracted by the
DF model into 2D vectors. Hence, we can draw all the vectors
in 2D space, which is shown in Figure 2. From the results,
we can see that the distribution of feature vectors changes sig-
nificantly when the network environment is changed. These
results show that existing deep learning models fail to extract
a fixed set of robust hidden features for the flows replayed
and collected in different network environments.

3.2 Experiments with Real TLS Traffic
3.2.1 Experiment Setup

Diverse Network Environment Construction. We rent hosts
in different countries as clients to visit popular websites with
the Selenium web driver [43] driving the Firefox browser.
By changing the locations of the clients, the routing paths
between the clients and website servers are different. Thus,
there are three different wired network environments, which
is shown in Table 3. Besides, we make flows experience three
different wireless access network environments by chang-
ing the access mode of the client to Wi-Fi, 4G LTE, and 3G
WCDMA, respectively. For simplicity, we name the above
different network environments as τ1 to τ6, respectively. Fur-
thermore, we run real applications on these clients in diverse
network environments to collect real application TLS traffic
in a similar way where we collect the website TLS traffic.

Table 3: Different Network Environments for Real Traffic

Network Type Env. ID Client Loc. Access mode

τ1 China

Wired τ2 Korea Ethernet

τ3 USA

τ4 China Wi-Fi

Wireless τ5 China 4G LTE

τ6 China 3G WCDMA

Real TLS Traffic Collection. We collect about 1.8 million
website TLS flows by visiting popular websites for 14 days,
including Alipay, Apple, Baidu, iCloud, JD, Kaipanla, NeC-
music, QQ, Sogou, Weibo, Youdao and Zhihu. To make the
flows experience diverse network environments, we leverage
the clients in network environments τ1 to τ6 to generate traf-
fic by visiting the above websites. Furthermore, we collect
292,523 application TLS flows by running popular applica-
tions in the above six diverse network environments, includ-
ing TencentVideo, YoudaoNote, QQmusic, NeCmusic, Youku,
and BaiduNetdisk.
Model Training and Testing. To explore the performance
of the encrypted traffic classification models for real website
TLS traffic and application TLS traffic in diverse network en-
vironments, we apply SDAE, CNN, LSTM, DF, FS-Net and
Transformer to classify the flows collected from τ1 to τ6. The
classification task for the models is to classify real TLS flows
that are generated by different websites/applications. Given
a TLS flow, the models identify which website/application
generates it. We first train and test them with packet length
sequences of flows captured in the network environment τ1.
Next, we test all the trained models with packet length se-
quences of flows captured in the other network environments,
i.e., τ2 to τ6.

3.2.2 Experimental Results

Results with Real Website TLS traffic. As shown in Table 4,
the six deep learning models achieve more than 83% accuracy
and F1-Score on average for the website TLS flows in the net-
work environment τ1. Note that all the models are trained in
network environment τ1. However, when applying these well-
trained models in other network environments, we observe
a significant performance drop. For example, the F1-Score
of DF drops from 91.15% in τ1 to 66.91% in τ5. We see that
the average accuracy of all the models decreases by 8.57%
at least to 19.09% at most in τ2 to τ6. The average F1-Score
decreases by 8.18% at least to 19.82% at most.
Results with Real Application TLS Traffic. As shown in
Table 5, the six deep learning models achieve about 80% ac-
curacy and 76% F1-Score for application TLS flows in τ1 on
average. Note that all the models are trained in τ1. However,
when applying these well-trained models to classify applica-
tion flows in the other network environments, we observe the



Table 4: Results on Classifying Real Website TLS Flows in Different Network Environments.

Different Wired Network Environments Different Wireless Access Network Environments
Model τ1 τ2 τ3 τ4 τ5 τ6

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

CNN 89.55% 89.28% 81.48% 80.88% 57.73% 52.29% 72.51% 68.51% 67.16% 60.15% 70.63% 68.73%

SDAE 82.37% 79.79% 78.13% 74.79% 70.04% 68.80% 68.04% 67.98% 64.57% 64.20% 69.94% 64.01%

LSTM 81.85% 77.39% 76.72% 74.08% 62.71% 57.26% 60.89% 60.04% 66.93% 63.60% 66.41% 61.67%

DF 91.27% 91.15% 83.95% 80.58% 83.59% 83.50% 79.90% 75.00% 70.67% 66.91% 73.03% 70.17%

FS-Net 85.81% 81.42% 73.02% 72.20% 64.42% 61.97% 70.14% 68.39% 64.84% 65.42% 67.65% 66.48%

Transformer 84.85% 82.13% 70.97% 69.57% 62.66% 58.46% 63.71% 62.14% 78.98% 75.38% 61.37% 59.74%

On Average 85.95% 83.53% 77.38% 75.35% 66.86% 63.71% 69.20% 67.01% 68.86% 65.94% 68.17% 65.13%

Table 5: Results on Classifying Real Application TLS Flows in Different Network Environments.

Different Wired Network Environments Different Wireless Access Network Environments
Model τ1 τ2 τ3 τ4 τ5 τ6

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

CNN 95.24% 95.07% 73.82% 71.39% 85.62% 85.14% 91.83% 91.53% 96.23% 95.91% 95.08% 94.57%

SDAE 81.67% 81.38% 53.36% 53.00% 58.75% 58.54% 76.52% 76.51% 72.71% 72.66% 59.19% 59.11%

LSTM 68.07% 57.13% 67.66% 41.58% 52.83% 38.42% 63.84% 55.35% 69.36% 57.58% 72.07% 61.04%

DF 98.11% 98.06% 83.47% 79.30% 69.95% 69.90% 92.96% 92.74% 98.69% 98.60% 98.99% 98.91%

FS-Net 69.62% 60.62% 70.79% 41.54% 56.36% 46.52% 59.63% 45.71% 68.25% 54.14% 71.06% 58.31%

Transformer 92.04% 91.35% 96.95% 96.46% 92.19% 92.11% 90.22% 90.03% 93.44% 92.46% 92.43% 92.33%

On Average 84.13% 80.60% 74.34% 63.88% 69.28% 65.11% 79.17% 75.31% 83.11% 78.56% 81.47% 77.38%

average performance of the models drops. Particularly, the
F1-Score of DF drops from 98.06% in τ1 to 69.90% in τ3.
The results show that existing deep learning models fail to
enable robust TLS encrypted traffic classification in diverse
network environments.

3.3 Understanding Performance Degradation
After comparing the packet length sequences of the flows
collected in diverse network environments, we observe that
the dramatic change on the packet length sequences exists
in most flows when the network environment changes. The
reason for the poor performance is that the models are not
aware of dramatic change caused by network environments,
even though the TLS flows in diverse network environments
are from the same website or the same application.

Our further investigation reveals that the changes of packet
length sequences in different network environments are
mainly due to three phenomenons, namely, packet subse-
quence shift, packet subsequence duplication, and packet size
variation. Figure 3 shows examples of the three phenomenons.
The case of packet subsequence shift is shown in Figure 3a,
the second, fourth, and fifth element of sequence in θ0 is
shifted into the third, sixth, and seventh position of sequence
in θ5. Figure 3b shows the case of packet subsequence du-
plication, where the the sixth, seventh, and eighth elements
of sequence in θ1 is the duplication of the second, third, and
fourth elements of sequence in θ0. Figure 3c shows the case

θ0:

θ5:

1901 1262 4853 4844 4855 266 547

1901 12624853 4844 4855266 547

(a) Packet Subsequence Shift.

θ0:

θ1:

5171 512 1633 384 465

5171 465512 1633 384 1633 384

(b) Packet Subsequence Duplication.

θ0:

θ3:

5171 512 1633 3804 1615 486 467

5171 17535142

(c) Packet Size Variation.

Figure 3: Three phenomenons that cause the changes of
packet length sequences in diverse network environments.

of packet size variation. The second element of the sequence
in θ3 is equal to the sum of the second, third, and fourth el-
ements of the sequence in θ0 minus twice the header length.
Also, the third element of sequence in θ3 is equal to the sum
of the fifth, sixth, and seventh elements of sequence in θ0
minus twice the header length.

As the TLS connections are established on the TCP pro-
tocol, TLS traffic follows the specification of TCP protocol.
Therefore, we are able to explain the root causes of the three
phenomenons from the perspective of the TCP protocol. Due
to space limitation, please refer to our additional technical
report [1] for our detailed analysis. We discover that differ-
ent TCP mechanisms ensuring reliable transmission in di-
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Figure 4: The workflow of Rosetta-augmented encrypted network traffic classification: (1) In Phase I, Rosetta leverages TCP-
aware traffic augmentation to generate massive flow variants for packet length sequences of the TLS flows from a traffic dataset.
These flow variants are used to train TIE for robust feature extraction in a self-supervised manner; (2) In Phase II, the well-trained
TIE extracts the robust feature vectors from packet length sequences of TLS flows in the training dataset. The feature vectors and
their labels are used to train deep learning classifiers in a supervised manner; (3) In Phase III, the well-trained classifiers classify
the TLS flows according to their feature vectors that are extracted by the well-trained TIE.

verse network environments cause the three phenomenons.
TCP retransmission timeout (RTO) and fast retransmit mech-
anisms can both cause packet subsequence shift and packet
subsequence duplication when there is packet loss in diverse
network environments. The Nagle algorithm and the maxi-
mum transmission unit (MTU) impacts packet size of TLS
flows when there are high delays or different MTUs in net-
work environments. However, we find that the changes of
packet length sequences always follow the TCP specifications
no matter how network environments change. If we can be
aware of these regular packet sequence changes with TCP
semantics, robust TLS traffic classification in diverse network
environments may be achieved.

4 System Design of Rosetta

4.1 Threat Model

We consider the scenario where there are various TLS traffic
classification tasks. These deep learning models automati-
cally extract complicated and high-level features from packet
length sequences of TLS flows [7,35,46,49–51]. We consider
that they are deployed in a real-world network for TLS traffic
classification. As the network environment of the real-world
network is time-varying and unpredictable, they face the di-
verse network environments. Various factors can change the
environment of one network, such as traffic burst [48, 63],
traffic engineering [22, 54], partial network failure [2, 64],
and network update [11, 45].

Rosetta aims to improve the traffic classification robustness

of existing deep learning models in the real-world diverse
network environments. We do not require Rosetta knowing the
prior knowledge of the network and its network environments.
Actually, it is almost impossible to know the time-varying
and unpredictable network environments. We do not require a
substantial change for existing models to be compatible with
Rosetta. We require changing the dimension of the input layer
of existing models to the dimension of the robust features
extracted by Rosetta.

4.2 Overview

We propose Rosetta to extract robust features from packet
length sequences of TLS encrypted traffic. Rosetta consists
of two modules: TCP-aware traffic augmentation and traffic
invariant extractor (TIE). The first module generates a number
of variants for each flow with TCP-aware traffic augmentation
algorithms. Hence, we can get a number of new flows that
simulate how the original flows change in different network
environments. The second module extracts similar and robust
features from packet length sequences of flows. Hence, it can
understand the potential flow changes in different network
environments and whether the flow variants belong to the
same flow. To achieve this goal, it applies self-supervised
learning to project flow variants into a proper hidden space
as different feature vectors. It reduces the distance among
feature vectors of flow variants coming from the same flow.

Rosetta aims to improve the performance of mainstream
DL models on traffic classification in diverse network en-
vironments. Figure 4 shows the workflow after integrating



Rosetta with mainstream DL models. Rosetta does not require
substantial changes for the network structures of the existing
DL models. By changing the dimension of the input layer
to the dimension of the feature vector, existing DL models
are completely compatible with Rosetta. In the following sub-
sections, we will detail the two core modules of Rosetta, i.e.,
TCP-aware traffic augmentation and traffic invariant extractor.

4.3 TCP-Aware Traffic Augmentation

As we mentioned in Section 3.3, the changes of packet length
sequences of flows are mainly due to three phenomenons, i.e.,
packet subsequence shift, packet subsequence duplication,
and packet size variation. Based on the root causes of these
three phenomenons, we propose TCP-aware traffic augmenta-
tion algorithms to generate potential flow variants.
Packet Subsequence Duplication Augmentation. The
packet subsequence duplication is caused in the packet loss
scenario where TCP uses RTO and fast retransmit mecha-
nisms to handle packet loss. As their impact on the sequences
of packet lengths is different, we design one traffic augmen-
tation algorithm for each mechanism, respectively. The two
algorithms incur packet subsequence duplication for each
original TCP flow’s packet length sequence by simulating the
RTO and fast retransmit mechanisms with a packet loss rate,
respectively. By setting different packet loss rates, the two
algorithms can output massive TCP flow’s packet length se-
quences containing packet subsequence duplication for each
original TCP flow’s packet length sequence. Due to space lim-
itation, we put the algorithm details in the technical report [1].
Packet Subsequence Shift Augmentation. Similarly, the
RTO and fast retransmit mechanisms can also lead to packet
subsequence shift. Hence, we design two packet subsequence
shift augmentation algorithms with the RTO and fast re-
transmit mechanisms, respectively. The two algorithms incur
packet subsequence shift for each original TCP flow’s packet
length sequence by simulating the RTO and fast retransmit
mechanisms with a packet loss rate, respectively. By setting
different packet loss rates, the two algorithms can output mas-
sive TCP flow’s packet length sequences containing packet
subsequence shift for each original TCP flow’s packet length
sequence. Please refer to our additional technical report [1]
for details.
Packet Size Variation Augmentation. The delays between
TCP endpoints and the MTU will lead to packet size variation
of TLS flows in different network environments. For a given
RTT and an MSS, all the data segments sent during the RTT
will be buffered in the TCP stack until the sender receives an
ACK packet from the receiver or the size of the TCP stack
is more than the MSS. Consequently, several data segments
will be merged to generate a large packet rather than generate
many small packets. Hence, we design a packet size variation
augmentation algorithm by simulating a possible TCP trans-
mission with an MSS and an RTT distribution. By setting

different MSS values and RTT distributions, the algorithm
can generate massive TCP flow’s packet length sequences
containing packet size variation for each original TCP flow’s
packet length sequence. Please refer to our additional techni-
cal report [1] for details.

4.4 Traffic Invariant Extractor
Rosetta uses a classical self-supervised learning approach,
BYOL [24], to extract similar and robust features from flow
variants that come from a flow. BYOL reduces the distance
between positive pairs and applies the skillfully-designed
momentum mechanism to prevent the hidden space from col-
lapsing without negative pairs [9, 24]. BYOL relies on the
online and target neural networks. The online network is
defined by a set of parameters α and consists of three com-
ponents: an encoder ϕα, a projector ψα, and a predictor pα.
For more details of the network structures, please refer to
the study [24]. The target network is the same as the online
network, except with a different set of parameters ζ. Given a
target decay rate γ∈ [0,1], BYOL performs ζ← γζ+(1−γ)α
after each training update. It learns an encoder ϕα that outputs
representations of input samples as kα.

We use BYOL to project the flow variants into a hidden
space as feature vectors and update the hidden space to min-
imize the distance among feature vectors of flow variants
coming from the same flow. Specifically, two different flow
variants are needed as the inputs of the online and target
networks during the training phase. As TCP-aware traffic
augmentation algorithms have configurable parameters, we
can obtain a set of flow variants V from the packet length
sequence of each flow s with different parameters. Here, we
use v and v′ to denote two flow variants in V . The online
network outputs a representation kα = ϕα(v) and a projection
mα = ψα(k) for v. Meanwhile, the target network outputs a
representation k′

ζ
= ϕζ(v′) and a target projection m′

ζ
=ψζ(k′)

from v′. Finally, the predictor pα outputs a prediction pα(mα)
of m′

ζ
. BYOL normalizes pα(mα) and m′

ζ
, and applies their

mean squared error as the following loss function:

Lα,ζ =∥ pα(mα)−m′
ζ
∥2

2= 2−2 ·
< pα(mα),m′ζ >

∥ pα(mα) ∥2 · ∥ m′
ζ
∥2

(1)

The loss Lα,ζ is symmetrized in Eq. 1 by separately inserting
v′ into the online network and v into the target network to
calculate L̃α,ζ. In each training step, LRosetta

α,ζ = Lα,ζ + L̃α,ζ is
minimized by optimizing α. After the training, we can use the
encoder of BYOL ϕα to extract traffic invariants from packet
length sequences of flows.

5 System Evaluation

We evaluate the effectiveness of Rosetta on improving the
performance of the deep learning models for TLS encrypted



Table 6: Results on Classifying Replayed TLS Flows from CIRA-CIC-DoHBrw-2020 in Different Network Environments.

Different Wired Network Environments
Model θ1 θ2 θ3

AC F1 AC F1 AC F1

CNN + Rosetta 93.05% (↓5.16%) 93.03%(↓5.17%) 82.00% (↑28.84%) 81.78%(↑46.87%) 83.72% (↑26.68%) 82.85%(↑46.53%)

SDAE + Rosetta 91.89% (↑0.42%) 91.77%(↑0.30%) 86.63% (↑30.42%) 86.63%(↑43.23%) 84.17% (↑28.42%) 83.69%(↑47.65%)

LSTM + Rosetta 86.63% (↓1.05%) 84.03%(↓3.44%) 79.89% (↑26.84%) 78.32%(↑43.25%) 82.00% (↑24.96%) 78.98%(↑42.41%)

DF + Rosetta 94.42% (↓4.00%) 94.39%(↓4.02%) 86.63% (↑33.37%) 86.63%(↑51.88%) 86.01% (↑27.98%) 85.83%(↑49.11%)

FS-Net + Rosetta 89.26% (↓1.48%) 89.12%(↓1.59%) 84.63% (↑23.47%) 84.47%(↑32.37%) 84.17% (↑26.07%) 83.50%(↑43.84%)

Transformer + Rosetta 94.11%(↓4.17%) 93.74%(↓2.26%) 84.11% (↑21.89%) 83.60%(↑29.48%) 83.37% (↑26.33%) 80.38%(↑38.38%)

On Average 91.56%(↓2.57%) 91.01%(↓2.70%) 83.98%(↑27.47%) 83.57%(↑41.18%) 83.91%(↑26.74%) 82.54%(↑44.65%)

Different Wireless Access Network Environments
Model θ4 θ5 θ6

AC F1 AC F1 AC F1

CNN + Rosetta 89.05% (↑1.58%) 88.93%(↑1.90%) 85.37% (↑10.95%) 85.08%(↑13.55%) 80.42% (↑27.16%) 80.37%(↑45.41%)

SDAE + Rosetta 89.89% (↑1.78%) 89.74%(↑1.71%) 83.47% (↑1.36%) 82.95%(↑1.52%) 81.89% (↑26.73%) 81.88%(↑40.15%)

LSTM + Rosetta 85.37% (↑3.37%) 82.34%(↑1.15%) 82.53% (↑11.69%) 78.22%(↑10.87%) 76.53% (↑22.95%) 73.42%(↑37.33%)

DF + Rosetta 86.84% (↓1.16%) 86.53%(↓1.05%) 82.11% (↑7.16%) 81.31%(↑9.14% 82.63% (↑29.26%) 82.57%(↑47.57%)

FS-Net + Rosetta 85.58% (↓3.26%) 85.16%(↓3.60%) 84.42% (↑0.74%) 83.89%(↑0.60%) 77.26% (↑20.42%) 76.97%(↑32.47%)

Transformer + Rosetta 90.74% (↓3.00%) 89.81%(↓1.54%) 89.16% (↑3.54%) 88.20%(↑5.08%) 81.47% (↑27.20%) 79.63%(↑32.06%)

On Average 87.91%(↓0.12%) 87.09%(↓0.24%) 84.51%(↑5.91%) 83.27%(↑6.79%) 80.03%(↑25.62%) 79.14%(↑39.17%)

traffic classification in diverse network environments.

5.1 Experimental Setup
We use the same experiment setup mentioned in Section 3.1.1.
Besides, we leverage our TCP-aware traffic augmentation
algorithms to generate a number of flow variants from a third-
party TLS traffic dataset 2 from a well-known security com-
pany. We leverage the generated flow variants to train the
traffic invariant extractor (TIE) of Rosetta. Here, the dataset
consists of 502,109 malicious TLS flows and 613,419 benign
TLS flows. Actually, any traffic dataset containing massive
flows could be used to train our traffic invariant extractor with
our TCP-aware traffic augmentation algorithms.

As the dataset is disjoint with the previous two datasets
used for traffic classification in our experiments, i.e., CIRA-
CIC-DoHBrw-2020 and ISCX-VPN, we do not feed any
prior knowledge about the traffic classification dataset into
Rosetta. Here, to generate different flow variants, we set vari-
able ranges for each parameter in our algorithms: the packet
loss rate p ranges from 0% to 10%, Lmin ranges from 1 to 3,
Lmax ranges from 2 to 10, RT Tmin ranges from 0 to 100 ms,
RT Tmax ranges from 10 to 200 ms, and MSS ranges from 500
to 1500 bytes. When augmenting a flow, we randomly apply
one combination of our five TCP-aware traffic augmentation
algorithms to simulate random network environment effects

2For the research community to know its details, we have released the par-
tial dataset in Github: https://github.com/sunskyXX/Rosetta.git. To
download the full dataset, researchers can contact us via our email addresses
and sign the agreement on preventing data misusing and privacy leakage.

on the flow. By repeating the augmentation process on the
same flow, we obtain about 120 augmented flows for each
flow. We train our TIE with the GeForce RTX 2080. It is
trained with SGD for 60 epochs. We set the batch size of the
training steps as 1024. The weight decay rate is 0.0004 and
the target decay rate is 0.996.

5.2 Performance Improvement with Rosetta

5.2.1 Improvement with Replayed Traffic

Results with Replayed TLS encrypted flows. As Table 6
shows, the performance of all the models significantly im-
proves in the three network environments: θ2, θ3, and θ6. Par-
ticularly, there is 44.65% F1-score improvement on average
in θ3. Besides, we can see that the accuracy and F1-score of
the models drop slightly in θ1 and θ4. This is reasonable since
Rosetta only extracts robust features and omits unstable fea-
tures. Nevertheless, we should note that the unstable features
may make DL alone have good performance in the environ-
ments similar to the training environment. However, these
features significantly degrade the performance of DL alone in
different environments in most cases. However, DL+Rosetta
can always achieve acceptable classification performance in
diverse environments by extracting robust features. On aver-
age, more than 80% accuracy can be achieved in all the six
different network environments. Rosetta improves about 30%
accuracy at most on classifying TLS flows in diverse network
environments. We also get similar results for TLS flows from
ISCX-VPN. Please refer to Table 13 in Appendix C.



Table 7: Results on Classifying Real Website TLS Flows in Different Network Environments.

Different Wired Network Environments
Model τ1 τ2 τ3

AC F1 AC F1 AC F1

CNN + Rosetta 86.63%(↓2.92%) 86.06%(↑4.19%) 84.83%(↑3.35%) 81.33%(↑0.45%) 91.04%(↑33.31%) 91.04%(↑38.75%)

SDAE + Rosetta 84.67%(↑2.30%) 81.54%(↑12.50%) 85.54%(↑7.41%) 84.49%(↑9.70%) 89.47%(↑19.43%) 85.87%(↑17.07%)

LSTM + Rosetta 84.17%(↑2.32%) 82.07%(↑5.48%) 76.01%(↓0.71%) 74.13%(↑0.05%) 88.52%(↑25.81%) 88.14%(↑30.89%)

DF + Rosetta 90.37%(↓0.90%) 90.10%(↑5.43%) 85.19%(↑1.24%) 81.00%(↑0.42%) 90.15%(↑6.56%) 90.14%(↑6.64%)

FS-Net + Rosetta 86.99%(↑1.18%) 86.47%(↑6.66%) 84.83%(↑11.81%) 76.24%(↑4.04%) 88.41%(↑23.99%) 88.40%(↑26.43%)

Transformer + Rosetta 90.02%(↑5.17%) 87.93%(↑1.74%) 85.36%(↑14.39%) 81.37%(↑11.80%) 89.70%(↑27.04%) 89.69%(↑31.23%)

On Average 87.14%(↑1.19%) 85.69%(↑2.17%) 83.63%(↑6.25%) 79.76%(↑4.41%) 89.55%(↑22.69%) 88.88%(↑25.17%)

Different Wireless Access Network Environments
Model τ4 τ5 τ6

AC F1 AC F1 AC F1

CNN + Rosetta 77.24%(↑4.73%) 75.02%(↑6.51%) 83.58%(↑16.42%) 82.38%(↑22.23%) 75.92%(↑5.29%) 70.66%(↑1.93%)

SDAE + Rosetta 79.10%(↑11.06%) 77.54%(↑9.56%) 74.31%(↑9.74%) 71.18%(↑6.98%) 71.95%(↑2.01%) 65.80%(↑1.79%)

LSTM + Rosetta 69.28%(↑8.39%) 79.53%(↑19.49%) 75.16%(↑8.23%) 74.37%(↑10.77%) 69.59%(↑3.18%) 62.84%(↑1.17%)

DF + Rosetta 84.13%(↑4.23%) 81.67%(↑6.67%) 84.19%(↑13.52%) 80.48%(↑13.56%) 77.58%(↑4.55%) 76.10%(↑5.93%)

FS-Net + Rosetta 77.95%(↑7.81%) 74.79%(↑6.40%) 75.95%(↑11.11%) 72.87%(↑7.45%) 72.83%(↑5.18%) 67.44%(↑0.96%)

Transformer + Rosetta 76.84%(↑13.13%) 74.80%(↑12.66%) 75.66%(↓3.32%) 72.60%(↓2.78%) 76.60%(↑15.23%) 70.23%(↑10.49%)

On Average 77.42%(↑8.23%) 77.22%(↑10.21%) 78.14%(↑9.28%) 75.64%(↑9.70%) 74.08%(↑5.91%) 68.85%(↑3.71%)

5.2.2 Improvement with Real Traffic

Results with Website TLS encrypted flows. As Table 7
shows, the average performance of the models effectively im-
proves on classifying the website TLS flows in all the six net-
work environments. Particularly, there are 25.17% F1-Score
improvement on average in τ3. Rosetta can improve 33.31%
accuracy at most for a deep learning model on classifying
website TLS flows in diverse network environments.

Results with Application TLS Flows. As Table 8 shows,
the average performance of the models effectively improves
on classifying application TLS flows in all the six network
environments. Rosetta improve 45.07% F1-Score at most for
LSTM on classifying TLS flows in τ3. The experiment results
demonstrate that Rosetta is an effective approach to enhance
the robustness of DL models for TLS flow classification in
diverse network environments.

5.3 Classification Robustness

To quantitatively evaluate the classification robustness when
applying Rosetta in different network environments, we lever-
age Traffic Control (TC) and ifconfig to set different
packet loss rates, delays, and MTU in our sender hosts that
replay flows. Hence, we can build controllable network envi-
ronments. We replay TLS flows from CIRA-CIC-DoHBrw-
2020 in these controllable network environments and apply
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Figure 5: Robustness under different packet loss rates.

the DF model with/without Rosetta to classify these flows.3

Under Different Packet Loss Rates. Figure 5 shows the DF
performance with and without Rosetta for different packet
loss rates. As Figure 5a shows, although DF alone achieves
more than 99% accuracy with a low packet loss rate, the
accuracy quickly decreases when the packet loss increases.

3We also conduct experiments with other classification models and they
show similar results like DF. Hence, we only show the experimental results
with DF for simplicity and clarity.



Table 8: Results on Classifying Real Application TLS Flows in Different Network Environments.

Different Wired Network Environments
Model τ1 τ2 τ3

AC F1 AC F1 AC F1

CNN + Rosetta 90.62%(↓4.62%) 90.57%(↓4.50%) 80.97%(↑7.15%) 80.68%(↑9.29%) 81.24%(↓4.38%) 80.96%(↓4.17%)

SDAE + Rosetta 89.76%(↑8.09%) 89.40%(↑8.02%) 80.11%(↑26.75%) 76.28%(↑23.28%) 82.37%(↑23.62%) 82.30%(↑23.76%)

LSTM + Rosetta 92.58%(↑24.51%) 92.42%(↑35.29%) 79.74%(↑12.08%) 75.92%(↑34.34%) 83.58%(↑30.75%) 83.49%(↑45.07%)

DF + Rosetta 95.22%(↓2.89%) 95.06%(↓3.00%) 83.73%(↑0.26%) 79.76%(↑0.47%) 79.11%(↑9.16%) 79.04%(↑9.14%)

FS-Net + Rosetta 91.80%(↑22.18%) 91.55%(↑30.93%) 82.49%(↑11.70%) 78.53%(↑36.99%) 81.79%(↑25.43%) 81.64%(↑35.12%)

Transformer + Rosetta 96.98%(↑4.94%) 96.95%(↑5.60%) 84.12%(↓12.83%) 83.76%(↓12.70%) 84.56%(↓7.63%) 83.87%(↓8.24%)

On Average 92.83%(↑8.70%) 92.66%(↑12.06%) 81.86%(↑7.52%) 79.15%(↑15.28%) 82.11%(↑12.83%) 81.88%(↑16.78%)

Different Wireless Access Network Environments
Model τ4 τ5 τ6

AC F1 AC F1 AC F1

CNN + Rosetta 97.76%(↑5.93%) 97.72%(↑6.19%) 97.44%(↑1.21%) 97.24%(↑1.33%) 96.18%(↑1.10%) 95.81%(↑1.24%)

SDAE + Rosetta 98.46%(↑21.94%) 98.44%(↑21.93%) 98.92%(↑26.21%) 98.86%(↑26.19%) 96.24%(↑37.05%) 95.91%(↑36.80%)

LSTM + Rosetta 97.59%(↑33.75%) 97.57%(↑42.22%) 98.78%(↑29.42%) 98.71%(↑41.12%) 94.76%(↑22.69%) 94.45%(↑33.41%)

DF + Rosetta 94.34%(↑1.38%) 94.21%(↑1.47%) 95.76%(↓2.93%) 95.43%(↓3.17%) 93.01%(↓5.98%) 92.35%(↓6.56%)

FS-Net + Rosetta 98.11%(↑38.48%) 98.09%(↑52.38%) 99.10%(↑30.85%) 99.05%(↑44.90%) 96.31%(↑25.25%) 96.05%(↑37.73%)

Transformer + Rosetta 93.28%(↑3.06%) 93.22%(↑3.19%) 99.75%(↑6.31%) 99.74%(↑7.28%) 93.45%(↑1.02%) 92.75%(↑0.42%)

On Average 96.59%(↑17.42%) 96.54%(↑21.23%) 98.29%(↑15.18%) 98.17%(↑19.61%) 94.99%(↑13.52%) 94.55%(↑17.17%)

When the packet loss is increased to 10%, DF only achieves
78% accuracy. High packet loss rates significantly change
the pattern of traffic traces and make the traffic hard to be
classified. However, the classification accuracy only slightly
drops with high packet loss rates when enabling the DF model
with Rosetta. The reason is that DF without Rosetta overfits
the training network environment. It extracts some unstable
features for better performance in environments similar to the
training environment, e.g., the good results in the first two
ticks in Figure 5a. However, these features significantly de-
grade the performance of DF alone in other environments. The
experiments in a low delay environment and a high MTU en-
vironment show similar results. Figure 5b and Figure 5c show
similar results for the F1-score and recall rate. As Figure 5d
shows, although DF alone achieves less than 1% false posi-
tive rate with a low packet loss, the false positive rate quickly
increases when packet loss increases. When the packet loss is
increased to 10%, DF achieves 37% false positive rate. How-
ever, the false positive rate only slightly increase with high
packet loss when enabling Rosetta. These results show that
Rosetta enables deep learning models to achieve more robust
traffic classification for different packet loss rates.
Under Different Delays. Figure 6 shows the DF performance
with and without Rosetta for different delays. As Figure 6a
shows, the DF model can achieve more than 95% accuracy
when the delay is less than 5 ms. However, the accuracy
significantly drops when the delay increases. Particularly, the
accuracy drops to about 55% when the delay increases to 50
ms. However, when enabling the DF model with Rosetta, it
can always achieve more than 86% accuracy with the delay
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Figure 6: Classification robustness under different delays.

ranging from 10ms to 50ms. Besides, Figure 6b shows the DF
model with Rosetta can always reach more than 84% F1-score
for different delays. However, the F1-score remarkably drops
with the increase of delays if Rosetta is not enabled. Figure 6c
shows the similar results for recall rate. Figure 6d shows that
DF with Rosetta keeps a low false positive rate for different
delays. However, if Rosetta is disabled, the false positive rate
significantly increases with the delays. The results show that
Rosetta enables deep learning models to achieve more robust
traffic classification for different delays.
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Figure 7: Classification robustness under different MTUs.

Under Different MTUs. Figure 7 shows the DF perfor-
mance with and without Rosetta for different MTUs. The
performance of the DF model significantly decreases with the
decrease of the MTU. Particularly, the F1-Score decreases
from 99% to less than 70% when the MTU decreases from
1500 to 700 bytes. This is because a small MTU can cause
packet size variation as we analyzed in Section 3.3, which
causes significant pattern changes of packet sequences of
flows. However, if we enable the DF model with Rosetta,
the accuracy and F1-score become more stable for different
MTUs. Even though the MTU drops to 700 bytes, we can
still achieve more than 85% accuracy and 80% F1-score. The
results show that Rosetta enables deep learning models to
achieve more robust traffic classification for different MTUs.

5.4 Feature Vector Visualization
Rosetta generates a feature vector for each flow to denote
the extracted abstract features in hidden features. Hence, we
collect a pair of feature vectors for each flow that is replayed
in two different network environments. We apply the t-SNE
method to project these high-dimensional feature vectors into
2D vectors. Figure 8 draws all the feature vectors in two differ-
ent environments. We can see that the distributions of feature
vectors are similar in different network environments. These
results demonstrate that Rosetta extracts stable and robust
features for flows. Figure 9 further demonstrates the results.
As shown in Figure 9b, Rosetta generates similar feature vec-
tors for a flow in different network environments. Besides,
feature vectors of different flows are separated. Nevertheless,
the DF model generates nearly overlapped feature vectors for
different flows, which is shown in Figure 9a. Feature vectors
for a flow in different network environments are separated.
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Figure 8: Feature Distribution between two environments.
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Figure 9: Feature vectors of eight flows. Each flow is replayed
in three network environments, generating three points with
the same shape but different colors.

5.5 Other Data Augmentation Methods

We conduct experiments to compare our TCP-aware traffic
augmentation method with two classical data augmentations:
Random Mask (RM) [17] and Random Swap (RS) [60]. We re-
place our augmentation method with RM and RS in Rosetta to
augment flows, respectively. Hence, we get three versions of
Rosetta with different traffic augmentation methods. Based on
the feature vectors extracted by the three versions of Rosetta,
we train three DF models to classify TLS flows from CIRA-
CIC-DoHBrw-2020 in different network environments, re-
spectively. Table 9 shows the classification results with differ-
ent data augmentations in diverse network environments. We
can only get 47.73% F1-score on average in θ0-θ6 if RM is
applied to augment flows in Rosetta. Similarly, the average F1-
score with RS in θ0-θ6 is still less than 50%. However, if we
apply our TCP-aware traffic augmentation in Rosetta, we can
achieve 87.49% F1-Score in θ0-θ6 on average. These results
demonstrate that simply applying data augmentation meth-
ods without considering TCP semantics cannot help Rosetta
extract robust features in different network environments.

6 Discussion

Considerations on Reconstructing Packets before Train-
ing Classifiers. We may reconstruct out-of-order segments
packets and discard the duplicated packets by keeping track
of the sequence numbers for each flow; however, it is difficult
to reconstruct reassembly packets due to the Nagle algorithm



Table 9: Classification Results with Different Data Augmentations in Different Network Environments.

Different Wired Network Environments Different Wireless Access Network Environments
On Average

Data Aug. θ0 θ1 θ2 θ3 θ4 θ5 θ6

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

RM [17] 97.89% 97.80% 89.47% 88.12% 53.26% 11.56% 58.03% 16.47% 78.00% 71.72% 61.58% 34.00% 52.84% 14.44% 70.15% 47.73%

RS [60] 99.79% 99.77% 86.42% 83.09% 56.26% 16.16% 56.13% 21.84% 77.47% 68.53% 58.53% 20.88% 53.16% 16.74% 69.68% 46.72%

Ours 95.16% 95.14% 94.42% 94.39% 86.63% 86.63% 86.01% 85.83% 86.84% 86.53% 82.11% 81.31% 82.63% 82.57% 87.69% 87.49%

or the fragmented packets due to the various MTUs in differ-
ent network environments. The Nagle algorithm (enabled by
default in major TCP implementations [61]) merges packet
payloads based on the network environments and applica-
tion behaviors, which cannot be obtained from the packets.
Similarly, how the original data are fragmented into different
packets is based on MTUs and application behaviors, which
cannot be obtained from the packets and flows. Besides, recon-
structing out-of-order packets or dropping duplicated packets
requires keeping track of the TCP state for each flow. It is
resource-consuming and time-consuming when there are mas-
sive TLS flows in real networks, especially for the real-time
traffic classification tasks [5, 6]. Instead, Rosetta extracts ro-
bust flow features, enabling accurate traffic classification in
diverse network environments without reconstructing packets.

Considerations on Periodically Re-training Classifiers. We
may re-train a classifier in the target network periodically
for performance improvement with diverse network environ-
ments. However, there may still be significant performance
degradation for the classifier in the network environment that
the classifier hasn’t met before, especially considering there
are time-varying and infinite environmental states for a real
network. It is also almost impossible to train a classifier that
covers all the possible network environments of the target net-
work. Besides, periodically re-training the classifier requires
frequently collecting new flows in new network environments
and labeling them with humans. The procedure is resource-
consuming, time-consuming, and labor-intensive in practice.
It is also hard to determine when to retrain the classifier. Thus,
it is necessary to achieve robust TLS traffic classification in
diverse network environments without re-training the models.

Robustness-Accuracy Tradeoff with Rosetta. Even though
our experiments show Rosetta can enable DL models to
achieve robust TLS encrypted traffic classification in diverse
network environments, we observe that Rosetta may cause
slight performance degradation for DL models in a few cases.
This is likely to happen when the network environment where
we classify TLS flows is similar to the network environments
where we train our DL models. It is reasonable since Rosetta
extracts robust features and omits unstable features. How-
ever, Rosetta can always enable DL models to achieve ac-
ceptable classification performance in diverse environments
with the robust features. Instead, DL models without Rosetta
may overfit the training network environment. They extract

some unstable features for better performance in the environ-
ments similar to the training environment. However, these
features significantly degrade the performance of DL alone
in most environments as we have shown in Section 3. Rosetta
enables robust TLS flow classification in diverse network en-
vironments at the cost of slight accuracy drop in a few cases.
Considering the varying real-world network environments,
we believe that Rosetta makes an acceptable tradeoff between
classification robustness and accuracy.
Considerations on Timing Information. Rosetta does not
extract features from timing information of TLS flows. Tim-
ing information may be useful for website fingerprinting [44].
However, we focus on general TLS traffic classification in a
real network with diverse network environments. Different
network environments can significantly change the timing
information of flows. For example, timing in a high-delay
network environment is different from that in a low-delay net-
work environment. Consequently, the timing information can
incur potential performance degradation for traffic classifica-
tion in diverse network environments. Hence, Rosetta does
not extract features from timing information to classify TLS
flows. Actually, recent studies [46, 51, 52] have dropped the
timing information to achieve excellent performance for traf-
fic classification.

7 Conclusion

In this paper, we conduct a comprehensive measurement study
to demonstrate that existing DL models fail to achieve robust
TLS traffic classification in diverse network environments.
Through our systematic analysis, we point out the reason for
the remarkable performance degradation is that the packet
length sequences of flows dramatically change due to differ-
ent mechanisms of TCP for reliable transmission in diverse
network environments. To address the problem, we develop
Rosetta to learn robust features of TLS flows in diverse net-
work environments based on TCP-aware traffic augmentations
and self-supervised learning. Extensive experiments demon-
strate that Rosetta can enable robust TLS encrypted traffic
classification in diverse network environments for existing
DL models and significantly improve their classification per-
formance. We hope this work attracts more attention on TLS
traffic classification considering real network environments.
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A Details for Transformer

We use a standard encoder and MLP in Transformer as a
classifier in our experiments. As the input of the encoder in
Transformer is a token sequence, we treat the packet length

Table 10: Hyperparameters of our Transformer.

Hyperparameter Trasnformer

hidden dimension 16

layer 4

heads 4

dropout rate 0.1

optimizer SGD

batch size 32

training epoch 30

learning rate 0.0003

Table 11: Ablation Study on Different Modules in Rosetta.

Alg.1 Alg.2 Alg.3 Alg.4 Alg.5 TIE AC F1

× × × × × × 58.03% 36.72%

× ✓ ✓ ✓ ✓ ✓ 83.03% 83.28%

✓ × ✓ ✓ ✓ ✓ 82.57% 82.50%

✓ ✓ × ✓ ✓ ✓ 82.80% 82.21%

✓ ✓ ✓ × ✓ ✓ 84.29% 84.09%

✓ ✓ ✓ ✓ × ✓ 60.42% 41.32%

✓ ✓ ✓ ✓ ✓ × 72.57% 78.41%

✓ ✓ ✓ ✓ ✓ ✓ 86.01% 85.83%

sequence as the token sequence for the input. Following
the general settings of existing methods on traffic classifi-
cation [51, 52], we fix the length of the input sequence to 100
for the Transformer encoder, i.e., any sequence longer than
100 will be truncated to 100, and any sequence shorter than
100 is padded with zeros. Thus, the encoder output will gener-
ate embedding vectors with a fixed size. Next, we flatten the
sequence of embedding vectors into a new embedding vector
as the input for MLP. We train Transformer with massive
packet length sequences from TLS flows and we use SGD
to optimize its parameters. We optimize its hyperparameters
according to the classification results and our experience. The
hyperparameters of Transfomer are shown in Table 10.

B Ablation Study

We conduct ablation experiments for the five traffic augmen-
tation algorithms and the Traffic Invariant Extractor (TIE) in
Rosetta. We train different versions of Rosetta by removing
one of the six modules each time. We train different DF mod-
els with different versions of Rosetta to classify TLS flows
from CIRA-CIC-DoHBrw-2020 in diverse network environ-
ments. Note that, the version of Rosetta without TIE indicates
that it only conducts TCP-aware traffic augmentation, and we
use augmented traffic to directly train classifiers without us-
ing TIE to extract features. Table 11 shows the classification
results for our ablation experiments. The classification accu-

https://en.wikipedia.org/wiki/Nagle's_algorithm
https://en.wikipedia.org/wiki/Nagle's_algorithm


Table 12: Results on Classifying Replayed TLS Flows from ISCX-VPN in Different Network Environments (Without Rosetta).

Different Wired Network Environments Different Wireless Access Network Environments
Model θ0 θ1 θ2 θ3 θ4 θ5 θ6

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

CNN 76.92% 76.83% 71.53% 72.65% 60.90% 60.43% 59.62% 56.62% 53.85% 52.53% 57.33% 56.96% 67.95% 67.86%

SDAE 77.56% 77.56% 66.23% 65.39% 59.62% 59.60% 56.41% 56.38% 52.56% 49.57% 54.67% 53.48% 61.54% 61.48%

LSTM 82.69% 82.43% 66.23% 65.53% 62.18% 57.24% 61.54% 55.85% 62.82% 60.97% 62.67% 59.15% 64.74% 60.14%

DF 81.41% 81.37% 72.73% 72.35% 64.10% 63.89% 64.74% 64.73% 61.54% 61.31% 59.33% 59.03% 58.97% 57.61%

FS-Net 78.85% 78.53% 68.18% 68.15% 51.92% 51.59% 47.44% 46.37% 51.28% 51.08% 60.00% 59.89% 54.49% 53.94%

Transformer 82.14% 84.85% 72.08% 71.54% 62.95% 61.77% 56.41% 58.46% 58.97% 61.31% 64.67% 61.55% 62.82% 63.15%

On Average 79.93% 80.26% 69.50% 69.29% 60.28% 59.09% 57.69% 56.40% 56.84% 56.13% 59.78% 58.34% 61.75% 60.70%

Table 13: Results on Classifying TLS Flows from ISCX-VPN in Different Network Environments (With Rosetta).

Different Wired Network Environments
Model θ1 θ2 θ3

AC F1 AC F1 AC F1

CNN + Rosetta 77.27%(↑5.74%) 76.84%(↑4.19%) 74.84%(↑13.94%) 74.43%(↑14.00%) 71.79%(↑12.17%) 70.21%(↑13.59%)

SDAE + Rosetta 78.57%(↑12.34%) 77.89%(↑12.50%) 76.28%(↑16.66%) 75.17%(↑15.57%) 75.64%(↑19.23%) 74.57%(↑18.19%)

LSTM + Rosetta 74.03%(↑7.80%) 71.01%(↑5.48%) 76.28%(↑14.10%) 70.87%(↑13.62%) 75.00%(↑13.46%) 71.11%(↑15.26%)

DF + Rosetta 78.57%(↑5.84%) 77.78%(↑5.43%) 75.64%(↑11.54%) 74.83%(↑10.94%) 77.56%(↑12.82%) 77.07%(↑12.34%)

FS-Net + Rosetta 75.32%(↑7.14%) 74.81%(↑6.66%) 75.00%(↑23.08%) 74.54%(↑22.95%) 76.92%(↑29.48%) 76.45%(↑30.09%)

Transformer + Rosetta 76.27%(↑4.19%) 73.28%(↑1.74%) 76.92%(↑13.97%) 73.13%(↑11.36%) 77.56%(↑21.15%) 75.18%(↑16.72%)

On Average 76.67%(↑6.15%) 75.27%(↑5.14%) 75.83%(↑13.33%) 73.83%(↑12.64%) 75.75%(↑15.47%) 74.10%(↑15.17%)

Different Wireless Access Network Environments
Model θ4 θ5 θ6

AC F1 AC F1 AC F1

CNN + Rosetta 75.00%(↑21.15%) 73.97%(↑21.44%) 74.33%(↑17.00%) 72.06%(↑15.10%) 74.36%(↑6.41%) 73.23%(↑5.37%)

SDAE + Rosetta 76.92%(↑24.36%) 76.15%(↑26.58%) 75.33%(↑20.66%) 74.51%(↑21.03%) 78.21%(↑16.67%) 77.58%(↑16.10%)

LSTM + Rosetta 75.64%(↑12.82%) 71.21%(↑10.25%) 74.00%(↑11.33%) 69.77%(↑10.62%) 78.85%(↑14.11%) 75.91%(↑15.77%)

DF + Rosetta 76.28%(↑14.74%) 76.00%(↑14.69%) 73.33%(↑14.00%) 72.85%(↑13.83%) 78.21%(↑19.24%) 77.84%(↑20.23%)

FS-Net + Rosetta 71.15%(↑19.87%) 70.81%(↑19.73%) 70.67%(↑10.67%) 70.48%(↑10.59%) 71.79%(↑17.30%) 71.79%(↑17.85%)

Transformer + Rosetta 77.56%(↑18.59%) 74.45%(↑13.14%) 75.33%(↑10.66%) 71.76%(↑10.21%) 73.08%(↑10.26%) 68.18%(↑5.03%)

On Average 75.43%(↑15.93%) 73.77%(↑15.12%) 73.83%(↑12.05%) 71.90%(↑11.62%) 75.75%(↑12.00%) 74.09%(↑11.48%)

racy is ranging from 60.42% to 84.29% by removing one of
the five traffic augmentation algorithms. We can see that any
of the five algorithms is helpful to improve classification re-
sults in diverse network environments. However, the accuracy
is only 60.42% without Algorithm 5. Hence, Algorithm 5
plays the most important role in improving the classification
performance of TLS flows in diverse network environments.
Besides, we can see that the accuracy is 72.57% without
TIE, while the accuracy is 86.01% with TIE. Hence, applying
TIE to extract robust features after TCP-aware traffic aug-
mentation is necessary to further improve the classification
performance.

C Results with TLS flows from ISCX-VPN

The experimental results with the replayed flows from ISCX-
VPN in different network environments demonstrate similar
results, which is shown in Table 12. When applying the mod-
els trained in θ0 to conduct traffic classification in θ1 to θ6,
the average accuracy of all the models decreases by about
10% at least and 23% at most, and the average F1-Score de-
creases by about 11% at least and 24% at most. Hence, it is
obvious that different network environments can significantly
affect the traffic classification results of existing deep models.
The results demonstrate that existing deep learning models
fail to enable robust TLS encrypted traffic classification in
diverse network environments. However, Rosetta can effec-
tively improve the classification robustness of the DL models
in diverse network environments, which is shown in Table 13.
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