
Black-box Adversarial Example Attack towards FCG Based Android Malware
Detection under Incomplete Feature Information

Heng Li†, Zhang Cheng‡,†, Bang Wu† , Liheng Yuan† , Cuiying Gao† , Wei Yuan† ∗, Xiapu Luo�

† Huazhong University of Science and Technology
� The Hong Kong Polytechnic University

‡ NSFOCUS Technologies Group Co., Ltd.
{liheng,wubangm,ylh,gaocy,yuanwei}@hust.edu.cn

chengzhang@nsfocus.com,csxluo@comp.polyu.edu.hk

Abstract
The function call graph (FCG) based Android malware detec-

tion methods have recently attracted increasing attention due

to their promising performance. However, these methods are

susceptible to adversarial examples (AEs). In this paper, we

design a novel black-box AE attack towards the FCG based

malware detection system, called BagAmmo. To mislead its

target system, BagAmmo purposefully perturbs the FCG fea-

ture of malware through inserting "never-executed" function

calls into malware code. The main challenges are two-fold.

First, the malware functionality should not be changed by

adversarial perturbation. Second, the information of the tar-

get system (e.g., the graph feature granularity and the output

probabilities) is absent.

To preserve malware functionality, BagAmmo employs the

try-catch trap to insert function calls to perturb the FCG of

malware. Without the knowledge about feature granularity

and output probabilities, BagAmmo adopts the architecture

of generative adversarial network (GAN), and leverages a

multi-population co-evolution algorithm (i.e., Apoem) to gen-

erate the desired perturbation. Every population in Apoem

represents a possible feature granularity, and the real feature

granularity can be achieved when Apoem converges.

Through extensive experiments on over 44k Android apps

and 32 target models, we evaluate the effectiveness, efficiency

and resilience of BagAmmo. BagAmmo achieves an average

attack success rate of over 99.9% on MaMaDroid, APIGraph

and GCN, and still performs well in the scenario of concept

drift and data imbalance. Moreover, BagAmmo outperforms

the state-of-the-art attack SRL in attack success rate.

1 Introduction

Occupying about 85% of the global mobile operating sys-

tem market, Android has become the main target of mobile

malware in the world. A recent security report shows that

on average, about 10000 new mobile malware samples were

∗Corresponding author

captured per day [20]. The rapidly increasing of malware

poses severe threats to Android users [30, 37, 49], e.g., pri-

vacy leakage and economic losses. To tackle this problem, a

variety of machine learning based Android malware detec-

tion methods have been designed to identify malware based

on their features [3, 23, 25, 35, 41, 55, 58, 64, 66, 67]. As a

common feature for Android malware detection, Function

Call Graph (FCG) [23, 25, 41, 55, 58, 66, 67] (e.g., frequent

subgraph [15] and E-FCG [8]) provides important clues for

understanding how Android apps work. In an FCG, every

node represents a function or an abstracted function (e.g.,

class, package or family), and every edge denotes the calling

relationship between caller and callee. As depicted in Fig. 1,

Graph
embedding

Classifier

APK FCG Vector AB

DNN

RF
Smali files

Problem Space Feature Space

Code-to-graph
mapping

Graph-to-vector
mapping

1-NN

Malicious

Benign

Figure 1: FCG based Android malware detection framework.

the FCG based Android malware detection usually consists

of three steps. First, the FCG feature (e.g., frequent subgraph)

is extracted from the Android Package (APK) file. Second,

the FCG is transformed into a feature vector, i.e., graph em-

bedding. Third, the feature vector is processed for malware

prediction. Existing studies [41, 58, 67] demonstrate that the

FCG based Android malware detection methods can achieve

promising performance.

Unfortunately, the FCG based malware detection is sus-

ceptible to adversarial examples (AEs) [9, 40, 48, 50, 51, 62],

which are generated by imposing well-crafted adversarial per-

turbations on normal examples to induce misclassification.

To evade detection, an adversary just needs to manipulate a

malicious app by elaborately modifying (e.g., inserting non-

functional function calls) and repackaging its code. Although

malware manipulation takes place in problem space (depicted

by the first box in Fig. 1), it changes the FCG (e.g., adding

new edges) and perturbs the feature vector in feature space

(described by the second box in Fig. 1). Once the perturba-

tion helps the feature vector stride over the target classifier’s

decision boundary, the repackaged malware will evade de-

tection. Up to now, a variety of AE attacks towards Android

malware detection have been proposed to produce evasive

Android malware. Most of them [21, 24, 27, 33, 34] direct

at non-graph features (i.e., syntax features) based detection

models that use binary feature vectors for app classification.

Recently, increasing attention has been paid to the AE attacks

towards graph feature (i.e., semantic feature) based detection

models [6] [10]. For example, Bostani et al. [6] leverage ran-

dom search to find optimal perturbation for APK files in a

black-box setting. Chen et al. [10] propose a method to exert

optimal perturbations on Android APK files.

Up to now, how to produce Android malware to circumvent

the FCG based detection is still an open issue. This motivates

us to investigate the generation of AEs to fight against the

FCG based Android malware detection. In practice, building

evasive malware needs to consider the following realistic

problems that have not been well addressed.

(1) Malware functionality preservation. The malware manip-

ulation should be able to mislead its target classifier in the

premise of malware functionality preservation.

(2) Problem-feature space gap. Since the feature vector in

feature space cannot be directly perturbed, adversaries have

to modify malware code in problem space and expect their

modification brings about the desired adversarial perturbation

on feature vector.

(3) Strict black-box setting. For adversaries, the target classi-

fier is a strict black box and its architecture, parameters and

output probabilities are all unknown.

(4) Feature information absence. Adversaries cannot get the

feature used by their target classifier, i.e., the FCG and the

feature vector obtained by graph embedding (denoted in the

second box of Fig. 1). Moreover, a detection system may use

one of several possible feature granularities, e.g., class level,

package level and family level (as discussed in Subsection

2.1). In practice, the feature granularity information is often

unavailable to adversaries.

To overcome the above challenges, we design a black-

box attacks towards FCG based Android malware detec-

tion with multi-population co-evolution, termed BagAmmo.

BagAmmo works under the incomplete feature information
condition, which means adversaries do not know the granular-

ity of the FCG feature used by their target system. Our main

tasks include designing a malware manipulation technique

used in problem space, and developing an algorithm to derive

adversarial perturbation in feature space. BagAmmo con-

structs a dedicated Generative Adversarial Network (GAN)

and employs its generator to generate candidate manipu-

lations under the guidance of its discriminator. The gen-

erator is implemented by our proposed Adversarial multi-

population co-evolution algorithm (Apoem). BagAmmo iter-

atively queries its target detection system with manipulated

samples, and gradually learns the desired manipulation from a

sequence of query-reply pairs. BagAmmo uses the following

techniques to overcome the above challenges.

(1) BagAmmo leverages a novel malware manipulation

method "try-catch trap" to insert never-executed function

calls into malware code for functionality preservation.

(2) BagAmmo maps the FCG into a feature vector, which

transfers the impacts of malware manipulation into feature

space and hence bridges the problem-feature space gap.

(3) To overcome the challenge of strict black box, the discrim-

inator substitutes the target classifier and guides the generator

to figure out the desirable manipulation rapidly.

(4) In Apoem, every population corresponds to a possible fea-

ture granularity. Owning to the cooperative evolution among

populations, Apoem converges to the real feature granularity

under incomplete feature information.

Our main contributions are summarized as follows.

• We propose a novel black-box AE attack BagAmmo to-

wards the FCG based Android malware detection. BagAmmo

does not require complete information about feature space,

and hence it is a broad-spectrum attack with strong generaliz-

ability.

• We theoretically analyze why Apoem can mitigate the pre-

maturity problem that often plagues the evolution algorithms.

• We conduct extensive experiments on three state-of-the-art

(SOTA) malware detection methods MaMaDroid [41], API-

Graph [67] and GCN [65] with five classifiers (e.g., RF and

DNN) under three feature granularities. BagAmmo surpasses

the SOTA attack (i.e., reinforcement learning based method

SRL) in our experiments. It achieves an average attack suc-

cess rate of over 99.9% on all 32 target detection systems. Our

experiments also confirm the BagAmmo’s attack efficiency

and resilience to concept drift and data imbalance.

Roadmap. The remainder of the paper is organized as

follows: §2 introduces preliminaries; §3 presents the problem

formulation; §4 discusses how to manipulate the malware; §5

describes the algorithm of perturbation generation; §6 gives

the performance evaluation; §7 reviews relevant work; §8

provides the limitations and discussion.

2 Preliminaries

2.1 Features for Android malware detection
In this subsection, we focus on the static features that are

obtained prior to app execution and widely used in Android

malware detection. Earlier studies devote more attention to

syntax features, e.g., requested permissions [14,35,70] , intent

actions [18,44,64], Inter-Component Communications (ICCs)

[4, 17] and API calls [3, 47]. Recently, semantic features [41,

58, 67] (e.g., FCGs) have attracted increasing attention. They

can characterize the behavior and functionality of apps, and

hence achieve promising performance.

As the most common semantic feature, FCGs are

often constructed based on smali files. A func-

tion or an abstracted function denoted by its function

name (e.g., java.lang.StrictMath: max()), class name (e.g.,

java.lang.StrictMath), package name (e.g., java.lang), or fam-

ily name (e.g., java) can be used to represent a node in an

FCG. Therefore, there exist four feature granularities in FCGs

, i.e., function level, class level, package level and family

level, as shown in Fig. 2. The features with finer granularities

(e.g., class level) usually have a more complex graph struc-

ture, causing heavier computational overhead and requiring

dimensionality reduction [41].

family

package

class

java

java.lang

java.lang.StrictMath

function java.lang.StrictMath: max()

java.lang.StrictMath: max()

G f amily

Gpackage

G f unction

Gclass

Figure 2: Different granularities of the FCG.

Clearly, the knowledge about the feature granularity of

the target system is helpful for adversaries to generate AEs.

However, this prior knowledge is hard to obtain in practice.

Hence, we put forward the incomplete feature information

assumption, assuming that adversaries do not know the feature

granularity of the target system.

2.2 FCG based Android malware detection
Here we introduce three state-of-the-art FCG based detection

methods, which will act as the target detection systems in our

experiments.

Mamadroid. Mamadroid [41] considers the package-level or

family-level FCGs as its features. More specifically, it adopts

340 packages and 11 families. To extract a feature vector

from an FCG, Mamadroid constructs a Markov chain with

the transition probabilities among packages or families. The

extracted feature vectors are then used to train a classifier

(e.g., KNN and SVM) for app classification.

APIGraph. Different from Mamadroid, APIGraph [67] is

a general framework for further enhancing the performance

of the graph based Android malware detection methods. It

employs a clustering algorithm (e.g., K-means) to aggregate

the nodes (i.e., functions) of an FCG, based on the similarity

among their semantics. It then uses a specific function to

represent all functions in every cluster. Finally, APIGraph

builds a new FCG with coarser granularity, in which every

node denotes a cluster of functions and every edge indicates

the call between two clusters. Experiments show that the new

FCG can result in better classification performance.

GCN. Graph Convolutional Network (GCN) is a powerful

graph embedding method, which can be utilized to detect

malware. For instance, the GCN is used to convert the control

flow graph into a feature vector for malware detection in

[65]1. In Section 6, we will apply the GCN to the FCG based

Android malware detection.

While these methods have achieved impressive results, they

are susceptible to adversarial examples. The existence of

adversarial examples is attributed to the problem that the

decision boundaries of classification models are non-ideal

[26, 52]. This problem becomes more serious in Android

malware detection since the static analysis methods cannot

precisely model the malware behavior. Therefore, the existing

Android malware detection systems are not really secure [2].

3 Problem formulation

Here we first introduce the system and threats considered in

our work, and then propose an attack formulation to guide the

design of black-box AE attacks.

3.1 System & Threat
Fig. 1 depicts the FCG based Android malware detection sys-

tem considered in this work. Suppose an adversary launches

a black-box AE attack towards this system to produce real

evasive malware. To this end, the adversary first gets the

classes.dex file from an APK file, and further decompiles it

into a series of smali files, as shown in Fig. 3. The adversary

manipulates the smali code according to its perturbation, and

rebuilds the code to obtain a new APK file. The adversary

then queries the detection system with the generated malware

sample, utilizes the received binary decision (i.e., benign or

malicious) to update its perturbation, and then rebuilds a new

malware sample. The above procedure is repeated until a real

evasive malware is obtained.

The adversary only knows that the target system uses FCG

feature for malware detection. However, the adversary does

not know the feature granularity and the graph embedding

method used by the target system. Moreover, the adversary

has no information about the architecture, the parameters

and the output probabilities of the target classifier. As for

the defender, it can use static analysis and white list based

defenses to resist evasive malware. In addition, the defender

may raise alarms once the number of queries from a user is

unusually large2.

1 [65] mainly studies how to attack malware detectors, although it pro-

poses a GCN based malware detection method.
2 Our experiments indicate that our method only needs dozens of queries

to generate the perturbations that can successfully attack the target model.

Moreover, our method can further reduce the number of perturbations by

conducting more queries (e.g., several hundreds of queries). To accelerate

*.smali

APK

AndroidManifest.xml

class.dex

other resource files

Unpack Decompile

Perturbation

APK*

manipulation

Rebuild

AE generation
method

*.smali
*.smali

Figure 3: Overview of the AEs generation.

3.2 Attack formulation

For convenience, we first use s and m to refer to the mal-

ware sample and the manipulation, respectively. We then use

two functions MG(·) and MV (·) to denote the code-to-graph

mapping and the graph-to-vector mapping shown in Fig. 1, re-

spectively. Through manipulating the malware sample s with

m, the adversary changes the input graph from G = MG(s) to

G̃ = MG(s+m), where G and G̃ represent the original input

FCG and the perturbed input FCG, respectively. Suppose L(·)
denotes the label (i.e., benign or malicious) predicted by the

target classifier. Then, the desired adversarial manipulation

m∗ can be derived by solving the following problem:

L(MV (MG(s))) �= L(MV (MG(s+m∗))) (1)

under the constraint of malware functionality preservation.

The above formulation points out two tasks for us: 1) de-

signing a manipulation technique to modify malware code

while preserving malware functionality, and 2) developing an

adversarial perturbation generation algorithm to realize m∗.

Due to the challenges of problem-feature space gap and strict

black-box setting, MG(·) and MV (·) are actually unknown to

the adversary. Hence it is extremely hard to derive the desired

adversarial perturbation in one shot. This motivates us to de-

velop an evolutionary algorithm (i.e., Apoem) to gradually

find the desired perturbation. We will discuss how to fulfill

the above two tasks in Sections 4 and 5, respectively.

Furthermore, it is noted that a variety of graph adversarial

attack models [5, 12, 40, 48, 57, 62, 71] have been proposed in

the community of machine learning. Although these methods

offer inspirations to us, they cannot be directly applied to our

attack for two reasons. First, graph adversarial attack mod-

els launch attacks from feature space. However, the attack

against Android malware detection cannot directly access fea-

ture space, and has to indirectly affect feature space through

manipulating malware code in problem space. Second, our

attack needs to meet practical requirements (i.e., R1-R4 dis-

cussed in Subsection 4.1), which are absent in existing graph

adversarial attacks. Therefore, specialized study is needed for

malware adversarial attack design.

the attack process, we provide a substitute network to fit the target model.

The related experiments can be found in Section 6.3

4 Malware manipulation

In this section, we first introduce the common requirements

and the existing techniques [10, 45, 65] of malware manipula-

tion, and then propose a new malware manipulation technique.

4.1 Background of malware manipulation
Although the manipulation on malware is intuitively simple,

the challenges come from the following requirements.

R1: Functional Consistency. The malware functionality

should keep consistently before and after manipulation.

R2: All-granularities influence. Since the feature granularity

(e.g., family level and package level) of malware detection is

unknown, malware manipulation should be able to affect the

features of all granularities [41].

R3: Resilience to static analysis. Malware manipulation

should not be hindered by static analysis inspection 3 [13,42],

and cannot completely rely on dead codes (i.e., unreachable

instruction blocks).

R4: Non-stationary perturbation. Manipulation should

be non-stationary and cannot be restricted to a fixed set of

operations (e.g., a pre-determined white list [65]), to reduce

the risk of being identified.

Existing manipulation methods are summarized below.

Inserting dead codes: To maintain functional consistency,

[10] chooses to insert dead codes (e.g., no-op calls) into smali

files. Unfortunately, these codes can be easily detected and

filtered, violating the requirement R3. For example, [15] pro-

poses a weighted sensitive-API-call-based Android malware

family classification method, which can resist the impact of

no-op calls.

Adding valueless calls: [10] creates user-defined classes and

adds valueless calls (i.e., invoking empty functions) into them.

However, these calls may be susceptible to static analysis

and cannot attack the class-granularity FCGs, violating the

requirements R2 and R3. For example, the Android malware

detection method proposed in [64] does not use self-defined

functions as feature. Hence, this method is not influenced by

the valueless calls inserted by adversaries.

Adding functions from a white list: To change FCGs, the

authors of [65] add a function coming from a predetermined

white list. However, once adversarial examples are captured,

the white list will be revealed and adversarial attacks may fail.

Please refer to requirement R4.

Opaque predicates: [45] leverages opaque predicates to in-

sert new APIs for malware detection evasion. Specifically,

this method constructs obfuscated conditions where the out-

come is always known in design phase but the truth value is

difficult or impossible to determine by static analysis. Hence

this method can effectively resist static analysis. However, it

3In this work, the static analysis mainly refers to the program analysis

techniques that only examine the source code but do not execute the program.

Caller
A B

GF

Callee
C D H

Extract

E
I

J K L

Function Call Graph

B

C

AF

GD
E

H

I J

K

L

non-leaf node leaf node

Figure 4: Selecting callers and callees from an FCG.

package com.example

public class MainActivity{
 public static void callerEx(){
 A()
 B()
 try{
 int myAttack = (new int[3])[4];
 callee()
 }catch (Exception e) {} }
 }

package com.example

public class MainActivity{
 public static void callerEx(){
 A()
 B()
 }
 }

callerEx()

A() B() Callee()

Figure 5: An example of try-catch trap.

may introduce some undesired functions (e.g., the random
function), which impose unexpected impacts on FCGs.

4.2 The proposed manipulation method

Here we design a new malware manipulation method to mod-

ify smali code. Clearly, we cannot remove nodes or edges

from FCGs, according to the requirement R1. Hence, we

only consider adding (or inserting) nodes or edges. However,

adding isolated nodes (i.e., the functions that are not invoked

or do not invoke others) is not recommended for two reasons.

First, the isolated nodes are easily detected by static analysis

(e.g., some program analysis techniques that perform redun-

dant code elimination would remove unreachable code [22]).

Second, adding nodes usually cannot impact feature space,

since lots of malware detectors utilize edges (instead of nodes)

for classification. As a result, we select adding edges (i.e.,

calls) in our manipulation method. Then the rest of the prob-

lem includes: how to create candidate edges, how to select

desirable edges from the candidate edges, and how to insert

the selected edges. In this section, we only consider the first

and the third problems. The second problem will be solved in

Section 5.

(1) How to create candidate edges?
Up to now, how to impose all-granularities influence (re-

quired by R2) on FCG with incomplete feature information

(i.e., the feature granularity is unknown) has not been thor-

oughly studied. To tackle this problem, we propose to create

an edge between two nodes of any type by adding a function

call between a caller and a callee. This method changes the

FCG no matter what kind of feature granularity is used. Then

the problem becomes how to determine the caller and the

callee for every candidate edge. Due to the requirement R4,

we cannot utilize a white list to generate callers and callees.

Instead, we propose to generate them from the functions used

by malware itself. In this way, we can ensure that the candi-

date edges created for different malware are diverse, hence

satisfying the requirement R4.

Now we study where to place the added edges. An FCG

consists of non-leaf nodes and leaf nodes, as depicted in

Fig. 4. The non-leaf nodes are user-defined functions, and

the leaf nodes correspond to Android standard functions (e.g.,

java/io/File;−> exists()) or the user-defined functions that

do not invoke others. In our method, non-leaf nodes (i.e., user-

defined functions) are selected as callers, since they are easily

inserted with new function calls. Leaf nodes are chosen as

callees, since invoking a function that does not invoke others

will not trigger unintended calls. Here we avoid generating un-

intended calls because they may further impose perturbations

on the FCG, which is beyond our expectation. Furthermore,

we supply more discussion on callee selection in Appendix

10.1. Now we can use the above method to create candidate

edges. In Section 5, we will propose an algorithm to select

the most desirable edges for manipulation.

(2) How to insert selected edges?
We assume that the desirable edges have been selected, and

study how to insert the corresponding function calls into smali

files under the requirements of R1 and R3. Our proposed

method is called try-catch trap. It first inserts a try-catch

block into the caller, and places the statement of invoking

callee in its try block. It then adds several statements in front

of this function call statement. These statements are used to

trigger a pre-selected exception (e.g., an arithmetic exception).

Now we analyze why this method works. First, it inserts a

function call statement in smali files, hence changing the FCG

by adding a new edge. Second, the function call statement is

never executed, hence preserving malware functionality. For

illustration, Fig. 5 gives an example of try-catch trap. Suppose

the codes in the left box come from a malware sample. The

function callerEX() is selected as our caller. We place a try-

catch block in this function, and invoke the function callee()

after the blue statement is executed. In this way, we can add a

new edge into the FCG, as shown in Fig. 5. When the try-catch

block is executed, an exception of IndexOutOfBoundsExcep-
tion will be thrown, and the statement of function call will be

skipped over. In summary, our method can be considered as

a variant of opaque predicates. It carefully constructs obfus-

cated conditions that are difficult to determine during static

analysis, hence possessing the ability to resist static analysis.

The main steps of inserting function calls are briefly de-

scribed in Appendix 10.3.

5 Adversarial perturbation generation

In Subsection 4.2, we propose the question of how to select

desirable edges from the candidate edges. To answer this

question, we develop a novel GAN model and the algorithm

Apoem to find the desired adversarial perturbation.

5.1 Challenges & Solutions

We first introduce the main procedure of BagAmmo below.

(1) Given a pre-selected malware sample, BagAmmo finds

some callers and callees from the smali codes, and uses them

to create a set of candidate edges, as discussed in Section

4. With candidate edges, BagAmmo generates a variety of

samples through manipulating malware, and sends them (i.e.,

queries) to its target system for malware detection.

(2) The target model sends back a reply for a query. In our

strict black-box setting [68], every reply contains only the

binary classification outcome (i.e., malicious or benign).

(3) Through learning from the query-reply pairs,

BagAmmo gradually recognizes the most desirable edges

that can successfully induce misclassification.

The main challenges in designing BagAmmo include: 1)

the feature granularity of the target model is unknown, 2)

a large number of queries are usually required in the strict

black-box attack scenario 4 [1, 36]. Our countermeasures are

briefly explained below.

Surmising feature granularity. Our adversarial multi-

population co-evolution algorithm, i.e., Apoem, uses one pop-

ulation to represent a possible feature granularity. The multi-

ple populations, corresponding to multiple possible feature

granularities, cooperatively evolve until the population cor-

responding to the real feature granularity keeps alive but the

others fade away. In this way, BagAmmo can accurately iden-

tify the feature granularity used by its target model, as will be

shown in Subsection 5.3.

Reducing the number of queries. BagAmmo constructs

a novel substitute model to simulate its target model. The

substitute model is trained with the samples generated by

Apoem and labeled by the target model. As will be shown

in Subsection 5.4, once the substitute model is well trained,

BagAmmo only needs to attack it instead of the target model,

hence greatly reducing the number of queries.

5.2 The overview of BagAmmo

Following the architecture of GANs, BagAmmo adopts a

generator and a discriminator that are cooperatively trained.

Generator: The generator is responsible for generating

perturbations, i.e., the new edges added into the FCG. It is im-

plemented with an adversarial multi-population co-evolution

algorithm (i.e., Apoem).

4In this scenario, both MG(·) and MV (·) mentioned in Subsection 3.2

are unknown. Moreover, the reply of the black-box model contains only the

binary classification outcome (e.g., many malware detection websites [54]

only sends back a binary decision instead of class probabilities).

Discriminator: The discriminator is introduced to stim-

ulate the generator to improve its perturbations. It is imple-

mented with a GCN, acting as a substitute network [10] to

simulate the target model.

Training: In each round of model training, the generator

modifies the malware’s code and sends the rebuilt malware to

the target model or the substitute model for malware detection.

BagAmmo makes a choice between the target model and the

substitute model with a variable probability p. After receiving

the queries, the target model sends back its replies, i.e., the

binary decisions. With the query-reply pairs, BagAmmo trains

the substitute model and guides its generator to improve its

generated perturbations. The probability p keeps growing as

the number of rounds increases, to decrease the number of

queries sent to the target model.

5.3 Adversarial Multi-population co-evolution
The main challenge faced by the generator is that the real

feature granularity is unknown. To facilitate the understand-

ing, we consider the case where the target system uses the

family-level feature but we perturb the class-level feature. In

this case, we will fall into a huge search space, hence pro-

longing model training time and requiring more queries. To

alleviate this problem, BagAmmo uses the Apoem algorithm

to surmise the real feature granularity. Apoem follows the

general framework of evolutionary algorithms, but it intro-

duces cooperation among multiple populations to speed up

convergence. Along with the evolution, the population corre-

sponding to the real feature granularity gradually stands out

from the crowd. In the following, we first describe the main

components of Apoem depicted in the red block of Fig. 6,

and then discuss how to use these components to generate the

desired perturbation.

(1) Population & Individual. A population represents a

collection of generated AEs under a certain feature granu-

larity. For example, the family-level population consists of

the AEs generated under the assumption that the target clas-

sifier uses a family-level FCG as its input. Apoem adopts

multiple populations, each of which corresponds to one possi-

ble feature granularity (i.e., family, package and class). Each

individual in a population gives a perturbation that can be

imposed on the original FCG5, i.e., the set of edges added

into the FCG. As shown in Fig. 7 (a), the above graph denotes

the original FCG, and the below graph represents an adversar-

ial example. Accordingly, the perturbation, i.e., the edge set

(A → E,B → D), is considered as an individual. We use x(i, j)r
to refer to the j-th individual of the i-th population in the r-th

generation of Apoem. We have x(i, j)r = {e(i, j)1 ,e(i, j)2 , ...,e(i, j)n },

where e(i, j)k (1 ≤ k ≤ n) is the added edge. In the initial phase,

5Strictly speaking, an individual refers to an adversarial example in a

population. However, the difference between adversarial example and mali-

cious example is perturbation. Hence we use the perturbation to represent an

individual.

Figure 6: The model architecture of BagAmmo.

(a) Individual

(d) Mutation

None

A
F

E

B

D
G

A
F

E

B

DC

G

A E B D

Caller Callee
A B

GF C DE

(c) Crossover

(b) Immigration

Package Family

Class

Figure 7: How multiple populations cooperatively evolve?

we need to collect sufficient individuals to build the popula-

tions. Therefore, we randomly perturb the original FCG, and

get a set of individuals for each population.

(2) Fitness & Selection. Apoem employs the metric fitness

to select superior individuals and eliminate inferior individu-

als. This metric reflects the aggressivity and the invisibility of

an AE. Its calculation takes into account two factors: threat

degree T and perturbation amount L. The threat degree is

measured according to the output of the target model F(·)
or the substitute model S(·)6. For an individual x, the threat

degree is defined as:

T =

{
1−F(x) if target model is used

1−S(x) if substitute model is used
(2)

The perturbation amount is calculated as the number of added

edges. Furthermore, Apoem introduces the elitist selection

strategy [53] to pass on the good genes of individuals to the

next generation, through retaining the fittest individuals and

eliminating the others.

(3) Immigration. In general, the individuals with high fit-

ness have a greater chance of producing better offsprings. To

6For the target or substitute model, the input is detected to be malicious

when its output F(x) or S(x) equals to or approaches 1.

produce more high-quality individuals, Apoem leverages the

immigration operation to transfer individuals with high fitness

within one population into other populations. Accordingly,

the superior individuals immigrate to different populations,

making all populations cooperatively evolve to generate better

AEs. There exist two kinds of immigration in Apoem: fine-

to-coarse (e.g., from class level to family level) and coarse-

to-fine (e.g., from family level to class level), as shown in

Fig. 7 (b). We first consider the fine-to-coarse case where one

individual in the class-level population is immigrated into the

package-level population. In this case, the name of the pack-

ages related to the perturbation (e.g., java.lang.StrictMath-

>java.lang) is retained and the individual containing only

package names is then put into the package-level population.

Now we consider the coarse-to-fine case where the individ-

ual from the package-level population is injected into the

class-level population. Since a package may contain multiple

classes, we randomly select one class used by malware code

to replace the package and then put the individual containing

class names into the class-level population.

(4) Crossover. Apoem leverages crossover to randomly

swap genes from two parents to produce offsprings. More

specifically, K pairs of individuals are randomly chosen

from a population as parents, and half of the pertur-

bation in every pair is exchanged to produce two off-

springs, as shown in Fig. 7 (c). Suppose the par-

ents are x(i, j1)r = {e(i, j1)1 ,e(i, j1)2 ,e(i, j1)3 ,e(i, j1)4 } and x(i, j2)r =

{e(i, j2)1 ,e(i, j2)2 ,e(i, j2)3 ,e(i, j2)4 }, where e(i, j)k is an added edge

(e.g., A->E) in Fig. 7 (c) . The offsprings derived

by crossover are x(i, j1)r+1 = {e(i, j1)1 ,e(i, j1)2 ,e(i, j2)3 ,e(i, j2)4 } and

x(i, j2)r+1 = {e(i, j2)1 ,e(i, j2)2 , ,e(i, j1)3 ,e(i, j1)4 }, respectively.

(5) Mutation. Apoem employs mutation to bring new

changes to a population. As depicted in Fig. 7 (d), there

are three possible mutation modes: 1) randomly adding func-

tion calls on the existing perturbation, 2) randomly reduc-

ing existing perturbation, and 3) randomly exchanging ex-

isting perturbations. They can be mathematically expressed

as x(i, j)r+1 = {e(i, j)1 , ...,e(i, j)n ,e(i, j)n+1}, x(i, j)r+1 = {e(i, j)1 , ...,e(i, j)n−1}, and

x(i, j)r+1 = {e(i, j)1 , ...,e(i, j)n−1,e
(i, j)
n+1}, respectively.

5.4 Substitute model

Apoem only knows the binary decision of its target model,

making it hard to accurately evaluate individuals. To over-

come this challenge, we design a novel substitute model to

simulate the target model, and provide Apoem with approxi-

mate class probabilities.

The inputs of our substitute model are function-level FCGs

generated according to the perturbation produced by the gen-

erator. We use a GCN (i.e., Graph Convolutional Network)

to extract features from the substitute model, as shown in

the green block in Fig. 6. GCNs extend convolution to graph

data, and they are good at utilizing structural information and

node information to fulfill graph-related machine learning

tasks. However, the main obstacle of applying GCNs to our

task is the absence of node property. That is, FCGs do not

provide property information for their nodes. To alleviate this

problem, we propose to use out degree and in degree of a

node as its features.

Now we briefly explain how to use a GCN to extract fea-

tures from the inputs. The GCN has multiple convolutional

layers. Each layer aggregates node properties using a propa-

gation rule, and the aggregated features are then processed by

the next layer. Accordingly, we can obtain a feature vector to

represent the FCG using iterative computation.

5.5 Algorithm design

Apoem aims to conglutinate multi-population co-evolution

mechanism and substitute model to cooperatively generate

adversarial perturbations. Its main procedure is given in Al-

gorithm 1. In this algorithm, F is the target classifier, N is

the maximum number of individuals in a population, and rmax
denotes the maximum number of generations. In every itera-

tion, Apoem first randomly selects the target or the substitute

model (lines 3-6), calculates fitness for every individual (lines

8-12), then retains high-rate individuals based on fitness (line

13), and finally conducts immigration, crossover and mutation

(line 14). In addition, the substitute model should be trained

when it is selected, as denoted by lines 15-17. The individual

with the highest fitness is outputted when Apoem terminates.

Below we summarize the important considerations for Apoem.

(1) How to implement co-evolution in Apoem?
The co-evolution in Apoem is two-fold. On one hand, the

generator and the discriminator cooperate with each other to

improve the generated perturbation. On the other hand, multi-

ple populations cooperatively evolve through immigration.

(2) How to avoid premature convergence?
When the genes of some high-rate individuals quickly domi-

nate the population [32], premature convergence occurs and

evolutionary algorithms converge to a local optimum. Apoem

can mitigate premature convergence owing to the cooperation

among populations. Through immigration, different popula-

Algorithm 1: The Apoem Algorithm

Input: The FCG G of a given APP

1 Population initialization;

2 for r in rmax do
3 if (r−3)/rmax > random(0,1) then
4 Is_substitute = 1;

5 else
6 Is_substitute = 0;

7 for each Pi do
8 if Is_substitute = 1 then
9 Get fitness T (x(i, j)r) from substitute model;

10 else
11 Get fitness T (x(i, j)r) from target model;

12 Get L(x(i, j)r) for every individuals;

13 Select top N individuals according to T (x(i, j)r)

and L(x(i, j)r) in turn ;

14 Immigration(); Crossover(); Mutation();

15 if Is_substitute = 1 then
16 Get the result from the target model F(x(i, j)r);

17 Train substitute model with F(x(i, j)r) and x(i, j)r ;

18 Determine whether algorithm should terminates;

tions share their good genes and further promote their evo-

lution. Meanwhile, immigration also helps the populations

jump out from local optimum traps. Our theoretical analyses

are given in Appendix 10.2.

(3) When to terminate our algorithm?
There are three stopping criteria for Apoem. First, all the off-

springs cannot induce misclassification on the target model

anymore. Second, the perturbation amount does not decrease

within several continuous rounds. Third, the maximum num-

ber of rounds is reached.

(4) How to modify the APK according to the output?
The output of our algorithm is the caller-callee function pairs.

According to the output, we use the try-catch trap mentioned

in Section 4 to insert the callee function into the caller func-

tion, in order to implement adversarial perturbation. The im-

plementation details can be found in Appendix 10.3.

6 Experiments

In this section, we conduct extensive experiments to evaluate

BagAmmo by answering the following research questions:

RQ1: Effectiveness. Does BagAmmo successfully attack

the SOTA Android malware detection methods?

RQ2: Evolution. How do multiple populations in Apoem

evolve?

RQ3: Efficiency. Does the substitute model help to decrease

queries and improve attack efficiency?

RQ4: Overhead. Is there a trade-off between manipulation

overhead and attack success rate?

RQ5: Resilience. Is BagAmmo still effective when there ex-

ists concept drift or data imbalance?

RQ6: Functionality. Does our adversarial perturbation

change the functionality of malware?

Datasets. Our dataset contains 21399 benign samples

and 22975 malicious samples, which come from Androzoo7,

Faldroid dataset [15] and Drebin dataset [3]. Every sample

collected from Androzoo is detected by VirusTotal [54]. Only

when a sample is detected to be malicious by more than four

antivirus systems, we label it as malware. The details of our

dataset are provided in Appendix 10.4.

Furthermore, our experiments adopt two configurations to

evaluate BagAmmo. According to the first configuration, we

use 10-fold cross-validation to train the target models. To eval-

uate the attack methods, we randomly choose 100 malicious

examples (not included in the training data of target model)

that can be correctly classified by target models for evasive

malware generation. For the second, we divide the dataset

according to the years that Android apps emerge as discussed

in Section 6.5. The newly-emerged malware samples are used

for test, while the old data are used in training.

Finally, we also consider the scenarios of concept drift and

data imbalance in Subsection 6.5. In the scenario of concept

drift, 17685 samples (8,017 benign examples and 9,668 mali-

cious examples) from Androzoo are grouped by production

year (from 2016 to 2020) and used to train target models.

In the scenario of data imbalance, we randomly disarrange

samples and set the benign-malicious ratio to 10:1, following

the experimental setting in [2].

Target Model. We choose three SOTA malware detection

methods (i.e., MaMadroid [41], APIGraph [67] and GCN

[65]) as our target system. In MaMadroid and APIGraph,

we employ Random Forest (RF) [7], AdaBoost (AB) [11],

1-Nearest Neighbor (1-NN) [19], 3-Nearest Neighbor (3-NN)

and Dense Neural Network (DNN) as the target classifier,

respectively. Similar to [65], we use a two-layer DNN as the

target classifier in the GCN-based method.

Metric. We use attack success rate (ASR), average pertur-

bation ratio (APR), and the number of interaction rounds (IR)

to evaluate BagAmmo. ASR corresponds to the ratio of the

number of successfully generated AEs (denoted by Nsuccess) to

the number of malicious examples used for AE generation (de-

noted by Ntotal), i.e., ASR = Nsuccess/Ntotal . APR is the ratio

of the number of added edges (denoted by Eadded) to the total

number of edges (denoted by Etotal), i.e., APR=Eadded/Etotal .

IR is defined as the number of interactions between our attack

model and the target model.

7https://androzoo.uni.lu/

6.1 RQ1: Effectiveness
Experimental Setup. To verify the attack effectiveness of

BagAmmo, we use BagAmmo to attack the 32 target models8

mentioned above, and calculate ASR, APR and IR on every

target model.

Furthermore, we also compare BagAmmo with three attack

methods, i.e., SRL [65], SRL_N and Random Insertion (RI).

To our knowledge, SRL is the SOTA malware AE generation

method 9. Since SRL requires knowing the class probabilities

outputted by the target model, we modify its reward function

and create a variant of SRL (i.e., SRL_N) that only relies

on binary outputs. The RI attack method is also introduced

from [65], and it randomly inserts non-functional functions.

0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

APR

 RI
 SRL_N
 SRL
 OURS

A
SR

Figure 8: Comparison with SOTA methods.

Results & Analyses. Table 1 reflects the attack perfor-

mance of BagAmmo on MaMaDroid, APIGraph and GCN

under various feature granularities. First, BagAmmo achieves

an average ASR of 99.9% over 32 target models, hence con-

firming the effectiveness of BagAmmo. Second, when attack-

ing the family-granularity classifier, BagAmmo achieves the

lowest APR and IR (i.e., 0.071 and 10.936). This indicates

that although the family-granularity FCG speeds up malware

detection through reducing input complexity, it still improves

the efficiency of BagAmmo by reducing search space.

Fig. 8 compares BagAmmo, SRL, SRL_N and RI with

respect to ASR under various APRs. Not surprisingly, RI per-

forms worst in our experiments due to its poor search strategy.

SRL performs better than SRL_N, because SRL has access

to class probabilities, which is more valuable than binary de-

cisions. It is worth noting that BagAmmo still outperforms

SRL (e.g., its ASR is 4% higher when APR is 0.2), although

BagAmmo cannot utilize class probabilities. The above re-

sults confirm that, under a certain number of perturbations,

8Our experiments use 2 traditional FCG-based feature extraction methods

(MaMaDroid and APIgraph), 3 feature levels (class, family and package) and

5 target classifiers (RF, AB, etc.). Furthermore, 1 GCN feature extraction

method is considered with 2 feature levels (family and package). Hence,

there are 32 = 2×3×5+1×2 classifiers.
9Note that SRL works on control flow graph instead of FCG. To ap-

ply SRL to the FCG based Android malware detection, we design a non-

functional API list (instead of non-functional instruction list), which contains

17 non-functional APIs.

Table 1: Effectiveness of BagAmmo towards MaMaDroid, APIGraph and GCN.

Classifier\Level
Family Package Class

ASR APR IR ASR APR IR ASR APR IR

MaMaDroid

RF 1.000 0.021 8.670 1.000 0.049 13.640 1.000 0.083 12.490

DNN 0.990 0.149 11.130 1.000 0.134 16.730 1.000 0.153 15.907

AB 1.000 0.066 10.270 1.000 0.072 14.300 1.000 0.118 15.460

1-NN 1.000 0.031 7.000 1.000 0.109 11.630 1.000 0.060 10.960

3-NN 1.000 0.037 9.390 1.000 0.142 13.380 1.000 0.072 10.770

APIGraph

RF 1.000 0.039 11.260 1.000 0.098 14.930 1.000 0.040 9.530

DNN 1.000 0.132 14.370 1.000 0.096 18.630 1.000 0.168 12.566

AB 1.000 0.093 14.510 0.990 0.131 18.350 1.000 0.067 12.250

1-NN 1.000 0.058 11.190 1.000 0.089 14.040 1.000 0.012 6.910

3-NN 1.000 0.085 11.570 1.000 0.105 13.770 1.000 0.019 7.780

GCN DNN 1.000 0.205 11.610 1.000 0.104 17.320 - - -

our method generates a better combination of the added edges

that are more deceptive to detectors, as compared to the other

methods.

6.2 RQ2: Evolution

Experimental Setup. In this subsection, we use experiments

to analyze the effects of multi-population co-evolution mech-

anism. First, we want to show that this mechanism can over-

come the challenge of unknown feature granularity. To this

end, we compare our method with the single-population meth-

ods in attacking MaMaDroid. The single-population methods

rely on one single population corresponding to class, package

and family level, denoted by BagAmmo-C, BagAmmo-P and

BagAmmo-F, respectively. We also randomly select a mal-

ware sample and take a close look at these methods’ attack

processes.

Second, we want to know whether the correct feature gran-

ularity is found by our method. We then record the survival

number of each population and analyze how these populations

evolve. In this experiment, we choose MaMaDroid with an

RF classifier as our target model, and use family-level feature

granularity in malware detection.

0.6

0.7

0.8

0.9

1.0

1.1
ASR

0.05

0.10

0.15

0.20

APR

6

8

10

12

14

IR

Figure 9: Performance comparison with single-population.

Results & Analyses. For comparison, we choose family-

level feature granularity and evaluate BagAmmo and single-

population methods on all test samples. The results are shown

in Fig. 9. It can be seen that BagAmmo performs best and

achieves the highest ASR with the lowest APR. BagAmmo-C

and BagAmmo-P perform worst since they use a false fea-

ture granularity. Surprisingly, BagAmmo performs better than

BagAmmo-F (i.e., 2% higher in ASR and 0.06 lower in APR).

This is because the introduction of multiple populations helps

to avoid premature convergence and approach a global opti-

mum. However, it may result in more interactions with the

target model. This accounts for why BagAmmo has a higher

IR than BagAmmo-F.

Now we randomly select a malware sample, and use it

to generate an AE to attack 5 classifiers under family-level

feature granularity. The attack processes of all methods are

depicted in Fig. 10. In this figure, the vertical axis represents

the perturbation ratio of all methods, and the horizontal axis

shows the IR values. If a curve exhibits an evident decreas-

ing trend and falls below a low threshold, we can conclude

that the corresponding method succeeds in generating an AE

and defeating the target model. As for those curves keeping

horizontal (e.g., the green curve in the first subfigure), the

corresponding methods fail to generate AEs. Fig.10 shows

that the perturbation ratio of multi-population always has a

satisfactory decreasing trend, hence confirming the effects

of multi-population co-evolution. Furthermore, using a sin-

gle population may cause premature convergence to a local

optimum, as indicated by Fig. 10-(1). However, BagAmmo

effectively mitigates this problem using multiple populations.

Theoretical analyses are given in Appendix 10.2.

Finally, we verify the multi-population co-evolution

method converges to the real feature granularity from a dif-

ferent perspective. We show the survival proportion (i.e., the

ratio between the number of alive individuals and the total

number of individuals) of different populations in Fig. 11. At

the beginning, the perturbations are randomly added, and the

A
P

0.1
0.2
0.3
0.4
0.5
0.6

0

(1)AB (2)RF (3)1-NN (4)3-NN (5)DNN

BagAmmo BagAmmo-F BagAmmo-P BagAmmo-C

Figure 10: Multi-population vs. single-population.

2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

Package Class Family

Su
rv

iv
al

Pr

op
or

tio
n

Iterations

Figure 11: The changing trend of survival proportion.

survival proportion of different populations are irregular. How-

ever, as the number of queries increases, the family population

and class population gradually fall to a low level. Contrarily,

the survival proportion of the population corresponding to the

correct feature granularity (i.e., family level) gradually rises

to a high level. This phenomenon also confirms the effects of

multi-population co-evolution.

6.3 RQ3: Efficiency

Experimental Setup. We conduct ablation studies to ver-

ify the effects of the substitute model in decreasing queries

and improving attack efficiency. For comparison, we re-

move the substitute model and guide the multi-population co-

evolution algorithm only using the target model. This method

is called BagAmmo-Without-S. Then we use BagAmmo and

BagAmmo-Without-S to manipulate the same APK file, and

compare their performance.

Results & Analyses. Substitute model’s effects are shown

in Fig. 12, where the solid and the dotted lines represent

BagAmmo and BagAmmo-Without-S, respectively. The ver-

tical axis reflects perturbation ratio, and the horizontal axis

indicates the number of queries. It can be seen that in all cases,

BagAmmo always has a higher convergence speed. Moreover,

BagAmmo always requires fewer queries before the pertur-

bation ratio is kept below a certain threshold (e.g., 0.1). Note

that the difference between two methods in the initial phase

is relatively small. It is because the substitute model has not

been well trained in this phase. However, after the substi-

tute model is well trained with sufficient data10, BagAmmo

performs more efficiently and exhibits its advantage.

Fig. 13 compares BagAmmo and BagAmmo-Without-S

in terms of IR. Its top-half part gives the results on the

family-level FCG based MaMadroid, while the bottom-half

part shows the results on the package-level FCG based Ma-

Madroid. The horizontal axis indicates various classifiers (e.g.,

AB, RF and 1-NN). We can draw two conclusions from this

figure. First, the package-level classifier is more difficult to at-

tack. This is because package-level FCGs contain much more

nodes than family-level FCGs, resulting in a larger search

space for BagAmmo. Second, using the substitute model re-

duces the number of queries in almost all cases and helps

enhance the attack efficiency.

6.4 RQ4: Manipulation Overhead

Experimental Setup. Here we study the number of code mod-

ifications (i.e., manipulation overhead) required to generate a

real evasive malware. We use experimental results to reflect

the relationship between ASR and the allowed perturbation

ratio.

Result & Analysis. Experimental results are shown in Fig.

14. In this figure, the horizontal axis represents the allowed

perturbation ratio, and the vertical axis gives the cumulative

distribution function (CDF) of ASR. It can be observed that

the ASR keeps rising with the increase of the allowed per-

turbation ratio. In practice, a larger perturbation ratio results

in larger computational overhead for adversaries. Therefore,

there exists a trade-off between manipulation overhead and

attack success ratio. Moreover, the 3-NN classifier is more ro-

bust than the 1-NN classifier. It is because the 3-NN classifier

considers more data than 1-NN classifier when classifying

a sample, which makes it distinguish benign and malicious

apps easier.

10In general, the training accuracy of the substitute model arises as the

number of iteration rounds increase. However, the increasing trend of training

accuracy is not strictly monotonic, because the training data used in the

iterations are different.

BagAmmo-Without-SBagAmmo

0.0

0.2

0.4

0.6

Pe
rtu

rb
at

io
n

Ra
tio

0 2 4 6 8 10
Iteration

0 2 4 6 8 10
Iteration

0 2 4 6 8 10
Iteration

0 2 4 6 8 10
Iteration

0 2 4 6 8 10
Iteration

Perturbation =
0.1

DNN3-NN1-NNRFAB

Figure 12: With substitute model vs. without substitute model.

6
8

10
12
14
16

8
10
12
14
16

 BagAmmo
 BagAmmo-Without-S

AB RF DNN3-NN1-NN

Family

Package

IR

Figure 13: Can substitute model reduce queries?

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

 MAMA-AB
 MAMA-RF
 MAMA-1NN
 MAMA-3NN
 MAMA-DNN

Figure 14: CDF of ASR under different perturbation ratios.

6.5 RQ5: Resilience

Experimental Setup. Concept drift [63] is often observed

in the realistic applications of Android malware detection.

Concept drift undermines existing AE generation methods

that insert APIs selected from a pre-determined white list,

if the white list is not updated accordingly. Hence we want

to know whether BagAmmo is also susceptible to concept

drift. To this end, we use newly-emerged malware samples

to generate AEs and attack the classifiers trained over old

data. We divide the dataset into training sets and testing sets

according to the years that Android app emerge. We construct

four new datasets to evaluate BagAmmo under concept drift,

as depicted in Table 2. The first row of Table 2 is the year

of training samples used for training target classifiers. The

Table 2: The attack performance under concept drift.

Training set (year) 2016 2016-2017 2016-2018 2016-2019

Testing set (year) 2017 2018 2019 2020

ACC 92.92% 94.08% 94.58% 95.47%

ASR 100% 100% 100% 100%

Table 3: The APR on balanced and imbalanced data.
Level Case AB RF 1NN 3NN Average

Family
Balance 0.066 0.021 0.031 0.037 0.039

Imbalance 0.050 0.024 0.021 0.021 0.029

Package
Balance 0.072 0.049 0.109 0.142 0.093

Imbalance 0.041 0.040 0.094 0.105 0.070

second row is the year of testing samples used for generating

AEs. The third row is the accuracy of the classifier.

Data imbalance is another practical problem worthy of con-

sideration [2, 16]. Since malicious samples are more difficult

to collect than benign samples, malware detection models

are usually trained over imbalanced data. We want to know

whether data imbalance negatively impacts the attack per-

formance of BagAmmo. Hence we evaluate BagAmmo on

the target model trained with imbalanced data (the benign-

malicious ratio is 10:1).

Result & Analysis. In the experiments on concept drift, we

use BagAmmo to manipulate the test samples, and the results

are used to attack the MaMaDroid model with the family-level

feature and the classifier of RF. The ASR of BagAmmo in

every scenario is presented in the last row of Table 2. First, this

table indicates that with more training samples, the accuracy

of the target classifier becomes higher. No matter how high the

accuracy is, however, BagAmmo always achieves a perfect

ASR of 100%. This shows that BagAmmo performs well

under concept drift and is still efficient when the malware

detection models learn more with the new data. Note that

BagAmmo uses the functions coming from the malware itself

(instead of a static function set). BagAmmo reduces the risk

of using functions that become outdated due to concept drift.

As a result, BagAmmo poses a persistent threat to malware

detectors. Finally, we also discuss how BagAmmo performs

when the defender has the knowledge of adversarial example

in Appendix 10.5

Table 3 shows the experimental results of BagAmmo in

the cases of balanced and imbalanced data. Our experiments

demonstrate that the DNN model performs very poorly when

trained with imbalanced data. Therefore, we do not choose

DNN as our target model. In both cases (i.e., balanced dataset

and imbalance dataset), BagAmmo achieves an attack suc-

cess rate (i.e., ASR) of 100%. Here we only show the values

of APR in Table 3. A higher APR means a more difficult

attack task. It can be seen that in the vast majority of cases,

BagAmmo needs fewer perturbations (i.e., has a lower APR)

to attack the target model trained with imbalanced data. That

is, data imbalance does not bring troubles to BagAmmo. This

is because that training with imbalanced data makes the target

model more likely to classify malware as benign apps. Ac-

cordingly, this reduces the degree of difficulty in generating

AEs.

6.6 RQ6: Functionality
Experimental Setup. In this section, we first use static

analysis to verify whether the perturbations generated by

BagAmmo are successfully imposed on malware. We then

employ dynamic analysis to check whether the perturbation

changes the functionality of the malware.

Result & Analysis. To know whether our perturbations are

injected, we add a unique log statement when a perturbation

(i.e., a try-catch trap) is injected. This log statement helps us

to find the perturbation in the smali file. We then check if

the found function calls in the smali file coincide with the

perturbations generated by BagAmmo. In our experiments,

we evaluate 50 APK files, and we realize that all the generated

perturbations are correctly injected into the smali file.

In our experiments of dynamic analysis, we first install and

run 50 pairs of original and perturbed malware samples in

Android Virtual Device (AVD). It is observed that every mal-

ware pair performs the same and has the same run-time UI.

For further analysis, we insert three log statements, denoted

by LOG1, LOG2 and LOG3, into every try-catch block to

record execution information. LOG1 is in front of the run-

time exception, LOG2 is in front of the inserted function, and

LOG3 is at the beginning of the catch block. We analyze 50

APK files aided by Android Studio’s log analysis tool (i.e.,

LogCat). We realize that either LOG1 or LOG3 of every APK

file is normally executed, but no LOG2 is executed. This phe-

nomenon means that all manipulated malware samples run

properly, and the inserted functions are not invoked, hence

posing no impact on the malware functionality.

7 Related Work

Recently, adversarial attacks have been widely used in var-

ious fields, i.e., image classification [60, 61], traffic analy-

sis [43, 46], autonomous driving [28, 29] and object detec-

tion [39]. As for Android malware detection, there have been

many studies [21, 24, 27, 33, 34] on syntax features oriented

AE generation. Huang et al. [27] use the saddle-point opti-

mization formulation to generate adversarial examples in the

discrete (e.g., binary) domain for malware detection. Grosse et
al. [21] expand existing AE generation algorithms to construct

a highly effective attack against malware detection models.

In [24, 34], Hu et al. utilize a GAN to generate adversarial

examples in black-box mode for malware detection. Li et
al. [33] propose an ensemble approach that allows attackers

to perturb a malware example via multiple attack methods

and multiple manipulation sets.

To achieve higher detection accuracy, more and more An-

droid malware detection methods [41,58,67] focus on seman-

tic features. Chen et al. [10] introduce two AE generations

methods in image classification to detect Android malware,

and propose a method applying optimal perturbations onto

Android APKs. Their method directly perturbs features in fea-

ture space. Pierazzi et al. [45] extract slices of bytecode (i.e.,

gadgets) from benign APKs and inject them into a malicious

APK to generate adversarial malware. Zhang et al. [65] pro-

pose a reinforcement learning based attack to deceive graph

feature based malware detection models. Recently, Bostani

et al. [6] propose an interesting black-box attack EvadeDroid

without requiring the knowledge about feature space. Differ-

ent from BagAmmo, EvadeDroid employs random search to

find the desired perturbation from the code of benign apps.

8 Limitations and Discussion

In this paper, we propose a black-box AE attack BagAmmo

towards the FCG based Android malware detection. We hope

that our work has reference value for the study of Android mal-

ware detection, and raises the concern for the threats posed by

AE attacks. Moreover, our method can be used to evaluate the

robustness of existing Android malware detection methods.

Below we discuss some limitations and future works.

Dynamic analysis based defense. Our method targets the

static analyse methods. It relies on inserting function calls to

change FCG. But it does not change the information flow of

malware. Therefore, it does not negatively impact dynamic

analysis [31]. We will explore how to construct adversarial

examples against dynamic analysis based Android malware

detection methods in future work.

Transfer to other domains. The idea and the framework

of BagAmmo are transferable to a certain degree, since many

domains use semantic features and graph structured data (e.g.,

intrusion detection system [69] and trajectory prediction sys-

tem [56, 59]).

Try/catch detection based defense. Another concern is

that whether a defender can detect the AEs generated by

BagAmmo by counting the number of try/catch blocks. This

defense method requires a detection threshold for the number

of try-catch blocks. Through comparing the try-catch block

number of original malicious APKs and that of adversari-

ally perturbed APKs, however, we find that the number of

try-catch blocks added by our method is relatively small. So

it is difficult to find an appropriate threshold for all APKs.

Without such a threshold, this defense method may cause a

high false positive or false negative rate.11

9 Acknowledgments

This work was supported partially by the Hong Kong RGC

Project (No. PolyU15219319), HKPolyU Grant No.ZVG0,

Fundamental Research Funds for the Central Universities

(HUST: Grant No. YCJJ202202016 and 2022JYCXJJ035) .

References
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and

Matthias Hein. Square attack: A query-efficient black-box adversarial

attack via random search. In Proc. ECCV, 2020.

[2] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,

Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad

Rieck. Dos and don’ts of machine learning in computer security. In

Proc. Security, 2022.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and

Konrad Rieck. DREBIN: effective and explainable detection of android

malware in your pocket. In Proc. NDSS, 2014.

[4] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Duoyuan

Ma. Unsuccessful story about few shot malware family classification

and siamese network to the rescue. In Proc. ICSE, 2020.

[5] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks

on node embeddings via graph poisoning. In Proc. ICML, 2019.

[6] Hamid Bostani and Veelasha Moonsamy. Evadedroid: A practical

evasion attack on machine learning for black-box android malware

detection. CoRR, abs/2110.03301, 2021.

[7] Breiman. Random forests. MACH LEARN, 2001,45(1)(-):5–32, 2001.

[8] Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, and Wei Yuan. Learn-

ing features from enhanced function call graphs for android malware

detection. Neurocomputing, 423:301–307, 2021.

[9] Nicholas Carlini and David A. Wagner. Towards evaluating the robust-

ness of neural networks. In Proc. S&P, 2017.

[10] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya

Nepal, Yang Xiang, and Kui Ren. Android hiv: A study of repackaging

malware for evading machine-learning detection. IEEE Trans. Inf.
Forensics Secur., 15:987–1001, 2020.

[11] M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost

and bregman distances. Machine Learning, 48(1/2/3):253–285, 2002.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and

Le Song. Adversarial attack on graph structured data. In Proc. ICML,

2018.

[13] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca,

Daniel Arp, Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio

Roli. Yes, machine learning can be more secure! A case study on

android malware detection. IEEE Trans. Dependable Secur. Comput.,
16(4):711–724, 2019.

11More experimental results can be found in Appendix 10.7

[14] William Enck, Machigar Ongtang, and Patrick D. McDaniel. On

lightweight mobile phone application certification. In Proc. CCS,

pages 235–245, 2009.

[15] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua

Zheng, and Ting Liu. Android malware familial classification and

representative sample selection via frequent subgraph analysis. IEEE
Trans. Inf. Forensics Secur., 13(8):1890–1905, 2018.

[16] Feargus Pendlebury and Fabio Pierazzi and Roberto Jordaney and

Johannes Kinder and Lorenzo Cavallaro. TESSERACT: Eliminating

Experimental Bias in Malware Classification across Space and Time.

In Proc. USENIX Security, 2019.

[17] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand.

Automated synthesis of semantic malware signatures using maximum

satisfiability. In Proc. NDSS, 2017.

[18] Hossein Fereidooni, Mauro Conti, Danfeng Yao, and Alessandro Sper-

duti. ANASTASIA: android malware detection using static analysis of

applications. In Proc. NTMS, 2016.

[19] Evelyn Fix and J. L Hodges, Jr. Discriminatory analysis - nonparametric

discrimination: Small sample performance. 1952.

[20] Gata. Mobile malware report - no let-up with android malware. https:
//www.gdatasoftware.com, 2019. Accessed April 4, 2010.

[21] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, M Backes, and

Patrick Mcdaniel. Adversarial examples for malware detection. In

Proc. ESORICS, 2017.

[22] guardsquare. The industry-leading java optimizer for android apps.

https://www.guardsquare.com/proguard.

[23] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hin-

droid: An intelligent android malware detection system based on struc-

tured heterogeneous information network. In Proc. SIGKDD, 2017.

[24] Weiwei Hu and Ying Tan. Generating adversarial malware examples

for black-box attacks based on gan. arXiv: 1702.05983, 2017.

[25] Wenjun Hu, Jing Tao, Xiaobo Ma, Wenyu Zhou, Shuang Zhao, and

Ting Han. Migdroid: Detecting app-repackaging android malware via

method invocation graph. In Proc. ICCCN, 2014.

[26] Zichao Hu, Heng Li, Liheng Yuan, Zhang Cheng, Wei Yuan, and Ming

Zhu. Model scheduling and sample selection for ensemble adversarial

example attacks. Pattern Recognition, 130:108824, 2022.

[27] Alex Huang, Abdullah Aldujaili, Erik Hemberg, and Unamay Oreilly.

Adversarial deep learning for robust detection of binary encoded mal-

ware. In Proc. IEEE S&P Workshops, 2018.

[28] Wei Jia, Zhaojun Lu, Haichun Zhang, Zhenglin Liu, Jie Wang, and

Gang Qu. Fooling the eyes of autonomous vehicles: Robust physical

adversarial examples against traffic sign recognition systems. CoRR,

abs/2201.06192, 2022.

[29] Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang,

Sen Nie, and Shi Wu. Too good to be safe: Tricking lane detection

in autonomous driving with crafted perturbations. In Proc. USENIX
Security, 2021.

[30] Hyung-Jong Kim and Hae Young Lee. A study on the privacy pro-

tection layer for android iot services (lightning talk). In Proc. ICSSA,

2018.

[31] X. Lei, Y. Zhou, T. Chen, X. Luo, and G. Gu. Malton: Towards on-

device non-invasive mobile malware analysis for art. In Proc. USENIX
Security, 2017.

[32] Y. Leung and G. Yong. Degree of population diversity - a perspective

on premature convergence in genetic algorithms and its markov chain

analysis. IEEE Transactions on Neural Networks, 8(5):1165–1176,

1997.

[33] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion

attacks and defenses for malware detection. IEEE Trans. Inf. Forensics
Secur., 15:3886–3900, 2020.

[34] Heng Li, ShiYao Zhou, Wei Yuan, and Henry Leung. Adversarial-

example attacks towards android malware detection system. IEEE
Systems Journal, 2019.

[35] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an, and

Heng Ye. Significant permission identification for machine-learning-

based android malware detection. IEEE Trans. Ind. Informatics,

14(7):3216–3225, 2018.

[36] Pengcheng Li, Jinfeng Yi, and Lijun Zhang. Query-efficient black-box

attack by active learning. In Proc. ICDM, 2018.

[37] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang.

Privacy risk analysis and mitigation of analytics libraries in the android

ecosystem. IEEE Trans. Mob. Comput., 19(5):1184–1199, 2020.

[38] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into

transferable adversarial examples and black-box attacks. In Proc. ICLR,

2017.

[39] Giulio Lovisotto, Henry Turner, Ivo Sluganovic, Martin Strohmeier,

and Ivan Martinovic. SLAP: improving physical adversarial examples

with short-lived adversarial perturbations. In Proc. USENIX Security,

2021.

[40] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph

adversarial attack via rewiring. In Proc. KDD, 2021.

[41] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emil-

iano De Cristofaro, Gordon J. Ross, and Gianluca Stringhini. Ma-

madroid: Detecting android malware by building markov chains of

behavioral models. In Proc. NDSS, 2017.

[42] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static

analysis for malware detection. In Proc. ACSAC, 2007.

[43] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Defeating

dnn-based traffic analysis systems in real-time with blind adversarial

perturbations. In Proc. USENIX Security, 2021.

[44] Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bar-

tel, Eric Bodden, Jacques Klein, and Yves Le Traon. Effective inter-

component communication mapping in android: An essential step to-

wards holistic security analysis. In Proc. USENIX Security, 2013.

[45] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo

Cavallaro. Intriguing properties of adversarial ML attacks in the prob-

lem space. In Proc. S&P, 2020.

[46] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and

Matthew Wright. Mockingbird: Defending against deep-learning-based

website fingerprinting attacks with adversarial traces. IEEE Trans. Inf.
Forensics Secur., 16:1594–1609, 2021.

[47] Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed Sallam, Elisa Bertino,

and Kangbin Yim. Detecting mobile malware threats to homeland

security through static analysis. J. Netw. Comput. Appl., 38:43–53,

2014.

[48] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vas-

ant G. Honavar. Adversarial attacks on graph neural networks via node

injections: A hierarchical reinforcement learning approach. In Proc.
WWW, 2020.

[49] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your

weight(s): A large-scale study on insufficient machine learning model

protection in mobile apps. In Proc. USENIX Security, 2021.

[50] Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. Hybrid batch

attacks: Finding black-box adversarial examples with limited queries.

In Proc. USENIX Security, 2020.

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-

mitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties

of neural networks. In Proc. ICLR, 2014.

[52] Thomas Tanay and Lewis D. Griffin. A boundary tilting persepective

on the phenomenon of adversarial examples. CoRR, abs/1608.07690,

2016.

[53] Anita Thengade and Rucha Dondal. Genetic algorithm – survey paper.

Foundation of Computer Science (FCS), 2012.

[54] VirusTotal. Virustotal - free online virus, malware and url scanner.

[55] Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and Xian-

gliang Zhang. Exploring permission-induced risk in android applica-

tions for malicious application detection. IEEE Trans. Inf. Forensics
Secur., 9(11):1869–1882, 2014.

[56] Conghao Wong, Beihao Xia, Ziming Hong, Qinmu Peng, Wei Yuan,

Qiong Cao, Yibo Yang, and Xinge You. View vertically: A hierarchical

network for trajectory prediction via fourier spectrums. In Proc. ECCV,

2022.

[57] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu,

and Liming Zhu. Adversarial examples for graph data: Deep insights

into attack and defense. In Proc. IJCAI, 2019.

[58] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai

Jin. Malscan: Fast market-wide mobile malware scanning by social-

network centrality analysis. In Proc. ASE, pages 139–150, 2019.

[59] Beihao Xia, Conghao Wong, Qinmu Peng, Wei Yuan, and Xinge You.

Cscnet: Contextual semantic consistency network for trajectory predic-

tion in crowded spaces. Pattern Recognition, 126:108552, 2022.

[60] Pengfei Xia, Ziqiang Li, Wei Zhang, and Bin Li. Data-efficient back-

door attacks. In Proc. IJCAI, 2022.

[61] Pengfei Xia, Hongjing Niu, Ziqiang Li, and Bin Li. Enhancing back-

door attacks with multi-level mmd regularization. IEEE Trans. De-
pendable Secur. Comput., 2022.

[62] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng,

Mingyi Hong, and Xue Lin. Topology attack and defense for graph

neural networks: An optimization perspective. In Proc. IJCAI, 2019.

[63] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ah-

madzadeh, Xinyu Xing, and Gang Wang. CADE: detecting and explain-

ing concept drift samples for security applications. In Proc. USENIX
Security, 2021.

[64] Wei Yuan, Yuan Jiang, Heng Li, and Minghui Cai. A lightweight on-

device detection method for android malware. IEEE Trans. Syst. Man
Cybern. Syst., 51(9):5600–5611, 2021.

[65] Lan Zhang, Peng Liu, Yoonho Choi, and Ping Chen. Semantics-

preserving reinforcement learning attack against graph neural networks

for malware detection. IEEE Trans Dependable Secure Comput, pages

1–1, 2022.

[66] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware

android malware classification using weighted contextual API depen-

dency graphs. In Proc. SIGSAC, 2014.

[67] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao,

Yukun Zhang, Mi Zhang, and Min Yang. Enhancing state-of-the-art

classifiers with API semantics to detect evolved android malware. In

Proc. CCS, 2020.

[68] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural

adversarial examples. In Proc. ICLR, 2018.

[69] Xiaokang Zhou, Wei Liang, Weimin Li, Ke Yan, Shohei Shimizu, and

Kevin I-Kai Wang. Hierarchical adversarial attacks against graph-

neural-network-based iot network intrusion detection system. IEEE
Internet Things J., 9(12):9310–9319, 2022.

[70] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get

off of my market: Detecting malicious apps in official and alternative

android markets. In Proc. NDSS, 2012.

[71] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph

neural networks via meta learning. In Proc. ICLR, 2019.

10 Appendix

10.1 The limitations in callee selection

As shown in Section 4.2, we choose the leaf nodes as can-

didate callees. However, not all leaf nodes can be chosen as

callees. There exist two limitations:

• Access modifier. Some leaf-node functions are not al-

lowed to be invoked at all. Therefore, we only consider

those leaf-node functions whose access modifier is pub-
lic.

• Parameter type. The arguments of some leaf-node func-

tions are the instances of classes. Under this situation,

invoking these functions will incur instantiating a class,

hence generating an unintended edge. To avoid this prob-

lem, we propose to choose the leaf-node functions whose

arguments are void or belong to the category of primitive

data types (e.g., int and short) and the String class.

10.2 Theoretical Analyses for our method

Our method BagAmmo utilizes the algorithm Apoem to find

the desired perturbation for a given malware sample. Since

Apoem is an evolutionary algorithm, how to mitigate pre-

mature convergence is an important issue. Here, premature

convergence or prematurity is a common phenomenon that

leads an evolutionary algorithm to converge quickly to a local

optimum. For evolutionary algorithms, prematurity is often

caused by the lack of gene diversity.

In the following, we analyze how multiple populations

introduced in Apoem mitigate the problem of premature con-

vergence.

Due to the introduction of multiple populations, there exist

a local optimal solution in each population. We define this

locally optimal solution as x∗p, where p= 1,2, ..., l is the index

of the population.

Then, the individuals that can achieve the local optimal

solutions with the Apoem G are termed as:

A∗
p =

{
x ∈ A : G(x) = x∗p

}
(3)

where A is the solution space.

Then, the probability that an individual x ∈ A belongs to set

A∗
p can be represented as θp = P

(
A∗

p
)
. It is clear that θp > 0

for p = 1, . . . , l and ∑l
p=1 θp = 1.

The size of the set A∗
p can be termed as np. According

to the definition, we have np ≥ 0 (p = 1, . . . , l), the random

vector (N1, . . . ,Nl) follows the multinomial distribution and

∑l
p=1 Np = N.

Pr{n1 = N1, . . . ,nl = Nl}=
(

N
N1, . . . ,Nl

)
θN1

1 . . .θNl
l (4)

where(
N

N1, . . . ,Nl

)
=

N!

N1! . . .Nl!
, Np ≥ 0 (p = 1, . . . , l)

(5)

We define W as the number of locally optimal solutions

found by Apoem. Then the probability of l locally optimal

solutions being found can be termed as

Pr{W = l | θ}= ∑
N1+···+Nl=N

(
N

N1, . . . ,Nl

)
θN1

1 . . .θNl
l (6)

where

θ = (θ1, . . . ,θl) . (7)

For the sake of analyzing the limit, we define

δ = min{θ1, . . . ,θl} ≤ 1/l (8)

Then we have

Pr{W = l | θ} ≥ ∑
N1+...+Nl=N

(
N

N1, . . . ,Nl

)
δN

= (δl)N Pr

{
W = l |

(
1

l
, . . . ,

1

l

)} (9)

For any l and θ, we can find the least evaluation number

n∗ such that for any given γ ∈ (0,1), we will have Pr{W =
l | θ} ≥ γ for all n ≥ n∗. Finding n∗ = n∗(γ,θ) is the problem

of finding the (minimal) number of points in A such that the

probability that all local minimizers will be found is at least γ.

We analyze the extreme cases that θ∗ =
(
l−1, . . . , l−1

)
.

Hence the problem of finding n∗(γ,θ) is reduced to that of

finding n∗ (γ,θ∗). For a large N, n∗(γ,θ) can be approximated

as

Pr{W = l | θ∗}= l−N ∑
N1+···+Nl=N

(
N

N1, . . . ,Nl

)

=
l

∑
p=0

(−1)p
(

l
p

)
(1− p/l)N

∼ exp{−l exp{−N/l}}, N → ∞

(10)

By solving the equation exp(−l exp(−N/l)) = γ with re-

spect to N, we obtain the approximation

n∗ (γ,θ∗)	 l ln l + l ln(− lnγ) (11)

With Eq. (11), we analyze the relationship between the

number of required queries and the population number as

follows. We can see that multiple populations (i.e., l > 1)

help to slow down the convergence rate of the algorithm. As

we all know, prematurity is a common phenomenon in which

an evolutionary algorithm early converges to a poor local

optimum. However, Apoem begins its search in multi start

l which makes the algorithm can find a better solution with

a higher probability. Our algorithm effectively relieves this

problem by introducing multiple populations, and prevents

the algorithm from wasting many efforts on repeatedly finding

the same local optimum.

10.3 Implementation details and an instance
of the smali code

new-instance p2, Ljava/lang/StringBuilder;
invoke-direct {p2}, Ljava/lang/StringBuilder;-><init>()V

new-instance p2, Ljava/lang/StringBuilder;
invoke-direct {p2},
 Ljava/lang/StringBuilder;-><init>()V
invoke-virtual {p2, p0},
 Ljava/lang/StringBuilder;->append(I;)Ljava/lang/StringBuilder;

invoke-static {p2},
 Ljava/lang/Class;->forName(Ljava/lang/String;)Ljava/lang/Class;

invoke-interface {p0},
 Ljava/lang/Runnable;->run()V

 invoke-direct

invoke-super {p0},
 Ljava/lang/Object;->toString()Ljava/lang/String;

 invoke-virtual

invoke-static

invoke-super

invoke-interface

Figure 15: The examples of smali code with different invoca-

tion types.

In this section, we first provide the implementation details

of the transformation from the generator’s output to the per-

turbation on the malware samples. Then we give an instance

of the samli code. The output of the generator is pairs of

caller-callee functions. There are three steps to implement

output-to-perturbation transformation. First, for every func-

tion pair, we find the smali file related to the selected caller,

according to the latter’s full name. Second, we insert state-

ments into the smali file to implement a try-catch trap. Here

we can use five types of function invocation, including invoke-

direct, invoke-virtual, invoke-static, invoke-super and invoke-

interface. Different invocation types require different smali

manipulation. Fig. 15 shows an example for every invocation

type. Third, we use Apktool to rebuild the modified smali

files to APK file. The above operations are automatically

conducted by a Python script.

To show how BagAmmo manipulates the smali code,

we supply a practical manipulation instance in Fig. 16.

From line 6 to line 11, we can find a runtime excep-

tion. To be specific, we initialize an array with length

3 and employ an opaque method to visit the 4-th el-

ement of this array. Then it will throw an exception

java.lang.ArrayIndexOutOfBoundsException and skip the in-

serted callee functions. In this way, our method can effectively

insert calls and preserve the malware’s original functionality.

.class public Lcom/example/MainActivity;
……….

.method public static callerEx(ICLjava/lang/String;F)V
 .local 3
 :try_start_0

 const/4 v0, 0x3
 new-array v1, v0, [I
 const/4 v2, 0x1
 aput v0, v1, v2
 aget v2, v1, v2
 aput v0, v1, v2

 new-instance p0,
Ljava/lang/StringBuilder;

 invoke-direct {p0},
Ljava/lang/StringBuilder;-><init>()V

 :try_end_0
 .catch Ljava/lang/Exception; {:try_start_0 .. :try_end_0} :catch_0
 :catch_0

 # Original code
.end method

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 int myAttack[] = new int[3];
 myAttack[1] = 3;
 myAttack[myAttack[1]] = 3;

compile

Figure 16: An instance of the smali code.

Figure 17: Attack success rate after retraining.

0 10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R_adv

 R_ori

R_ori-R_adv

Figure 18: The detection success ratio on VirusTotal.

It is worth noting that the statements added into a try block

are not fixed. Hence BagAmmo can resist the whitelist-based

defense. For example, suppose we want to trigger the excep-

tion of IndexOutOfBoundsException by inducing array access

violation. For this purpose, we access the array index that

exceeds the array length. BagAmmo can generate countless

variable names and variable values for such an array index.

Therefore, it is impossible to build a white list to rule out the

statements added by BagAmmo.

5 10 15 20 25 30 35 40 45 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 R_ORI
 R_AE

Figure 19: The number of try-catch blocks before and after BagAmmo attack.

10.4 Dataset in our experiments
Our dataset includes 44375 Android APKs released from

2010 to 2020, which are collected from AndroZoo, Fal-

Droid,and Drebin. Table 4 gives the source, count,and years

of APKs in our dataset.

Table 4: Dataset used in our experiments.

Source Label Years Count

Androdzoo
Benign 2010-2020 21399

Malicious 2015-2020 9668

FalDroid Malicious 2013-2014 8407

Drebin Malicious 2010-2012 4900

Total - 2010-2020 44374

10.5 Resistance to adversarial retraining.
Adversarial retraining is regarded as the most effective de-

fense method against AE attacks. In this section, we test

BagAmmo with adversarial retraining. We randomly select

100 adversarial examples that are generated by BagAmmo

and can deceive target systems. We divide these adversarial

examples into a training and a test set. Under various training

sample proportions, we retrain the target classifier in order to

evaluate ASR on the test set.

Our results are given in Fig. 17, whose vertical axis is

the ASR of BagAmmo and the horizontal axis is the propor-

tion of AEs used in adversarial retraining. Not surprisingly,

the ASR decreases with the increase of the AEs adopted by

adversarial retraining. When the ratio exceeds 40%, adver-

sarial retraining becomes effective in resisting BagAmmo. In

practice, however, it is extremely difficult to collect sufficient

adversarial examples for adversarial retraining. On the other

hand, it is also noted that aided by BagAmmo, model owners

can improve their models’ defense capability with adversarial

retraining.

10.6 Attack performance on VirusTotal
We evaluate the performance of BagAmmo on VirusTotal. To

be specific, we use BagAmmo to generate AEs (adversarial

examples) through querying the MaMadroid detector, and

upload them to VirusTotal for malware detection. VirusTotal

uses about 60 malware detection methods unknown to us.

We then record the ratio of the successful detection methods

to all the methods, denoted by R_adv. For comparison, we

also conduct the same setting for the original sample, and

the corresponding ratio is termed as R_ori. What’s more, we

calculate the difference between the R_adv and R_ori, which

termed as R_ori - R_adv. The results are shown in Fig. 18. The

horizontal axis of this figure shows different APKs, and the

vertical axis gives the ratios R_adv (denoted by the red line)

and R_ori (denoted by the blue line). The yellow line shows

the decreasing ratio of the successful detection methods. It can

be seen that BagAmmo can effectively reduce the probability

of malware being detected, owing to the transferability of

AEs [38]. It is worth noting that this attack effect is achieved

under the scenario where no queries are conducted and no

prior knowledge about detection methods can be obtained.

10.7 The number of added try-catch blocks
Since BagAmmo inserts try-catch blocks into malware code, a

defender may choose to detect it through judging whether the

number of try-catch blocks exceeds a predetermined threshold.

However, it is difficult to find an appropriate threshold for all

APKs. Without such a threshold, this defense method may

cause a high false positive or false negative rate.

To verify it, we record the ratio of try-catch block num-

ber to the function-calls number in 50 malicious APKs and

the corresponding adversarially perturbed APKs, termed as

R_ORI and R_AE, respectively. The results are shown in Fig.

19. The horizontal axis of this figure shows the IDs of these

APKs, and the vertical axis gives the count ratio of try-catch

blocks. The orange and green bars mean the original APK

and the corresponding modified APK, respectively. We can

draw two conclusions from this figure. First, the number of

try-catch blocks added by our method is relatively small com-

pared to that of existing try-catch blocks. Therefore it is hard

to find a threshold to clearly distinguish the original APK and

the perturbed APK. Second, the number of try-catch blocks

drastically fluctuates among various APKs. Thus, it is also

difficult to set a fixed threshold for all APKs.

