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Abstract
In this paper,we study the problem of learning Graph Neural

Networks (GNNs) with Differential Privacy (DP). We pro-
pose a novel differentially private GNN based on Aggregation
Perturbation (GAP), which adds stochastic noise to the GNN’s
aggregation function to statistically obfuscate the presence of
a single edge (edge-level privacy) or a single node and all its
adjacent edges (node-level privacy). Tailored to the specifics of
private learning, GAP’s new architecture is composed of three
separate modules: (i) the encoder module, where we learn
private node embeddings without relying on the edge infor-
mation; (ii) the aggregation module, where we compute noisy
aggregated node embeddings based on the graph structure; and
(iii) the classification module, where we train a neural network
on the private aggregations for node classification without
further querying the graph edges. GAP’s major advantage
over previous approaches is that it can benefit from multi-hop
neighborhood aggregations, and guarantees both edge-level
and node-level DP not only for training, but also at inference
with no additional costs beyond the training’s privacy budget.
We analyze GAP’s formal privacy guarantees using Rényi
DP and conduct empirical experiments over three real-world
graph datasets. We demonstrate that GAP offers significantly
better accuracy-privacy trade-offs than state-of-the-art DP-
GNN approaches and naive MLP-based baselines. Our code
is publicly available at https://github.com/sisaman/GAP.

1 Introduction

Real-world datasets are often represented by graphs, such as
social [36], financial [42], transportation [8], or biological [25]
networks, modeling the relations (i.e., edges) between a collec-
tion of entities (i.e., nodes). Graph Neural Networks (GNNs)
have achieved state-of-the-art performance in learning over
such relational data in various graph-based machine learning
tasks, such as node classification, link prediction, and graph
classification [26, 47, 52]. Due to their superior performance,
GNNs are now widely used in many applications, such as

recommendation systems, credit issuing, traffic forecasting,
drug discovery, and medical diagnosis [4, 14, 24, 30, 49].

Privacy concerns. Despite their success, real-world deploy-
ments of GNNs raise privacy concerns when graphs contain
personal data: for instance, social or financial networks involve
sensitive information about individuals and their interactions.
Recent works [19, 20,33, 44] have extended the study of the
privacy leakage of standard deep learning models to GNNs,
showing the risk of information leakage regarding training
data is even higher in GNNs, as they incorporate not only
node features and labels but also the graph structure itself [9].
Consequently, GNNs are vulnerable to various privacy at-
tacks, such as node membership inference [20,33] and edge
stealing [19, 44]. For example, a GNN trained on a social net-
work for friendship recommendation could reveal the existing
relationships between the users via its predictions. As another
example, a GNN trained on the social graph of COVID-19
patients can be used by government authorities to predict the
spread of the disease, but an adversary may recover private
information about the participating patients.

Problem and motivation. Motivated by these privacy con-
cerns, we investigate the problem of designing privacy-
preserving GNNs for private, sensitive graphs. Our goal is to
protect the sensitive graph structure and other accompanying
data using the framework of Differential Privacy (DP) [10].In
the context of graphs, two different variants of DP have been
defined: edge-level and node-level DP [37]. Informally, an
edge-level 𝜖-DP algorithm have roughly the same output (as
measured by 𝜖) if one edge is removed from the input graph.
This ensures that the algorithm’s output does not reveal the
existence of a particular edge in the graph. Correspondingly,
node-level private algorithms conceal the presence of a partic-
ular node together with all its associated edges and attributes.
Clearly, node-level DP is a stronger privacy definition, but it
is harder to attain because it requires the algorithm’s output
distribution to hide much larger differences in the input graph.

Challenges. As GNNs utilize the structural information in the
graph data, protecting data privacy in such models is more
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Figure 1: Schema of an unfolded 2-layer GNN taking an example graph as input. At each layer, every node aggregates its neighbors’
embedding vectors (initially node features, e.g. XA for node A), which is then updated using a neural net into a new vector (e.g.,
HA). Removing an arbitrary edge (here, the edge from node B to F) excludes the source node (B) from the aggregation set of the
destination node (F). At the first layer, this will only alter the destination node’s embedding, but this change is propagated to the
neighboring nodes in the next layer. Node embeddings that are affected by the removal of edge (B,F) are indicated in red.

challenging than in standard ones. As shown in Figure 1,
one of these challenges is the interdependency between the
node embeddings resulting from the GNN’s data aggregation
mechanism. Specifically, a 𝐾-layer GNN iteratively learns
node embeddings by aggregating information from every
node’s 𝐾-hop neighborhood (i.e., from nodes that are at a
distance at most 𝐾 in the graph). Hence, the embedding of
a node is influenced not only by the node itself but also
by all the nodes in its 𝐾-hop proximity. This fact voids the
privacy guarantees of standard DP learning paradigms, such
as DP-SGD [2], as the training loss of GNNs can no longer
be decomposed into individual samples. Furthermore, the
number of interdependent embeddings grows exponentially
with 𝐾, hindering the ability of a DP solution to hide the
output differences effectively. Therefore, how to get more
representational power from higher-order GNN aggregations
while ensuring DP is an important challenge to address.

Another major challenge is to guarantee inference privacy,
i.e., preserving the privacy of graph data not only for training
but also at inference time, when the trained GNN model is
queried to make predictions for test nodes. Unlike conventional
deep learning models, where the training data is not reused
at inference time, the inference about any node in a 𝐾-layer
GNN requires aggregating data from its 𝐾-hop neighborhood,
which can reveal information about the neighboring nodes.
Therefore, private graph data can still be leaked at inference
time, even with privately trained model parameters. As a result,
it is critical to ensure that both the training and inference stages
of a GNN satisfy DP. This is illustrated in Figure 2.

Our contributions. To address the above challenges, we
propose GAP, a privacy-preserving GNN model satisfying
edge-level privacy, which is also extensible to node-level
privacy if combined with standard private learning algorithms
such as DP-SGD. As perturbing an edge in the input graph
can practically be viewed as changing a sample in a node’s
neighborhood aggregation set,GAP preserves edge privacy via
aggregation perturbation: we add calibrated Gaussian noise
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Figure 2: Comparison of DP learning with (a) conventional
deep neural networks, and (b) graph neural networks. Given
the trained model, the inference mechanism of a DNN is
independent of the training data, so a DP learning algorithm
implies a DP inference mechanism as well. With GNNs
however, graph data is queried again at inference time, so
the inference step requires specific attention to be made
differentially private.

to the output of the aggregation function, which can effectively
hide the presence of a single edge (edge-level privacy) or a
group of edges (node-level privacy). To avoid accumulating
privacy costs at every model update, we propose a custom
GNN architecture (Figure 3) comprising three individual
components: (i) the encoder module, where we pre-train an
encoder to extract lower-dimensional node features without
relying on the graph structure; (ii) the aggregation module,
where we use aggregation perturbation to privately compute
multi-hop aggregated node embeddings using the graph edges
and the encoded features; and (iii) the classification module,
where we train a neural network on the aggregated data for
node classification without further querying the graph edges.

Aggregation perturbation allows us to benefit from higher-
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Figure 3: Overview of GAP’s architecture: (1) The encoder
is trained using only node features (X) and labels (Y). (2)
The encoded features are given to the aggregation module to
compute private 𝐾-hop aggregations (here, 𝐾 = 2) using the
graph’s adjacency matrix (A). (3) The classification module
is trained over the private aggregations for label prediction.

order, multi-hop aggregations by composing individual noisy
aggregations, yet the proposed architecture significantly re-
duces the privacy costs as the perturbed aggregations are
computed once on lower-dimensional embeddings, and reused
during training and inference. GAP also provides inference
privacy, as the inference of any node relies on the perturbed ag-
gregations, which hide information about neighboring nodes.
Due to reusing cached aggregations, the inference step does
not incur additional privacy costs beyond that of training.

Results. We analyze GAP’s formal privacy guarantees using
Rényi Differential Privacy [29], and empirically evaluate its
accuracy-privacy performance on three medium to large-scale
graph datasets, namely Facebook, Reddit, and Amazon. We
demonstrate that GAP’s accuracy surpasses the competing
baselines’ at (very) low privacy budgets under both edge-level
DP (e.g., 𝜖 ≥ 0.1 on Reddit) and node-level DP (e.g., 𝜖 ≥ 1 on
Reddit), and observe that it always performs on par or better
than a naive (privately trained) MLP model which does not
utilize the graph’s structural information.

2 Related Work

Graph neural networks. Deep learning on graphs has
emerged in the past few years to tackle different kinds of

graph-based learning tasks. A variety of GNN models and
various architectures have been proposed, including Graph
Convolutional Networks [26], Graph Attention Networks [41],
GraphSAGE [16], Graph Isomorphism Networks [47], Jump-
ing Knowledge Networks [48], and Gated Graph Neural Net-
works [28]. For the latest advances and trends in GNNs, we
refer the reader to the available surveys [1, 17, 46, 53, 56].

Privacy attacks on GNNs. Several recent works have inves-
tigated the possibility of performing privacy attacks against
GNNs and quantified the privacy leakage of publicly released
GNN models or node embeddings trained on private graph
datasets. Zhang et al. [55] study the information leakage
in graph embeddings and propose three different inference
attacks against GNNs: inferring graph properties (such as num-
ber of nodes and edges), inferring whether a given subgraph
is contained in the target graph, and graph reconstruction with
similar statistics to the target graph. He et al. [19] propose a
series of black-box link stealing attacks on GNN models, and
show that an adversary can accurately infer a link between any
pair of nodes in a graph used to train the GNN. Zhang et al. [54]
study the connection between model inversion risk and edge
influence, and show that edges with greater influence are more
likely to be inferred. Wu et al. [44] also study the link stealing
attack via influence analysis, and propose an effective attack
against GNNs based on the node influence information. The
feasibility of the membership inference attack against GNNs
has also been studied and several attacks with different threat
models have been proposed in the literature [3, 9, 20, 33].
Overall, these works underline the privacy risks of GNNs
trained on sensitive graph data and confirm the vulnerability
of these models to various privacy attacks.

Differentially private GNNs. Recently, there have been at-
tempts to use DP to provide formal privacy guarantees in
various GNN learning settings. Sajadmanesh and Gatica-
Perez [38] propose a locally private GNN model by con-
sidering a distributed learning setting, where node features
and labels are private but training the GNN is federated by
a central server with access to graph edges. However, their
method cannot be used in applications where the graph edges
are private. Wu et al. [44] propose an edge-level DP learning
algorithm for GNNs by perturbing the input graph directly
using either randomized response (called EdgeRand) or the
Laplace mechanism (called LapGraph). Then, a GNN is
trained over the resulting noisy graph. However, their method
cannot be extended trivially to the node-level privacy setting.
Olatunji et al. [32] consider a centralized learning setting and
propose a node-level private GNN by adapting the framework
of PATE [34]. They train the student GNN model using public
graph data, which is privately labeled using the teacher GNN
models trained exclusively for each query node. However, their
dependence on public graph data restricts the applicability of
their method. Daigavane et al. [7] also propose a node-level
private approach for training 1-layer GNNs by extending the
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Figure 4: (a) Transductive learning: training and inference
steps are conducted on the same graph, but different nodes
are used for training and testing. Here, the blue nodes (A, D,
and E) are used for training and the red nodes (B, C, and F)
for inference. (b) Inductive learning: training and inference
steps are performed on different graphs. Here, the left and
right graphs are used for training and inference, respectively.

standard DP-SGD algorithm and privacy amplification by
subsampling results to bounded-degree graph data. However,
their approach fails to provide inference privacy and is lim-
ited to 1-layer GNNs and thus cannot leverage higher-order
aggregations.1

Comparison with existing methods. To our best knowledge,
GAP is the first approach providing both edge-level or node-
level privacy guarantees based on the application requirements.
Unlike existing methods, our approach does not rely on public
data, can leverage multi-hop aggregations beyond first-order
neighbors, and guarantees inference privacy at no additional
cost. In Section 7, we also show that GAP outperforms other
baselines in terms of accuracy-privacy trade-off.

3 Background and Problem Formulation

3.1 Graph Neural Networks
GNNs aim to learn a representation for every node in the
input graph by incorporating the initial node features and the
graph structure (edges). The learned node representations, or
embeddings, can then be used for the downstream machine
learning task. In this paper, we focus on node classification,
where the embeddings are used to predict the label of the
graph nodes. Node-wise prediction problems can be tackled
in either transductive or inductive setting. In the transductive
setting, both training and testing are performed on the same
graph, but different nodes are used for training and testing.
Conversely, in the inductive setting, training and testing are
performed on different graphs. This is illustrated in Figure 4.

Let G = (V,E,X,Y) be an unweighted directed graph
dataset consisting of sets of nodesV and edges E represented
by a binary adjacency matrix A ∈ {0,1}𝑁×𝑁 , where 𝑁 = |V|
denotes the number of nodes, and A𝑖, 𝑗 = 1 if there is a directed
edge (𝑖, 𝑗) ∈ E from node 𝑖 to node 𝑗 . Nodes are characterized

1After releasing our paper, Daigavane et al. [7] extended their method to
support more than one message-passing layers.
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Figure 5: Typical 3-layer GNN for node classification. Each
layer 𝑖 takes the adjacency matrix A and previous layer’s node
embedding matrix H(𝑖−1) (initially, node features X), and
outputs a new embedding matrix H(𝑖) (ultimately, predicted
class labels Ŷ). Internally, the input embeddings H(𝑖−1) are
aggregated based on the adjacency matrix A, and then fed to
a neural network (Upd) to generate new embeddings H(𝑖) .

by 𝑑-dimensional feature vectors stacked up in an 𝑁 × 𝑑
matrix X, where X𝑣 denotes the feature vector of the 𝑣-th
node. Y ∈ {0,1}𝑁×𝐶 represents the labels of the nodes, where
Y𝑣 is a 𝐶-dimensional one-hot vector denoting the label of
the 𝑣-th node, and 𝐶 is the number of classes. Note that in
the transductive learning setting, only a subsetV𝑇 ⊂ V of the
nodes is labeled, and thus Y𝑣 is a zero vector for all 𝑣 ∉V𝑇 .

A typical 𝐾-layer GNN consists of 𝐾 sequential graph
convolution layers. Layer 𝑖 receives node embeddings from
layer 𝑖 − 1 and outputs a new embedding for each node by
aggregating the current embeddings of its adjacent neighbors
followed by a learnable transformation, as defined below:

H(𝑖)𝑣 = upd
(
agg

(
{H(𝑖−1)

𝑢 : ∀𝑢 ∈ 𝔑𝑣}
)

;𝚯(𝑖)
)
,

where 𝔑𝑣 = {𝑢 : A𝑢,𝑣 ≠ 0} denotes the set of adjacent nodes
to node 𝑣 (i.e., nodes with outbound edges toward 𝑣), and
H(𝑖−1)
𝑢 is the embedding of an adjacent node 𝑢 at layer 𝑖−1.
agg(·), is a (sub)differentiable, permutation invariant aggre-
gator function, such as Sum, Mean, or Max. Finally, upd(·) is
a learnable function, such as a multi-layer perceptron (MLP),
parameterized by 𝚯(𝑖) that takes the aggregated vector and
outputs the new embedding H(𝑖)𝑣 . For convenience, we define
the matrix-based version of agg(·) and upd(·) by stacking the
corresponding vectors of all the nodes into a matrix as:

Agg(H,A) = [agg ({H𝑢 : ∀𝑢 ∈ 𝔑𝑣}) : ∀𝑣 ∈ V]𝑇 ,
Upd(M;𝚯) = [upd (M𝑣;𝚯) : ∀𝑣 ∈ V]𝑇 ,

where we omitted the layer indicator superscripts for simplicity.
Initially, we have H(0) = X (i.e., node features) as the input to
the GNN’s first layer. The last layer generates an output embed-
ding vector for each node, which can be used in different ways
depending on the downstream task. For node classification,
a softmax layer is applied to the final embeddings H(𝐾 ) to
obtain the posterior class probabilities Ŷ. The illustration of a
typical 3-layer GNN is depicted in Figure 5.



3.2 Differential Privacy
Differential privacy (DP) [11] is the gold standard for for-
malizing the privacy guarantees of algorithms that process
sensitive data. Informally, DP requires that the algorithm’s out-
put distribution be roughly the same regardless of the presence
of an individual’s data in the dataset. As such, an adversary
having access to the data of all but the target individual cannot
distinguish whether the target’s record is among the input data.
The formal definition of DP is as follows.

Definition 1 (Differential Privacy [11]). Given 𝜖 > 0 and
𝛿 > 0, a randomized algorithm A satisfies (𝜖, 𝛿)-differential
privacy, if for all possible pairs of adjacent datasets 𝑋 and
𝑋 ′ differing by at most one record, denoted as 𝑋 ∼ 𝑋 ′, and
for any possible set of outputs 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(A), we have:

Pr[A(𝑋) ∈ 𝑆] ≤ 𝑒𝜖 Pr[A(𝑋 ′) ∈ 𝑆] + 𝛿.

Here, the parameter 𝜖 is called the privacy budget (or privacy
cost) and is used to tune the privacy-utility trade-off of the
algorithm: a lower privacy budget leads to stronger privacy
guarantees but reduced utility. The parameter 𝛿 is informally
treated as a failure probability, and is usually chosen to be
very small. DP has the following important properties that
help us design complex algorithms from simpler ones [10]:

• Robustness to post-processing: Any post-processing of the
output of an (𝜖, 𝛿)-DP algorithm remains (𝜖, 𝛿)-DP.

• Sequential composition: If an (𝜖, 𝛿)-DP algorithm is applied
𝑘 times on the same data, the result is at most (𝑘𝜖, 𝑘𝛿)-DP.

• Parallel composition: Executing an (𝜖, 𝛿)-DP algorithm on
disjoint chunks of data yields an (𝜖, 𝛿)-DP algorithm.

In this paper, we use an alternative definition of DP, called
Rényi Differential Privacy (RDP) [29], which allows obtaining
tighter sequential composition results:

Definition 2 (Rényi Differential Privacy [29]). A random-
ized algorithm A is (𝛼, 𝜖)-RDP for 𝛼 > 1, 𝜖 > 0 if for every
adjacent datasets 𝑋 ∼ 𝑋 ′, we have 𝐷𝛼 (A(𝑋)∥A(𝑋 ′)) ≤ 𝜖 ,
where 𝐷𝛼 (𝑃∥𝑄) is the Rényi divergence of order 𝛼 between
probability distributions 𝑃 and 𝑄 defined as:

𝐷𝛼 (𝑃∥𝑄) =
1

𝛼−1
logE𝑥∼𝑄

[
𝑃(𝑥)
𝑄(𝑥)

] 𝛼
.

As RDP is a generalization of DP, it can be easily converted
back to standard (𝜖, 𝛿)-DP using the following proposition:

Proposition 1. If A is an (𝛼, 𝜖)-RDP algorithm, then it also
satisfies (𝜖 + log(1/𝛿 )/𝛼−1, 𝛿)-DP for any 𝛿 ∈ (0,1).

A basic method to achieve RDP is the Gaussian mechanism,
where Gaussian noise is added to the output of the algorithm
we want to make private. Specifically, let 𝑓 : X → R𝑑 be the
non-private algorithm taking a dataset as input and outputting a
𝑑-dimensional vector. Let the sensitivity of 𝑓 be the maximum

𝐿2 distance achievable when applying 𝑓 (·) to adjacent datasets
𝑋 and 𝑋 ′ as Δ 𝑓 = max𝑋∼𝑋′ ∥ 𝑓 (𝑋) − 𝑓 (𝑋 ′)∥2. Then, adding
Gaussian noise with variance 𝜎2 to 𝑓 as A(𝑋) = 𝑓 (𝑋) +
N (𝜎2I𝑑), with I𝑑 being 𝑑×𝑑 identity matrix, yields an (𝛼, 𝜖)-
RDP algorithm for all 𝛼 > 1 with 𝜖 = Δ2

𝑓
𝛼/2𝜎2 [29].

3.3 Problem Definition
Let Ŷ = F (X,A;𝚯) be a GNN-based node classification
model with parameter set 𝚯 that takes node features X and
the graph’s adjacency matrix A as input, and outputs the cor-
responding predicted labels Ŷ. To learn the model parameters
𝚯, we minimize a standard classification loss function (e.g.,
cross-entropy) with respect to 𝚯 as follows:

𝚯★ = argmin
𝚯

∑︁
𝑣∈V𝑇

ℓ(Ŷ𝑣 ,Y𝑣), (1)

where ℓ(·, ·) is the loss function, Y is the ground-truth labels,
andV𝑇 ⊆V is the set of labeled training nodes. After training,
in the transductive setting, the learned GNN is used to infer
the labels of unlabeled nodes in G:

Ŷ = F (X,A;𝚯★), (2)

Otherwise, in the inductive setting, a new graph dataset G𝑡𝑒𝑠𝑡
is given to the learned GNN for label inference.

The goal of this paper is to preserve the privacy of graph
datasets for both the training step (Eq. 1) and the inference step
(Eq. 2) using differential privacy. Note that preserving privacy
in the inference step is critical as the adjacency information is
still used in this step for obtaining the predicted labels.

However, as graph datasets are different from standard
tabular datasets due to the existence of links between data
records, one needs to adapt the definition of DP to graphs.
As the semantic interpretation of DP relies on the definition
of adjacent datasets, we first define two different notions
of adjacency in graphs, namely edge-level and node-level
adjacent graph datasets [18]:

Definition 3 (Edge-level adjacent graphs). Two graphs G and
G′ are edge-level adjacent if one can be obtained by removing
a single edge from the other. Therefore, G and G′ differ by at
most one edge.

Definition 4 (Node-level adjacent graphs). Two graphs G and
G′ are node-level adjacent if one can be obtained by removing
a single node (with its features, labels, and all attached edges)
from the other. Therefore, G and G′ differ by at most one node.

Accordingly, the definition of edge-level and node-level
DP follows from the above definitions: an algorithm A is
edge-level (respectively, node-level) (𝜖, 𝛿)-DP if for every two
edge-level (respectively, node-level) adjacent graph datasets
G and G′ and any set of outputs 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(A), we have
Pr[A(G) ∈ 𝑆] ≤ 𝑒𝜖 Pr[A(G′) ∈ 𝑆] + 𝛿.



Intuitively, edge-level DP protects edges (which could rep-
resent connections between people), while node-level DP
protects nodes together with their adjacent edges (i.e., all
information pertaining to an individual, including features,
labels, and connections).

4 Proposed Method: GAP

In this section, we explain our proposed differentially private
method, called GNN with Aggregation Perturbation (GAP),
which guarantees both edge-level and node-level privacy for
training and inference on sensitive graph data.

4.1 Overview
As mentioned in Section 1, the two primary challenges in the
design of private GNNs come from the use of higher-order
aggregations and the need to ensure inference privacy. To
tackle these challenges, we propose a new architecture for
GAP, which is different from the conventional GNN archi-
tectures presented in Section 3.1. The key distinction is that
GAP decouples the graph-based aggregations from the neural
network-based transformations, which is similar in spirit to
the Inception model and scalable networks [13, 39, 45]. As
illustrated in Figure 3, GAP is composed of the following
three components:

(i) Encoder Module (EM): This module encodes the input
node features into a lower-dimensional representation
without using the private graph structure.

(ii) Aggregation Module (AM): This module takes the en-
coded low-dimensional node features and recursively
computes private multi-hop aggregations using the ag-
gregation perturbation approach, i.e., by adding noise to
the output of each aggregation step.

(iii) Classification Module (CM): This module takes the
privately aggregated node features and predicts the corre-
sponding labels without querying the edges any further.

GAP’s privacy mechanism. Our proposed mechanism for
preserving the privacy of graph edges in AM is the aggregation
perturbation approach: we use the Gaussian mechanism to
add stochastic noise to the output of the aggregation function
proportional to its sensitivity. This approach is motivatedby the
fact that perturbing an edge in the input graph can practically be
viewed as changing a sample in the neighborhood aggregation
function of the edge’s destination node. Therefore, by adding
an appropriate amount of noise to the aggregation function,
we can effectively hide the presence of a single edge, which
ensures edge-level privacy, or a group of edges, which is
necessary for node-level privacy. To fully guarantee node-
level privacy, however, in addition to the edges, we need to
also protect node features and labels, which is simply done by

training EM and CM using standard DP learning algorithms
such as DP-SGD. We discuss this point further in Section 5.

Challenges addressed. Our GAP method can benefit from
multi-hop aggregations by composing individual noisy aggre-
gation steps. As the sensitivity of a single-step aggregation
is easily determined, AM applies the Gaussian mechanism
immediately after each aggregation step, avoiding the grow-
ing interdependency between node embeddings. GAP also
provides inference privacy as the inference of a node relies
on the aggregated data from its neighbors, which is privately
computed by AM. As the subsequent CM only post-processes
these private aggregations, GAP ensures inference-time pri-
vacy. This is explained in more details in Section 5.

In the rest of this section, we first discuss each of the
GAP’s components thoroughly and then describe the inference
mechanism.

4.2 Encoder Module
GAP uses a multi-layer perceptron (MLP) model as an encoder
to transform the original node features into an intermediate
representation given to AM. The main goal of this module is to
reduce the dimensionality of AM’s input, as the magnitude of
the Gaussian noise injected into the aggregations grows with
data dimensionality. Therefore, reducing the dimensionality
helps achieve better aggregation utility under DP.

Note that in order to save the privacy budget spent in AM,
we do not train the encoder end-to-end with CM. Instead, we
attach a linear softmax layer to the encoder MLP for label
prediction, and then pre-train this model separately using node
features and labels. Specifically, we use the following model:

Ŷ = softmax (MLPenc (X;𝚯enc) ·W) , (3)

where MLPenc is the encoder MLP with parameter set 𝚯enc,
W is the weight matrix of the linear softmax layer, X is the
original node features, and Ŷ is the corresponding posterior
class probabilities. In order to train this model,we minimize the
cross-entropy (or any other classification-related) loss function
ℓ(·, ·) with respect to the model parameters 𝚯 = {𝚯enc,W}:

𝚯★ = argmin
𝚯

∑︁
𝑣∈V𝑇

ℓ(Ŷ𝑣 ,Y𝑣), (4)

where Y is the ground-truth labels andV𝑇 ⊆ V is the set of
training nodes. After pre-training, we use the encoder MLP to
extract low-dimensional node features, X(0) , for AM:

X(0) = MLPenc (X;𝚯★enc). (5)

Remark. As will be discussed in Section 4.3, this encoder pre-
training approach significantly reduces the model’s privacy
costs as the private aggregations in AM no longer need to be
updated with the encoder’s parameters. Besides, compared
to the original features, this approach provides better node
features to AM as the encoded representations incorporate
label information as well.



4.3 Aggregation Module
The goal of AM is to privately release multi-hop aggregated
node features using the aggregation perturbation method. Al-
gorithm 1 presents our mechanism, the Private Multi-hop
Aggregation (PMA). It relies on the Sum aggregation func-
tion, which is simply equivalent to the multiplication of
the adjacency matrix A by the input feature matrix X, as
Agg(X,A) = A𝑇 ·X. The PMA mechanism takes X̌(0) , the
row-normalized version of the encoder’s extracted features as:

X̌(0)𝑣 = X(0)𝑣 /∥X(0)𝑣 ∥2, ∀𝑣 ∈ V . (6)

It then outputs a set of𝐾 normalized,privately aggregated node
features X̌(1) to X̌(𝐾 ) corresponding to different hops from 1
to 𝐾 . Specifically, given 𝜎 > 0, the PMA mechanism performs
the following steps to recursively compute and perturb the
aggregations in 𝑘-th hop from (𝑘 −1)-th:

1. Aggregation: First, we compute 𝑘-th non-private aggrega-
tions using the normalized aggregations at step 𝑘 −1:

X(𝑘 ) = A𝑇 · X̌(𝑘−1) . (7)

2. Perturbation: Next, we perturb the aggregations using the
Gaussian mechanism, i.e., by adding noise with variance
𝜎2 to every row of X(𝑘 ) independently:

X̃(𝑘 )𝑣 = X(𝑘 )𝑣 +N(𝜎2I), ∀𝑣 ∈ V . (8)

3. Normalization: Finally, it is essential to bound the ef-
fect of each feature vector on the subsequent aggregations.
Therefore, we again row-normalize the private aggregated
features, such that the L2-norm of each row is 1:

X̌(𝑘 )𝑣 = X̃(𝑘 )𝑣 /| |X̃(𝑘 )𝑣 | |2, ∀𝑣 ∈ V . (9)

Remark. The recursive computation of aggregations in the
PMA mechanism has one advantage: each aggregation step
acts as a denoising mechanism, averaging out the DP noise
added in the previous step (to some extent). Therefore, part of
the injected noise is dampened by the PMA mechanism itself,
leading to better aggregation utility. This noise-reducing effect
of GNN aggregations is also observed in prior work [38].

Effect of EM. Note that EM plays a critical role in improving
AM’s privacy-utility trade-off: First, it increases the utility of
noisy aggregations by reducing the dimensionality of AM’s
input, resulting in less noise added to the aggregations. Second,
its pre-training strategy makes AM agnostic to model training,
which remarkably reduces the total privacy costs as the PMA
mechanism is called only once and its output is cached to
be reused for entire training and inference. Technically, this
implies that with𝑇 training iterations, the Gaussian mechanism
is composed only 𝐾 times, which would otherwise be 𝐾𝑇 in
the case of end-to-end training. Since 𝐾 is small (1 ≤ 𝐾 ≤ 5)
compared to 𝑇 (in the order of hundreds), this leads to a
substantial reduction in the privacy budget.

Algorithm 1: Private Multi-hop Aggregation
Input :Graph G = (V , E) with adjacency matrix A; initial

normalized features X̌(0) ; max hop 𝐾 ; noise variance 𝜎2;
Output :Private aggregated node feature matrices X̌(1) , . . . , X̌(𝐾 )

1 for 𝑘 ∈ {1, . . . , 𝐾 } do
2 X(𝑘) ← A𝑇 · X̌(𝑘−1) // aggregate

3 X̃(𝑘) ← X(𝑘) +N(𝜎2I) // perturb
4 for 𝑣 ∈ V do
5 X̌(𝑘)𝑣 ← X̃(𝑘)𝑣 /| |X̃

(𝑘)
𝑣 | |2 // normalize

6 end
7 end
8 return X̌(1) , . . . , X̌(𝐾 )

4.4 Classification Module

Given the list of private aggregated features {X̌(0) , . . . , X̌(𝐾 ) }
provided by AM, the goal of CM is to predict node labels
without further relying on the graph edges. To this end, for
each 𝑘 ∈ {0,1, . . . , 𝐾}, we first obtain the 𝑘-hop representation
H(𝑘 ) using a corresponding base MLP, denoted as MLP(𝑘 )base:

H(𝑘 ) = MLP(𝑘 )base (X̌
(𝑘 ) ;𝚯(𝑘 )base), (10)

where 𝚯(𝑘 )base is the parameters of MLP(𝑘 )base. Next, we combine
these representations to get an integrated node embedding H:

H = Combine
(
{H(0) ,H(1) , . . . ,H(𝐾 ) };𝚯comb

)
, (11)

where Combine is any differentiable combination strategy,
with common choices being summation, concatenation, or
attention, potentially with parameter set 𝚯comb. Finally, we
feed the integrated representation into a head MLP, denoted
as MLPhead, to get posterior class probabilities for the nodes:

Ŷ = MLPhead (H;𝚯head), (12)

where 𝚯head denotes the parameters of MLPhead. To train CM,
we minimize a similar loss function as Eq. 4 but with respect to
CM’s parameters: 𝚯 = {𝚯(0)base, . . . ,𝚯

(𝐾 )
base,𝚯comb,𝚯head}. The

overall training procedure of GAP is presented in Algorithm 2.

Remark. CM independently processes the information en-
coded in the graph-agnostic node features X̌(0) and the pri-
vate, graph-based aggregated features X̌(1) to X̌(𝐾 ) , combin-
ing them together to get an integrated node representation.
Therefore, even if the DP noise overwhelms the signal in the
higher-level aggregations, the information in the lower-level
aggregations and/or the graph-agnostic features is still pre-
served and exploited for classification. As a result, regardless
of the privacy budget, GAP is expected to always perform on
par or better than pure MLP-based models that do not rely
on the graph structure. We will empirically demonstrate this
point in our experiments.



Algorithm 2: GAP Training
Input :Graph G = (V , E) with adjacency matrix A; node

features X; node labels Y; max hop 𝐾 ; noise variance 𝜎2;
Output :Trained model parameters

{𝚯★enc,𝚯★
(0)
base, . . . ,𝚯

★ (𝐾 )
base ,𝚯

★
comb,𝚯★head};

1 Pre-train EM (Eq. 3) to obtain 𝚯★enc.
2 Use the pre-trained encoder (Eq. 5) to obtain encoded features X(0) .
3 Row-normalize the encoded features (Eq. 6) to obtain X̌(0) .
4 Use Algorithm 1 to obtain private aggregations X̌(1) , . . . , X̌(𝐾 ) .
5 Train CM (Eq. 10-12) to get 𝚯★ (0)base, . . . ,𝚯

★ (𝐾 )
base ,𝚯

★
comb, 𝚯★head.

6 return {𝚯★enc,𝚯★
(0)
base, . . . ,𝚯

★ (𝐾 )
base ,𝚯

★
comb,𝚯★head}

4.5 Inference Mechanism
GAP is compatible with both the transductive and the inductive
inference, as discussed below.

Transductive setting. In this setting, both training and infer-
ence are conducted on the same graph, but using different
nodes for training and inference steps (Figure 4a). As the
entire graph is available at training time, AM computes the
private aggregations of all the nodes, including both training
and test ones. Therefore, at inference time, we only give the
cached aggregations of the test nodes to the trained CM to
predict their labels.

Inductive setting. Here, we use a new graph for inference
different from the one used for training (Figure 4b). In this
case, we first extract low-dimensional node features for the
new graph using the pre-trained encoder and then feed them
to AM to obtain the private aggregations. Finally, we input the
private aggregations to the trained CM to get the node labels.

5 Privacy Analysis

5.1 Edge-Level Privacy
In the following, we provide a formal analysis of GAP’s
edge-level privacy guarantees at training and inference stages.

Training privacy. The following arguments establish the DP
guarantees of the PMA mechanism and the GAP training
algorithm. The detailed proofs can be found in Appendix A.

Theorem 1. Given the maximum hop𝐾 ≥ 1 andnoise variance
𝜎2, the PMA mechanism presented in Algorithm 1 satisfies
edge-level (𝛼,𝐾𝛼/2𝜎2)-RDP for any 𝛼 > 1.

Proposition 2. For any 𝛿 ∈ (0,1), maximum hop 𝐾 ≥ 1, and
noise variance 𝜎2, Algorithm 2 satisfies edge-level (𝜖, 𝛿)-DP
with 𝜖 = 𝐾

2𝜎2 +
√

2𝐾 log (1/𝛿 )/𝜎.

Proposition 2 shows that the privacy cost grows with the
number of hops (𝐾), but is independent of the number of
training steps thanks to our GAP architecture.

Inference privacy. A major advantage of GAP is that querying
the model at inference time preserves DP without consuming
additional privacy budget. This is true for both the transductive
and the inductive settings:

• Transductive setting: In this setting, the inference is per-
formed by feeding the privately trained CM with the cached
aggregations of the test nodes, which have already been
computed privately at training time. As this computation
does not query the private graph structure and only post-
processes the previous DP operations, due to the robustness
of DP to post-processing, GAP provides inference privacy
with no additional cost.

• Inductive setting: In this case, first the new graph’s node
features are given to the encoder to obtain low-dimensional
features, which are fed to AM to compute private aggrega-
tions. Then, the private aggregations are given to CM to
obtain the final predictions. The only part where the private
graph structure is queried is the AM, in which the PMA
mechanism is applied to the new graph data, and thus the
output is private. Furthermore, since the training and test
graphs are disjoint, this application of the PMA mechanism
is subject to the parallel composition of differentially pri-
vate mechanisms, and thus it does not increase the privacy
costs beyond that of training’s. The other parts, the encoder
and CM, perform graph-agnostic computations and only
post-process previous DP outputs, leading to GAP ensuring
inference privacy without extra privacy costs.

5.2 Node-Level Privacy
Equipped with aggregation perturbation, the proposed GAP
architecture guarantees edge-level privacy by default. However,
it is readily extensible to provide node-level privacy guarantees
as well, providing that we have bounded-degree graphs, i.e.,
the degree of each node should be bounded above by a constant
𝐷. This allows to bound the sensitivity of the aggregation
function in the PMA mechanism when adding/removing a
node, as in this case each node can influence at most 𝐷 other
nodes. If the input graph has nodes with very high degrees, we
can use neighbor sampling (as proposed in [7]) to randomly
sample at most 𝐷 neighbors per node.

For bounded-degree graphs, adding or removing a node
corresponds (in the worst case) to adding or removing 𝐷

edges. Therefore, our PMA mechanism also ensures node-
level privacy, albeit with increased privacy costs compared to
the edge-level setting (see Theorem 2 below).

However, since the node features and labels are also private
under node-level DP, both EM and CM need to be trained
privately as they access node features/labels. To this end, we
can simply use standard DP-SGD [2] or any other differen-
tially private learning algorithm for pre-training the encoder
as well as training CM with DP. In other words, steps 1 and



5 of Algorithm 2 must be done with DP instead of regular
non-private training. This way, since each of the three GAP
modules become node-level private, the entire GAP model, as
an adaptive composition of several node-level private mecha-
nisms, satisfies node-level DP. The formal node-level privacy
analysis of GAP’s training and inference is provided below.

Training privacy. The node-level privacy guarantees of the
PMA mechanism and the GAP training algorithm are as
follows. Detailed proofs are deferred to Appendix A.

Theorem 2. Given the maximum degree 𝐷 ≥ 1, maximum hop
𝐾 ≥ 1, and noise variance 𝜎2, Algorithm 1 (PMA mechanism)
satisfies node-level (𝛼,𝐷𝐾𝛼/2𝜎2)-RDP for any 𝛼 > 1.

Proposition 3. For any 𝛼 > 1, let encoder pre-training (Step 1
of Algorithm 2) and CM training (Step 5 of Algorithm 2) satisfy
(𝛼, 𝜖1 (𝛼))-RDP and (𝛼, 𝜖5 (𝛼))-RDP, respectively. Then, for
any 0 < 𝛿 < 1, maximum hop 𝐾 ≥ 1, maximum degree 𝐷 ≥ 1,
and noise variance 𝜎2, Algorithm 2 satisfies node-level (𝜖, 𝛿)-
DP with 𝜖 = 𝜖1 (𝛼) + 𝜖5 (𝛼) +𝐷𝐾𝛼/2𝜎2 + log(1/𝛿 )/𝛼−1.

Note that in Proposition 3, we cannot optimize 𝛼 in closed
form as we do not know the precise form of 𝜖1 (𝛼) and 𝜖5 (𝛼).
However, in our experiments, we numerically optimize the
choice of 𝛼 on a per-case basis.

Inference privacy. The arguments stated for edge-level in-
ference privacy also hold for node-level privacy. Note that in
the inductive setting, the test graph should also have bounded
degree for the node-level inference privacy guarantees to hold.

6 Discussion

Choice of aggregation function. In this paper, we used
Sum as the default choice of aggregation function. Although
other choices of aggregation functions are also possible, we
empirically found that Sum is the most efficient choice to
privatize, as its sensitivity does not depend on the size of the
aggregation set (i.e., number of neighbors), which is itself
a quantity that should be computed privately. For example,
the calculation of both Mean and GCN [26] aggregation
functions depend on the node degrees, and thus requires
additional privacy budget to be spent on perturbing node
degrees. In any case, Sum is recognized as one of the most
expressive aggregation functions in the GNN literature [6,47].

Normalization instead of clipping. The PMA mechanism
uses normalization to bound the effect of each individual
feature on the Sum aggregation function. While clipping is
more common in the private learning literature (e.g., gradient
clipping in DP-SGD [2]), we empirically found that normaliza-
tion is a better choice for aggregation perturbation: CM is then
trained on normalized data, which tends to facilitate learning.
Normalizing the node embeddings is actually commonly done
in non-private GNNs as well to stabilize training [16, 50].

Limitations. As the PMA mechanism adds random noise
to the aggregation function, its utility naturally depends on
the size of the node’s aggregation set, i.e., the node’s degree.
Specifically, with a certain amount of noise, the more inbound
neighbors a node has, the more accurate its noisy aggregated
vector will be. This implies that graphs with higher average
degree per node can tolerate larger noise in the aggregation
function, and thus GAP can achieve a better privacy-accuracy
trade-off on such graphs. Conversely, GAP’s performance will
suffer if the average degree of the graph is too low, requiring
higher privacy budgets to achieve acceptable accuracy. Note
however that this is an expected behavior: nodes with fewer
inbound neighbors are more easily influenced by a change in
their neighborhood compared to nodes with higher degrees,
and thus the privacy of low-degree nodes is harder to preserve
than high-degree ones. Furthermore, this limitation is not
specific to GAP: it is shared by all DP algorithms, whose
performance generally suffer from lack of sufficient data.

Edge-level vs. node-level privacy. While GAP can work in
either edge-level or node-level privacy settings, it must be
emphasized that the former setting is suitable only for the use
cases where the node-level information (e.g, features or labels)
is not sensitive or is publicly available (e.g., the vertically
partitioned graph setting described in [44]). Whenever node-
level information is private as well (e.g., user profiles in a
social network), however, edge-level privacy fails to provide
appropriate privacy protection, and thus node-level privacy
setting has to be enforced.

7 Experiments

In this section, we conduct extensive experiments to empiri-
cally evaluate GAP’s privacy-accuracy performance and its
resilience under privacy attacks. As GAP’s privacy guarantees
are the same under both transductive and inductive settings,
we only focus on the former, which has also more pertinent
use cases (e.g., social networks).

7.1 Datasets
We evaluate the proposed method on three publicly available
node classification datasets, which are medium to large scale
in terms of the number of nodes and edges:

Facebook [40]. This dataset contains the anonymized Face-
book social network between UIUC students collected in
September 2005. Nodes represent Facebook users and edges
indicate friendship. Each node (user) has the following at-
tributes: student/faculty status, gender, major, minor, and hous-
ing status, and the task is to predict the class year of users.

Reddit [16]. This dataset consist of a set of posts from the
Reddit social network, where each node represents a post
and an edge indicates if the same user commented on both
posts. Node features are extracted based on the embedding



Table 1: Overview of dataset statistics.

Dataset Nodes Edges Degree Features Classes

Facebook 26,406 2,117,924 62 501 6
Reddit 116,713 46,233,380 209 602 8
Amazon 1,790,731 80,966,832 22 100 10

of the post contents, and the task is to predict the community
(subreddit) that a post belongs to.

Amazon [5]. The largest dataset used in this paper represents
Amazon product co-purchasing network, where nodes
represent products sold on Amazon and an edge indicates
if two products are purchased together. Node features are
bag-of-words vectors of the product description followed by
PCA, and the task is to predict the category of the products.

We preprocess the datasets by limiting the classes to those
having 1k, 10k, and 100k nodes on Facebook, Reddit, and
Amazon, respectively. We then randomly split the remaining
nodes into training, validation, and test sets with 75/10/15%
ratios, respectively. Table 1 summarizes the statistics of the
datasets after preprocessing.

7.2 Competing Methods

Edge-level private methods. The following methods are
evaluated under edge-level privacy:
• GAP-EDP: Our proposed edge-level DP algorithm.
• SAGE-EDP: This is the method of Wu et al. [44] that uses

the graph perturbation approach, with the popular Graph-
SAGE architecture [16] as its backbone GNN model. We
perturb the graph’s adjacency matrix using the Asymmetric
Randomized Response (ARR) [21], which performs better
than EdgeRand [44] by limiting the output sparsity.

• MLP: A simple MLP model that does not use the graph
edges, and thus provides perfect edge-level privacy (𝜖 = 0).

Node-level private methods. We compare the following
node-level private algorithms:
• GAP-NDP: Our proposed node-level DP approach.
• SAGE-NDP: This is the method of Daigavane et al. [7] that

adapts the standard DP-SGD method for 1-layer GNNs, with
the same GraphSAGE architecture as its backbone model.
Since this method does not inherently ensure inference
privacy, as suggested by its authors, we add noise to the
aggregation function based on its node-level sensitivity at
test time and account for the additional privacy cost.

• MLP-DP: Similar to MLP, but trained with DP-SGD so as
to provide node-level DP without using the graph edges.
We do not consider the approach of [32] as it requires public

graph data and is thus not directly comparable to the others.

Non-private methods. To quantify the accuracy loss of private
approaches, we use the following non-private methods (𝜖 =∞):

• GAP-∞: a non-private counterpart of the GAP method,
where we do not perturb the aggregations.

• SAGE-∞: a non-private GraphSAGE model.

7.3 Experimental Setup

Model implementation details. For our GAP models (GAP-
EDP, GAP-NDP, and GAP-∞), we set the number of MLPenc,
MLPbase, and MLPhead layers to be 2, 1, and 1, respectively. We
use concatenation as the Combine function (Eq. 11) and tune
the number of hops 𝐾 in {1,2, . . . ,5}. For the GraphSAGE
models (SAGE-EDP, SAGE-NDP, and SAGE-∞), we use the
Sum aggregation function and tune the number of message-
passing layers in {1,2, . . . ,5}, except for SAGE-NDP that only
supports one message-passing layer. We use a 2-layer and a
1-layer MLP as preprocessing and post-processing before and
after the message-passing layers, respectively. For the MLP
baselines (MLP and MLP-DP), we set the number of layers
to 3. In addition, for both the GAP-NDP and SAGE-NDP
methods, we use randomized neighbor sampling to bound
the maximum degree 𝐷 and search for the best 𝐷 within
{100,200,300,400}. For all methods, we set the number of
hidden units to 16 (including the dimension of GAP’s encoded
representation) and use the SeLU activation function [27]
at every layer. Batch-normalization is used for all methods
except the node-level private ones (GAP-NDP, SAGE-NDP,
and MLP-DP), for which batch-normalization is not supported.

Training and evaluation details. We train the non-private
and edge-level private methods using the Adam optimizer
over 100 epochs with full-sized batches. For the node-level
private algorithms (GAP-NDP, SAGE-NDP, MLP-DP), we
use DP-Adam [15] with maximum gradient norm set to 1,
and train each model for 10 epochs with a batch size of 256,
2048, 4096 on Facebook, Reddit, and Amazon, respectively.
For our GAP models (GAP-∞, GAP-EDP, and GAP-NDP), we
use the same parameter setting for training both the encoder
and classification modules. We train all the methods with a
learning rate of 0.01 and repeat each combination of possible
hyperparameter values 10 times. We pick the best performing
model based on validation accuracy, and report the average
test accuracy with 95% confidence interval calculated by
bootstrapping with 1000 samples.

Privacy accounting and calibration. Privacy budget account-
ing is done via the Analytical Moments Accountant [43]. We
numerically calibrate the noise scale (i.e., the noise standard
deviation 𝜎 divided by the sensitivity) of PMA (for GAP-EDP
and GAP-NDP), ARR (for SAGE-EDP), DP-SGD (for GAP-
NDP, SAGE-NDP, and MLP-DP) and the Gaussian mechanism
(for inference privacy in SAGE-NDP) to achieve the desired
(𝜖, 𝛿)-DP. We report results for several values of 𝜖 , while 𝛿 is
set to be smaller than the inverse number of private entities
(i.e., edges for edge-level privacy, nodes for node-level pri-
vacy). For both GAP-NDP and SAGE-NDP, we use the same



Table 2: Test accuracy of different methods on the three
datasets. The best performing method in eachcategory — none-
private, edge-level DP and node-level DP — is highlighted.

Method 𝜖 Facebook Reddit Amazon

N
on

e GAP-∞ ∞ 80.0 ± 0.48 99.4 ± 0.02 91.2 ± 0.07
SAGE-∞ ∞ 83.2 ± 0.68 99.1 ± 0.01 92.7 ± 0.09

Ed
ge

D
P GAP-EDP 4 76.3 ± 0.21 98.7 ± 0.03 83.8 ± 0.26

SAGE-EDP 4 50.4 ± 0.69 84.6 ± 1.63 68.3 ± 0.99
MLP 0 50.8 ± 0.17 82.4 ± 0.10 71.1 ± 0.18

N
od

e
D

P GAP-NDP 8 63.2 ± 0.35 94.0 ± 0.14 77.4 ± 0.07
SAGE-NDP 8 37.2 ± 0.96 60.5 ± 1.10 27.5 ± 0.83
MLP-DP 8 50.2 ± 0.25 81.5 ± 0.12 73.6 ± 0.05

noise scale for perturbing the gradients (in DP-SGD) and the
aggregations (in PMA and Gaussian mechanisms).

Software and hardware. All the models are implemented in
PyTorch [35] using PyTorch-Geometric (PyG) [12]. We use
the autodp library2 which implements analytical moments
accountant, and utilize Opacus [51] for training the node-level
private models with differential privacy. Experiments are
conducted on Sun Grid Engine with NVIDIA GeForce RTX
3090 and NVIDIA Tesla V100 GPUs, Intel Xeon 6238 CPUs,
and 32 GB RAM.

7.4 Experimental Results
7.4.1 Trade-offs between Privacy and Accuracy

We first compare the accuracy of our proposed methods against
the non-private, edge-level private, and node-level private base-
lines. We fix the privacy budget to 𝜖 = 8 for the node-level
private methods and 𝜖 = 4 for the edge-level private ones
(except for MLP, which does not use the graph structure and
thus achieves 𝜖 = 0). The results are presented in Table 2. We
observe that in the non-private setting, the proposed GAP archi-
tecture is competitive with SAGE,with only a slight decrease in
accuracy on Facebook and Amazon. Under both edge-level and
node-level privacy settings, however, our proposed methods
GAP-EDP and GAP-NDP significantly outperform their com-
petitors. Particularly, under edge-level privacy, GAP-EDP’s
accuracy is roughly 26, 14, and 15 points higher than the best
competitor over Facebook, Reddit, and Amazon, respectively.
Under node-level privacy, our proposed GAP-NDP method
outperforms the best performing competitor by approximately
13, 13, and 4 accuracy points, respectively.

Next, to investigate how different methods perform under
different privacy budgets, we vary 𝜖 from 0.1 to 8 for edge-
level private methods and from 1 to 16 for node-level private
algorithms and report the accuracy of the methods under each
privacy budget. The result for both edge-level and node-level
privacy settings is depicted in Figure 6.

2https://github.com/yuxiangw/autodp

Under edge-level privacy (Figure 6, left side), we observe
that GAP-EDP consistently outperforms its direct competitor,
SAGE-EDP, especially at lower privacy costs. The relative
gap between GAP-EDP and SAGE-EDP is influenced by the
average degree of the dataset. For example, on Facebook and
Reddit with higher average degrees, SAGE-EDP requires a
high privacy budget of 𝜖 ≥ 8 to achieve reasonable accuracy,
but on Amazon, which has the lowest average degree, it cannot
even beat the MLP baseline. In comparison, the accuracy of
GAP-EDP approaches the non-private GAP-∞ at much lower
privacy budgets, and always performs better than a vanilla MLP.
This is because SAGE-EDP perturbs the adjacency matrix,
which is extremely high-dimensional and sparse, while GAP-
EDP perturbs the aggregated node embeddings, which has
much lower dimensions and is not sparse compared to the
adjacency matrix. The amount of accuracy loss with respect to
the non-private method also depends on the average degree of
the graph. For example, on Reddit at 𝜖 = 2, GAP-∞’s accuracy
is only 1 point higher than GAP-EDP’s, while on Amazon at
𝜖 = 8, GAP-EDP’s accuracy fall behind GAP-∞ by around
5 points. These observations are in line with our discussion
of Section 6.

We can observe similar trends under node-level privacy (Fig-
ure 6, right side). We see that our GAP-NDP method always
performs on par or better than the MLP-DP baseline, and also
significantly outperforms SAGE-NDP under all the considered
privacy budgets. We attribute this to two factors: first, SAGE-
NDP is limited to 1-layer models and thus cannot exploit
higher-order aggregations; second, the naive noisy aggrega-
tion patch for supporting inference privacy severely hurts the
performance of SAGE-NDP. As expected, since the node-level
private GAP-NDP hides more information (e.g., node features,
labels, and all the adjacent edges to a node) than the edge-level
private GAP-EDP, it requires larger privacy budgets to achieve
a reasonable accuracy. Still, the accuracy loss with respect
to the non-private method is higher in the node-level private
method as we have further information loss due to neighbor-
hood sampling (to bound the graph’s maximum degree) and
gradient clipping (to bound the sensitivity in DP-SGD/Adam).

7.4.2 Resilience Against Privacy Attacks

As mentioned above, the node-level private methods require a
higher privacy budget than the edge-level private ones as they
attempt to hide much more information. In order to assess the
practical implications of choosing rather large privacy budgets
(e.g., 𝜖 = 8 in Table 2), we empirically measure the privacy
guarantees of GAP-NDP and other node-level private methods
by conducting node-level membership inference attack [20,33]
as the most relevant adapted privacy attack to GNNs.

Attack overview. The attack is modeled as a binary classifica-
tion task, where the goal is to infer whether an arbitrary node 𝑣
is a member of the training setV𝑇 of the target GNN. The key
intuition is that due to overfitting, GNNs give more confident

https://github.com/yuxiangw/autodp
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Figure 6: Accuracy vs. privacy cost (𝜖) of edge-level private algorithms (left) and node-level private methods (right).

probability scores to training nodes than to test ones, which
can be exploited by the attacker to distinguish members of the
training set. Having access to a shadow graph dataset coming
from the same distribution as the target graph, the attacker
first trains a shadow GNN to mimic the behavior of the target
GNN, but for which the membership ground truth is known.
Then, the attacker trains an attack model over the probability
scores of the shadow graph nodes and their corresponding
membership labels. Finally, the attacker uses the trained attack
model to infer the membership of the target graph nodes.

Attack settings. We follow the TSTF (train on subgraph, test
on full graph) approach of [33] for the node-level membership
inference attack. Specifically, we consider a strong adversary
with access to a shadow graph dataset with 1000 nodes per
class, which are sampled uniformly at random from the target
dataset. For the shadow model, we use the same architecture
and hyperparameters as the target model (described in Sec-
tion 7.3). Similar to prior work [33], we use a 3-layer MLP
with 64 hidden units as the attack model, and use the area under
the receiver operating characteristic curve (AUC) averaged
over 10 runs as the evaluation metric.

Results. Table 3 reports the mean AUC of the attack on
different node-level private methods trained with the same
setting as in Figure 6 (right). As we see, the attack is quite
effective on the non-private methods (𝜖 =∞), especially on
Facebook and Amazon datasets. The success of the attack on
each method mainly depends on its generalization gap (the
difference between the training and test accuracy): the higher
the generalization gap, the more confident the model is on the
training nodes and the easier it is to distinguish them from the
test nodes. Hence, the lower attack performance on the non-
private SAGE method is due to its lower generalization gap
compared to the other methods. Nevertheless, for all private
GNN methods, we observe that DP with privacy budgets
as large as 𝜖 = 16 can effectively defend against the attack,
reducing the AUC to about 50% (random baseline) on all
datasets. This result is in line with the work of [22, 23, 31],
showing that DP with large privacy budgets can still effectively
mitigate realistic membership inference attacks.

Table 3: Mean AUC of node membership inference attack.

Dataset Method 𝜖 = 1 𝜖 = 2 𝜖 = 4 𝜖 = 8 𝜖 = 16 𝜖 =∞

GAP-NDP 50.16 50.25 50.61 51.11 52.66 81.67
Facebook SAGE-NDP 50.25 50.20 50.23 50.17 50.20 62.49

MLP-DP 50.32 50.72 52.13 53.44 54.77 81.57

GAP-NDP 50.04 50.39 51.20 52.23 52.54 54.97
Reddit SAGE-NDP 49.97 49.97 49.95 50.00 49.98 50.05

MLP-DP 51.25 53.09 55.13 56.72 58.32 71.35

GAP-NDP 50.06 50.23 50.54 51.53 51.72 66.68
Amazon SAGE-NDP 49.93 49.93 49.93 49.92 49.97 59.41

MLP-DP 50.30 50.58 51.43 52.31 53.34 72.97

7.4.3 Ablation Studies

Effectiveness of the encoder module (EM). In this experi-
ment, we investigate the effect of EM on the accuracy/privacy
performance of the proposed methods, GAP-EDP and GAP-
NDP. We compare the case in which EM is used as usual with
the case where we remove EM and just input the original node
features to the aggregation module. The results under different
privacy budgets are given in Figure 7. We can observe that in
all cases, the accuracy of GAP-EDP and GAP-NDP is higher
with EM than without it. For example, leveraging EM results
in a gain of around 20, 2, and 5 accuracy points for GAP-EDP
with 𝜖 = 1 on Facebook, Reddit, and Amazon datasets, respec-
tively. GAP-NDP with EM also benefits from a gain of more
than 10, 10, and 5 points with 𝜖 = 4 on Facebook, Reedit, and
Amazon datasets, respectively. As discussed in Section 4.2,
the improved performance with EM is mainly due to the
reduced dimensionality of the aggregation module’s input,
which leads to adding less noise to the aggregations. Also, the
effect of EM is more significant on GAP-NDP, as the amount
of noise injected into the aggregations is generally larger for
node-level privacy, hence dimensionality reduction becomes
more critical to mitigate the impact of noise.

Effect of the number of hops. In this experiment, we inves-
tigate how changing the number of hops 𝐾 affects the accu-
racy/privacy performance of our proposed methods,GAP-EDP
and GAP-NDP. We vary 𝐾 within {1,2,3,4,5} and report
the accuracy under different privacy budgets: 𝜖 ∈ {1,4} for
GAP-EDP and 𝜖 ∈ {8,16} for GAP-NDP. The result is de-
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Figure 7: Effect of the encoder module (EM) on the accu-
racy/privacy performance of the edge-level private GAP-EDP
(top) and the node-level private GAP-NDP (bottom).
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Figure 8: Effect of the number of hops 𝐾 on the accu-
racy/privacy performance of the edge-level private GAP-EDP
(top) and the node-level private GAP-NDP (bottom).

picted in Figure 8. We observe that both of our methods can
effectively benefit from allowing multiple hops, but there is a
trade-off in increasing the number of hops. As we increment
𝐾, the accuracy of both GAP-EDP and GAP-NDP method
increase up to a point and then steady or decrease in almost
all cases. The reason is that with a larger 𝐾 the model is able
to utilize information from more distant nodes (all the nodes
within the 𝐾-hop neighborhood of a node) for prediction,
which can increase the final accuracy. However, as more hops
are involved, the amount of noise in the aggregations is also
increased, which adversely affects the model’s accuracy. We
can see that with the lower privacy budgets where the noise
is more severe, both GAP-EDP and GAP-NDP achieve their
peak accuracy at smaller 𝐾 values. But as the privacy budget
increases, the magnitude of the noise is reduced, enabling the
models to benefit from larger 𝐾 values.
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Figure 9: Effect of the degree bound𝐷 on the accuracy/privacy
performance of the node-level private GAP-NDP method.

Effect of the maximum degree. We now analyze the effect of
𝐷 on the performance of our node-level private method. We
vary 𝐷 from 10 to 400 and report GAP-NDP’s accuracy under
two different privacy budgets 𝜖 ∈ {4,16}. Figure 9 shows
that the accuracy keeps growing with 𝐷 on Reddit (which
has a high average degree), while on Facebook and Amazon
(lower average degrees) the accuracy increases with 𝐷 up
to a peak point, and drops afterwards. This is due to the
trade-off between having more samples for aggregation and
the amount of noise injected: the larger 𝐷, the fewer neighbors
are excluded from the aggregations (i.e., less information
loss), but on the other hand, the larger the sensitivity of the
aggregation function, leading to more noise injection. We also
observe that the accuracy gain as a result of increasing 𝐷 gets
bigger as the privacy budget is increased from 5 to 20, since a
higher privacy budget compensates for the higher sensitivity
by reducing the amount of noise.

8 Conclusion

In this paper, we presented GAP, a privacy-preserving GNN
architecture that ensures both edge-level and node-level differ-
ential privacy for training and inference over sensitive graph
data. We used aggregation perturbation, where the Gaussian
mechanism is applied to the output of the GNN’s aggregation
function, as a fundamental technique to achieve DP in our
approach. We proposed a new GNN architecture tailored to
the specifics of private learning over graphs, aiming to achieve
better privacy-accuracy trade-offs while tackling the intricate
challenges involved in the design of differentially private
GNNs. Experimental results over real-world graph datasets
showed that our approach achieves favorable privacy/accuracy
trade-offs and significantly outperforms existing methods.
Promising future directions include: (i) investigating robust
aggregation functions that provide specific benefits for private
learning; (ii) exploiting the redundancy of information in
recursive aggregations to achieve tighter composition when
the number of hops 𝐾 gets large, which might prove useful for
specific applications; (iii) extending the framework to other
tasks and scenarios, such as link-wise prediction or learning
over dynamic graphs; and (iv) conducting an extended theoret-
ical analysis of differentially private GNNs, such as proving
utility bounds and characterizing their expressiveness.
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A Deferred Theoretical Arguments

A.1 Proof of Theorem 1
To prove Theorem 1, we first establish the following lemma.



Lemma 1. Let Agg(X,A) = A𝑇 ·X be the summation ag-
gregation function. Assume that the input feature matrix X
is row-normalized, such that ∀𝑣 ∈ V : ∥X𝑣 ∥2 = 1. Then, the
edge-level sensitivity of the aggregation function is ΔAgg = 1.

Proof. Let A and A′ be the adjacency matrices of two arbitrary
edge-level adjacent graphs. Therefore, there exist two nodes 𝑢
and 𝑣 such that:{

A′
𝑖, 𝑗

≠ A𝑖, 𝑗 , if 𝑖 = 𝑢 and 𝑗 = 𝑣,
A′
𝑖, 𝑗

= A𝑖, 𝑗 , otherwise.
(13)

Without loss of generality, we can assume that A𝑣,𝑢 = 1 and
A′𝑣,𝑢 = 0. The goal is to bound the following quantity:

∥Agg(X,A) −Agg(X,A′)∥𝐹 .

Let M = Agg(X,A) be the aggregation function output on A,
and

M𝑖 =

𝑁∑︁
𝑗=1

A 𝑗 ,𝑖X 𝑗 ,

be the 𝑖-th row of M corresponding to the aggregated vector
for the 𝑖-th node. Analogously, let M′ = Agg(X,A′). Then:

∥Agg(X,A) −Agg(X,A′)∥𝐹 = ∥M−M′∥𝐹

= (
𝑁∑︁
𝑖=1
∥M𝑖 −M′𝑖 ∥22)

1/2

=
©«
𝑁∑︁
𝑖=1
∥
𝑁∑︁
𝑗=1
(A 𝑗 ,𝑖X 𝑗 −A′𝑗 ,𝑖X 𝑗 )∥22

ª®¬
1/2

=

(
∥A𝑣,𝑢X𝑣 −A′𝑣,𝑢X𝑣 ∥22

)1/2

= ∥(A𝑣,𝑢 −A′𝑣,𝑢)X𝑣 ∥2
= ∥X𝑣 ∥2
= 1,

which concludes the proof. □

We can now prove Theorem 1.

Proof. The PMA mechanism applies the Gaussian mecha-
nism on the output of the summation aggregation function
Agg(X,A) = A𝑇 ·X. Based on Lemma 1, the edge-level sen-
sitivity of Agg(·) is 1. Therefore, according to Corollary 3
of [29], each individual application of the Gaussian mecha-
nism is (𝛼, 𝛼/2𝜎2)-RDP. As PMA can be seen as an adaptive
composition of 𝐾 such mechanisms, based on Proposition 1
of [29], the total privacy cost is (𝛼,𝐾𝛼/2𝜎2)-RDP. □

A.2 Proof of Proposition 2
Proof. Under edge-level DP, only the adjacency information
is protected. In Algorithm 2, the only step where the graph’s

adjacency is used is the application of the PMA mechanism
(step 4), which according to Theorem 1 is (𝛼,𝐾𝛼/2𝜎2)-RDP.
Since EM does not use the graph’s edges and the classi-
fication module only post-process the private aggregated
features without accessing the edges again, the total pri-
vacy cost remains (𝛼,𝐾𝛼/2𝜎2)-RDP. Therefore, according
to Proposition 1 it is equivalent to edge-level (𝜖, 𝛿)-DP with
𝜖 = 𝐾𝛼

2𝜎2 + log(1/𝛿 )
𝛼−1 . Minimizing this expression over 𝛼 > 1

gives 𝜖 = 𝐾

2𝜎2 +
√

2𝐾 log (1/𝛿 )/𝜎. □

A.3 Proof of Theorem 2
We first prove Lemma 2 and Lemma 3, and then prove Theo-
rem 2.

Lemma 2. Given any graph G = (V,E,X), let

agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) =
∑︁
𝑢∈𝔑𝑣

X𝑢

be the summation aggregation function over the neighborhood
𝔑𝑣 of any arbitrary node 𝑣 ∈ V. Assume that the input feature
matrix X is row-normalized, such that ∀𝑣 ∈ V : ∥X𝑣 ∥2 = 1.
Then, the node-level sensitivity of agg(.) is Δagg = 1.

Proof. Considera node-level adjacent graphG′ = (V′,E′,X′)
formed by adding a single node 𝑞 to G. Hence, we have
V′ =V∪{𝑞}, and X′𝑣 = X𝑣 for every node 𝑣 ∈ V. Let A and
A′ be the adjacency matrices of G and G′ respectively. The
goal is to bound the following:

∥agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) −agg
(
{X′𝑢 : ∀𝑢 ∈ 𝔑′𝑣}

)
∥2 ≤ 1. (14)

where 𝔑𝑣 = {𝑢 : A𝑢,𝑣 = 1} and 𝔑′𝑣 = {𝑢 : A′𝑢,𝑣 = 1} are the
adjacent nodes to 𝑣 in G and G′, respectively. Fixing any
arbitrary node 𝑣 ∈ V, we have the following two cases:

1. If 𝑞 ∈ 𝔑′𝑣 , then we have 𝔑𝑣 = 𝔑′𝑣 \ {𝑞}. Therefore:

∥agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) −agg
(
{X′𝑢 : ∀𝑢 ∈ 𝔑′𝑣}

)
∥2

= ∥
∑︁
𝑢∈𝔑𝑣

X𝑢 −
∑︁
𝑢∈𝔑′𝑣

X′𝑢∥2

= ∥X𝑞 ∥2 = 1.

2. If 𝑞 ∉ 𝔑′𝑣 , then we have 𝔑𝑣 = 𝔑′𝑣 . Therefore:

∥agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) −agg
(
{X′𝑢 : ∀𝑢 ∈ 𝔑′𝑣}

)
∥2

= ∥
∑︁
𝑢∈𝔑𝑣

X𝑢 −
∑︁
𝑢∈𝔑′𝑣

X′𝑢∥2 = 0.

Eq. 14 follows from the above two cases. □



Lemma 3. Given any graphG = (V,E,X) with adjacency ma-
trix A and maximum degree bounded above by some constant
𝐷 > 0, assume that the feature matrix X is row-normalized,
such that ∀𝑣 ∈ V : ∥X𝑣 ∥2 = 1. Let agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) =∑
𝑢∈𝔑𝑣 X𝑢 be the summation aggregation function over the

neighborhood𝔑𝑣 of any arbitrary node 𝑣 ∈V, and Ãgg(X,A)
be a noisy aggregation mechanism which applies the Gaussian
mechanism independently on the aggregated vector of every
individual node as:

Ãgg(X,A) =
[
agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) +N (𝜎2I) : ∀𝑣 ∈ V

]𝑇
.

Then Ãgg(.) is (𝛼,𝐷𝛼/2𝜎2)-RDP.

Proof. According to Lemma 2, the node-level sensitivity of
agg ({X𝑢 : ∀𝑢 ∈ 𝔑𝑣}) is 1, and thus each individual noisy
aggregation query is (𝛼, 𝛼/2𝜎2)-RDP. Although Ãgg is com-
posed of 𝑁 = |V| such queries in total (one noisy aggregation
per node), as G’s maximum degree is bounded above by 𝐷, the
embedding X𝑢 of each node 𝑢 only contributes to maximum 𝐷

out of𝑁 queries. As these 𝑁 queries are chosen non-adaptively
and the noise of the Gaussian mechanism is independently
drawn for each query, the maximum privacy cost of Ãgg(.) is
equivalent to 𝐷 compositions of (𝛼, 𝛼/2𝜎2)-RDP mechanisms,
which based on Proposition 1 of [29] is (𝐷𝛼, 𝛼/2𝜎2)-RDP. □

Now, we prove Theorem 2.

Proof. At each step of the PMA mechanism, the Gaussian
mechanism is applied on every output row of the summa-
tion aggregation function Agg(X,A) = A𝑇 ·X. Based on
Lemma 3, this mechanism is (𝛼, 𝛼𝐷/2𝜎2)-RDP. As PMA
can be seen as an adaptive composition of 𝐾 such mecha-
nisms, based on Proposition 1 of [29], the total privacy cost is
(𝛼, 𝛼𝐷𝐾/2𝜎2)-RDP. □

A.4 Proof of Proposition 3
Proof. Under node-level DP, all the information pertaining
to an individual node, including its features, label, and edges,
are private. The first step of Algorithm 2 privately processes
the node features and labels so as to satisfy (𝛼, 𝜖1 (𝛼))-RDP.
Steps 2 and 3 of the algorithm, however, expose the private
node features, but then they are processed by steps 4 and
5, which are (𝛼,𝐷𝐾𝛼/2𝜎2)-RDP (according to Theorem 2)
and (𝛼, 𝜖5 (𝛼))-RDP, respectively. As a result, Algorithm 2
can be seen as an adaptive composition of an (𝛼, 𝜖1 (𝛼))-
RDP mechanism, an (𝛼,𝐷𝐾𝛼/2𝜎2)-RDP mechanism, and an
(𝛼, 𝜖5 (𝛼))-RDP mechanism. Therefore,basedon Proposition 1
of [29], the total node-level privacy cost of Algorithm 2 is
(𝛼, 𝜖1 (𝛼) + 𝐷𝐾𝛼/2𝜎2 + 𝜖5 (𝛼))-RDP, which ensures (𝜖1 (𝛼) +
𝜖5 (𝛼) + 𝐷𝐾𝛼2𝜎2 + log(1/𝛿 )

𝛼−1 , 𝛿)-DP based on Proposition 1. □
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