
TRIDENT: Towards Detecting and Mitigating
Web-based Social Engineering Attacks

Zheng Yang†, Joey Allen†, Matthew Landen†, Roberto Perdisci†‡, Wenke Lee†

†Georgia Institute of Technology ‡University of Georgia

Abstract
As the weakest link in cybersecurity, humans have become
the main target of attackers who take advantage of sophisti-
cated web-based social engineering techniques. These attack-
ers leverage low-tier ad networks to inject social engineer-
ing components onto web pages to lure users into websites
that the attackers control for further exploitation. Most of
these exploitations are Web-based Social Engineering Attacks
(WSEAs), such as reward and lottery scams. Although re-
searchers have proposed systems and tools to detect some
WSEAs, these approaches are very tailored to specific scam
techniques (i.e., tech support scams, survey scams) only. They
were not designed to be effective against a broad set of attack
techniques. With the ever-increasing diversity and sophistica-
tion of WSEAs that any user can encounter, there is an urgent
need for new and more effective in-browser systems that can
accurately detect generic WSEAs.

To address this need, we propose TRIDENT, a novel de-
fense system that aims to detect and block generic WSEAs in
real-time. TRIDENT stops WSEAs by detecting Social Engi-
neering Ads (SE-ads), the entry point of general web social
engineering attacks distributed by low-tier ad networks at
scale. Our extensive evaluation shows that TRIDENT can de-
tect SE-ads with an accuracy of 92.63% and a false positive
rate of 2.57% and is robust against evasion attempts. We also
evaluated TRIDENT against the state-of-the-art ad-blocking
tools. The results show that TRIDENT outperforms these tools
with a 10% increase in accuracy. Additionally, TRIDENT only
incurs 2.13% runtime overhead as a median rate, which is
small enough to deploy in production.

1 Introduction

Social Engineering (SE) has become an ever more sophisti-
cated and common attack method [1]. Recent surveys report
that 84% of hackers leverage Web-based Social Engineer-
ing Attacks (WSEAs) in the cyber kill chain with a high
success rate [2–4]. Moreover, 64% of companies have ex-
perienced web-based attacks, and 62% have seen phishing

and WSEAs [5]. Attackers also target regular Internet users.
The Federal Trade Commission received 2.8 million fraud
reports in 2021 in the United States, which led to a $5.8 bil-
lion financial loss [6]. The top 3 fraud categories – impostor
scams (e.g., tech support scams), online shopping scams, and
reward and prize scams (e.g., survey scams) – are commonly
seen on the Internet [7–10]. These scams account for $2.3
billion of losses, almost doubling from 2020.

Researchers have studied countermeasures to mitigate the
impact of WSEAs. For example, Miramirkhani et al. analyzed
tech support scams [7]; Kharraz et al. built Surveylance [8],
which is specifically designed to detect survey scams; and
Invernizzi et al. developed EVILSEED [11], a crawler that
searches the Internet to identify risky websites that install
unwanted software. However, these previous works only focus
on specific SE attack vectors. Because of the diversity of
WSEAs that users can encounter [1], there is an urgent need
for new and more effective in-browser defense systems that
can accurately detect generic WSEAs.

This paper proposes a new defense system that aims to
detect and block generic WSEAs in real-time while the user
is browsing the web. The main challenge we face is that
directly detecting malicious web pages related to WSEAs
is extremely difficult due to the large variety of SE tactics
attackers can employ and the freedom they have in building
malicious content. Therefore, in this work, we investigate how
to indirectly detect and block WSEAs at their inception before
the user interacts with the related scam content.

Recent works have shown that users often reach Social
Engineering Websites (SE-websites) by interacting with ma-
licious ads [7–9, 12–16]. More specifically, attackers are in-
clined to leverage low-tier ad networks to inject ads into many
different publisher websites at scale and use these ads to lure
users to their SE-websites so that various attacks such as lot-
tery scams, reward scams, tech support scams, etc., can be
launched. Importantly, these low-tier ad networks often do
not inject traditional ads onto the page. Instead, they inject
DOM elements into ad-publishing web pages and leverage
different social engineering tricks to lure users into clicking

(a) (b)

Figure 1: Example SE-ads: (a) An invisible link covering the
whole viewport to force users to click; (b) Deceptive elements
(fake notification, "Play" and "Skip Ad" buttons) to lure users
into interacting with them.

these elements to trigger ad network-driven navigation to a
WSEA page. For instance, the ad network may inject a trans-
parent overlay covering the entire publisher page and listen to
users’ clicks on any portion of the page. We refer to these non-
traditional ads that leverage various SE tricks to lure users’
clicks as Social Engineering Ads (SE-ads).

As mentioned above, SE-ads are non-traditional ads. They
are often invisible, malicious ads that, when interacted with,
navigate the browser to a landing page containing SE attacks.
A previous study [13] reported that attackers often leverage
two types of techniques (registering click event listeners and
injecting invisible links shown in Fig. 1a) to deploy invisible,
malicious ads to steal users’ clicks. In addition, SE-ads also
appear as misleading in-page components, such as an in-page
push notification or fake "Skip Ads" or "Play" buttons, as
illustrated in Fig. 1b, to induce users to interact with them.
Given these features, we can see that SE-ads are not traditional
ads, although we still refer to them as ads because they are
injected into a publisher page by ad networks. Therefore,
rather than attempting to detect WSEAs directly by analyzing
their contents and/or URLs related to the WSEAs, we focus
on detecting their leading causes, namely SE-ads.

Although most SE-ads come from ad networks, existing
ad-blocking tools are not effective in detecting SE-ads for
two major reasons. First, the ads are not generally visible,
so ad-blocking tools such as PERCIVAL [17] which block
ads through the image rendering pipeline, cannot detect them.
Second, the ad networks that distribute these SE-ads are ex-
tremely motivated to evade ad blockers [9]. For example, in
our evaluation (see Tab. 10 and Tab. 11), we show that neither
commercial ad blocker [18] nor the most recent state-of-the-

art ML-based ad-blocker [19] is effective against SE-ads.
To address the challenge of detecting SE-ads to mitigate

WSEAs, we propose TRIDENT – a novel system that detects
SE-ads distributed by low-tier ad networks at scale in real-
time and blocks the subsequent web-based social engineer-
ing attacks. To this end, TRIDENT develops an in-memory
graph representation of a web page and its activities, (e.g.
registering event listeners to intercept clicks, manipulating
Document Object Model (DOM) to inject deceptive elements
shown in Fig. 1), which we call the Web Action History Graph
(WAHG). During a user’s browsing session, TRIDENT uses
the WAHG to protect users from potential SE attacks that are
launched through SE-ads in real-time. Specifically, during a
user’s browsing session, TRIDENT vets each navigation event
to determine if a sea initiates it.

When TRIDENT detects the navigation is related to a SE-ad,
it redirects the user to an interstitial page to warn the user.

To extensively evaluate TRIDENT, we crawled over 100K
websites from October 2021 to January 2022 and collected
258,008 unique navigation events initiated by JavaScript (JS),
including 1,479 events resulting in SE attacks. In our eval-
uation, we found that TRIDENT can detect SE-ads with an
accuracy of 92.63%, a precision of 90.63%, and a recall of
96.28%, outperforming prior work [19] by more than 10%.

In summary, we make the following main contributions:
• Blocking generic web-based social engineering at-

tacks. We propose TRIDENT, a browser extension to
Chromium-based browsers that blocks generic web-
based SE attacks by detecting SE-ads. TRIDENT
achieves an accuracy of 92.63% with a precision of
90.63%, a recall of 96.28%, and an F-1 score of 93.37%.
We will release TRIDENT source code at https://
github.com/ian7yang/trident.

• Real-time detection. TRIDENT extends the Chrome De-
vTools (CDP) to provide real-time JS activity monitor-
ing with minimal instrumentation. When an SE-ad is
detected, TRIDENT determines whether to warn the user
with an interstitial alert page before the final social engi-
neering attack landing page is rendered.

• Comprehensive evaluation. Our evaluation includes
a comparison with previous work and shows that
TRIDENT can detect SE-ads more effectively than state-
of-the-art ad-blocking tools. Moreover, we show that
the detection features used by TRIDENT’s classifier are
robust against evasion attempts and concept drift. At the
same time, we demonstrate that TRIDENT’s implemen-
tation only incurs a median of 2.13% runtime overhead.

2 A Motivating Example & Challenges

This section presents a real-world example of SE-ads hosted
on a high-ranking search result from Google Search and dis-
cusses the limitations of prior, generic ad-blocking work.

https://github.com/ian7yang/trident
https://github.com/ian7yang/trident

6

4

5

3

1

2

Figure 2: Motivating Example: Alice typed “free movies” in
Google Search but ended up landing on SE-websites.

2.1 A Motivating Example

This section introduces a real-world motivating example
demonstrating how victims arrive on SE-websites by interact-
ing with the SE-ads. Fig. 2 gives a clear description of how
an ad network manipulates users to interact with SE-ads by
including JavaScript (JS) code into a content-sharing website,
also known as an ad publisher.
Google Search Result Leads to SE Attacks. The attack
begins on the popular Google search engine where the vic-
tim, Alice, completes a Google search for the phrase, “free
movies” at step 1 . Despite Google Search is one of the most
highly-respected search engines, it still struggles to filter out
websites that include malicious content from the top results
of the search. For instance, at the time and location of writ-
ing, Google Search returns an illegal movie-sharing website
(ww.movies123.sbs) in the top 4 results for the query “free
movies" at step 2 . As a result, Alice is unfortunately sup-
plied with a mixture of benign and malicious search results.
As this is one of the top results, many users may click on the
link to ww.movies123.sbs, which is not considered malicious
by VirusTotal [20] or Google Safe Browsing [21].

At first glance, this website appears innocuous while also
providing a diverse selection of popular, well-known movies.
However, under the hood, ww.movies123.sbs includes scripts
obtained from low-tier ad networks with one goal: to trick
visitors into clicking on the SE-ads these scripts inserted so
they can make money from their malicious activity. Look-
ing at Fig. 2, several mouse event listeners, registered on
#document, intercept Alice’s click on the search box in step
3 . In fact, any click on the page triggers the listeners, which

dynamically determine what page to open for Alice. Due to
these click interceptions, Alice is obligated to interact with
SE-ads when searching for a movie to watch. Before Alice
can type the movie name, the SE-ad opens up a new tab, ask-
ing Alice to install “Rainbow Blocker”, a known AdWare [22].
When Alice arrives at the spider-man movie, she clicks on the
play button in step 4 and “Skip Ads” in step 5 . Unfortu-
nately, the SE-ads are attempting to trick Alice into download-

<!--ad slot on nytimes.com-->
<div id="dfp-ad-top" class="place-ad placed-ad"

data-google-query-id="CNrG4fK85PcCFWcrwQodUhgBGQ">
<!--the iframe injected by the ad script below-->
<iframe src="https://...safeframe.googlesyndication..."/>
</div>

// an inline script to configure the ad size
var adConfig = function() {...};
// a remote script: doubleclick/pubads_impl_*.js
var adFrame = createAdIframe(adConfig);
appendAdFrame('#dfp-ad-top', adFrame);

(a) Ad scripts from Google Ads
var func = {init: function(event) {

return setTimeout(function() {
windowOpenerNull(), removeTransparentLayer()},
500), sendClickMetrics()},

createTransparentLayer: function(){...},
removeTrasparentLayer: function(){...},}

// register click event listener
document.addEventListener(

isChrome ? 'mousedown': 'click',
handler(e){removeTransparentLayer();func.init(e);})

(b) In-lined ad scripts from adSterra

Figure 3: Script snippets from Google Ads which follows ad
standard and AdSterra which inject SE-ads.

ing browser extensions, which claim to be necessary to watch
the movie. However, after further manual analysis of their
code, we found that these extensions were trackers and Ad-
Ware, which track users and harm their digital privacy. After
seven clicks, Alice could watch the movie after closing all the
opened tabs. While Alice is watching, an in-page notification
pops up to warn Alice that her Mac is infected. Alice be-
comes nervous and clicks on the banner to download software
to clean her Mac in step 6 . This software was confirmed to
be an AdWare by VirusTotal [20].

Low-tier Ad Networks Are Popular, but Hijack Clicks. Ad
publishers are inclined to cooperate with low-tier ad networks,
which pay more than high-profile advertising platforms [23].
For example, AdSterra pays up to USD $25 for a click [24],
which is 10x more than what Google ads pay. Therefore,
these low-tier ad networks are strongly motivated to elicit
clicks to collect more money [25]. These low-tier ad networks
may use SE tricks to harvest as many clicks as possible. As
described by the reverse-engineered ad scripts in Fig. 3b in
the Appendix, they inject in-line scripts to insert a transparent
DOM layer and register a mouse event listener. The visitor is
then forced to trigger the event listener, which opens a new
window and loads ads. This approach is highly different from
what the high-profile ad networks do and does not follow the
general standards [26–29]. In contrast, looking at the pseudo
code from Google ads in Fig. 3a, the ad publisher prepares a
container for the ad script to inject an iframe that can isolate
the ad’s contents such that it cannot directly access the first
party’s contents. Unfortunately, these ads will likely collect
fewer clicks than low-tier networks.

Therefore, as ad publishers, these content-sharing websites

prefer low-tier ad networks even though these ad networks
may use SE tricks to get more clicks. Thus, the low-tier ad
networks can transfer a fraction of their high revenue from
advertisers to those ad publishers. The advertisers are satis-
fied by having more ads exposed to users, which results in a
higher conversion rate. This business model undoubtedly is in-
triguing to attackers and provides them with opportunities to
spread malicious content (e.g. unwanted software, WSEAs).

2.2 Challenges

Next, we will discuss in detail the limitations of prior ap-
proaches [12, 13, 17, 19, 30–32] on generic ad blocking,
and the major challenges in detecting the malicious behavior
demonstrated in the motivating example.

Limitations of filter-list-based ad-blockers. Traditional ad-
blockers leverage human-created blacklists or whitelists to
determine what network requests can pass. Every request URL
that matches a pattern in the list is blocked, regardless of the
request being benign or malicious. While these ad-blockers
may block some malicious content, they are not robust be-
cause once malicious ad networks change the domain or URL
parameters to serve their malicious content, they can evade
these blocking tools [9, 10]. They also hurt the earnings of
ad publishers. Therefore, some content providers refuse to
display their content if an ad-blocker is detected. To avoid
the pitfalls of URL-based detection systems, TRIDENT does
not factor URL parameters into the feature extraction process
except by using the URL to determine whether a resource is
from the first party or a third party.

Limitations of ML-based ad-blockers. ADGRAPH is the
most recent, state-of-the-art, ML-based ad-blocker, which
achieves 95.33% accuracy and can identify many mistakes
in the filter lists as mentioned above. However, as mentioned
in WEBGRAPH [33], ADGRAPH is not robust. Adversaries
can evade ADGRAPH by tweaking the domains and URL pa-
rameters. Unfortunately, even though WEBGRAPH is a more
robust version of ADGRAPH, it focuses on network infor-
mation flows, which SE-ads do not necessarily rely on. For
example, when a SE-ad script loads, it does not need to issue
network requests to track users or fetch ad resources, result-
ing in no network information flows. This allows the attack
to hide from WEBGRAPH. To this end, analyzing the behav-
iors of the script becomes more critical. TRIDENT builds a
graph-based representation of a website, which we call the
Web Action History Graph (WAHG), to learn what scripts do
on the web page, which provides more insightful information
to determine whether a script is related to SE-ads.

Detecting invisible SE-ads. Traditional ads come with attrac-
tive images and words to draw users’ attention. This inspired
Din et al. to build PERCIVAL [17], which is a deep learning
model inside the image rendering pipeline of the Chromium
browser that blocks rendering ad images. PERCIVAL achieves

addEventListener
appendChild

modifyAttribute
...

openWindow

Chromium

Blink
DevTools

§3.3 SEAgent §3.4 WAHG

§3.5 Feature Extraction

- JavaScript Identifier
- Frame Identifier
- Property Features
- Action Features
- Consequence Features

§3.6 Classification

Safe navigation

SE Navigation
Detected

Figure 4: The design of TRIDENT. TRIDENT instruments
Chromium to collect features related to JS activities. The
features are fed into a classifier when navigation takes place.

96.76% accuracy and can effectively block ad images to make
users less likely to interact with the ads. Unfortunately, the
DOM elements that intercept users’ clicks, such as fake play
buttons and invisible overlays [12, 13], do not need to go
through the image rendering pipeline. These SE-ads evade
PERCIVAL by nature. Additionally, adversaries can circum-
vent PERCIVAL using the attacks proposed in [34]. To address
this challenge, TRIDENT translates invisible formats into fea-
tures. And these features are good indicators for SE-ads as
shown in the evaluation of feature importance in §3.5.

3 TRIDENT

3.1 Overview
In this section, we introduce TRIDENT, a novel real-time de-
tection system for identifying Social Engineering Ads (SE-
ads) and blocking navigation to potential Social Engineering
Websites (SE-websites). At a high-level, TRIDENT takes ad-
vantage of two intuitions: (1) SE-ads use tricks (e.g., click-
jacking and social engineering) to lure users into interacting
with strategically placed DOM elements and triggering un-
wanted browser navigation; and (2) SE-ads often navigate
the user to malicious websites that host social engineering
attacks (e.g., tech support scams, malicious downloads, etc.).
Therefore, to detect SE-ads and block the subsequent events,
TRIDENT monitors the user’s browsing session and vets each
navigation to determine if it may be related to an SE-ad.
More specifically, during this vetting process, TRIDENT ex-
tracts features related to how this navigation was initiated
and passes these features to its classification module. Fi-
nally, if TRIDENT determines this navigation is SE-ad related,
TRIDENT presents an interstitial page to warn the user.

While prior approaches [7, 8, 11] focus on specific SE
attack vectors, TRIDENT takes a more generic approach
that relies on the causality of how users end up in SE-
websites. Namely, TRIDENT detects WSEAs by detecting
the anomalous techniques, which intercept users’ clicks by
any means, routinely used by SE-ads, which often lead to

compile
add

request

inline ad
script register

#document

respond

3rd party
ad script

add
3rd party
ad script

compile

unregister

click

123movies

Rainbow
Blocker

setTimeout
callback

create

setTimeout
callback

open

click event
listener

attach "skip ad"
iframe5

3

load

new
window

Figure 5: WAHG based on step 3 in the motivating example.

websites that host SE attacks. TRIDENT achieves this by
leveraging the design illustrated in Fig. 4. First, TRIDENT
instrument Chromium by extending the Chrome DevTools
Protocol framework (CDP) [35] with a new agent, Social-
Engineering agent (SEAgent). While a user is visiting a web-
site, the SEAgent collects JS actions (e.g., event listener regis-
trations, DOM modifications) and sends them to a background
daemon. The background daemon builds an in-memory graph
representation of the web page and its activities, which we call
Web Action History Graph (WAHG). While TRIDENT builds
and updates the WAHG, it also extracts property features,
action features, and consequence features about the page’s
JS code from the graph. These features describe how these
scripts are included, what contexts the scripts are running in,
and what the scripts do on a web page. These features are
passed to TRIDENT’s classification module, which classifies
the navigation as related to SE-ads or benign.

In the remainder of this section, we first give an example
of the WAHG of the motivating example in §3.2, and then
explain how TRIDENT instruments Chromium in §3.3. Next,
we discuss how to construct WAHG while the user is browsing
a website in §3.4, and the feature extraction along with it in
§3.5. Finally, we introduce the classifier in §3.6.

3.2 Web Action History Graph
The Web Action History Graph (WAHG) is a graph-based
representation of a web page. Nodes in the graph represent
web objects (e.g., window, resource, DOM node, etc.) and
edges represent causal relationships between objects. For
example, when a script inserts a new DOM element into the
DOM tree, an edge from the script to the element will be
connected into the WAHG. We formally define all graph
objects and relationships in Tab. 1.

To demonstrate the WAHG’s capability to represent SE-ads,
we provide an example WAHG of the suspicious publishing
page, “www.movies123.sbs”, that Alice encountered in the
motivating example (3) in Fig. 5. For clarity, the example
only contains the portions of the WAHG related to two SE-ad
attacks on the page. The first SE-ad is launched by an inline
script on “ww.movies123.sbs” and is represented by the set

Object Type Attributes

Frame security_origin, url, is_page
Window url
Resource url, type
Script url, is_isolated, frame_owner
Function url, is_eval_or_new_function, location
DOM Node tag_name, is_inserted_by_js
HTML Parser frame_owner

(a) Graph Objects. The unique ID for each object is omitted.

Relationship Example

Attached Frame → Frame
Compiled by Script → Frame
Created Script/Function → Frame
Add event listener Script/Function → Function
Listen to events Function → DOM Node
Add callback function Script/Function → Function
Navigated Frame → Frame
Opened Frame → Window
Load Window → Frame
Respond Parser/Script/Function → Resource
Response Resource → Parser/Script/Function

(b) Relationship between objects.

Table 1: WAHG objects, relationships, and key attributes.

of nodes connected by the solid blue edges. The inline script
initiates the deployment of the SE-ad by scheduling a delayed
callback to be executed using setTimeout. When this call-
back is executed, it adds a new mouse event listener onto the
#document element which consequently covers the whole
viewport. When Alice clicks on the input box to search for
a movie, the click is effectively hijacked. The mouse event
listener on #document is fired and redirects Alice to the mali-
cious website called “Rainbox Blocker”. The second SE-ad
attack is shown by the dashed yellow path, which is initiated
by the same inline script, but with a different deployment
technique. More specifically, the inline script injects a third-
party ad script that also uses setTimeout to create an iframe
and insert it onto the page. If Alice clicks on the “Skip Ad”
button, which is rendered in the iframe, it would cause Alice
to download a malicious Chrome Extension. This example
demonstrates the fine-grained details related to a web page
that is embedded into the WAHG.

3.3 Social-Engineering Agent

The Social-Engineering Agent (SEAgent) module resides
within the browser to emit event logs for constructing the
WAHG. To minimize our footprint in the browser, we imple-
mented the SEAgent on top of the Chrome DevTool’s Protocol
(CDP) [35] which can be easily updated and maintained.

CDP is a debugging tool to assist web developers with

UI development. In addtion to debugging a website, CDP
can also be used to analyze the website for security and pri-
vacy purposes. More specifically, CDP implements several
“domains” where each domain has a set of APIs and events
related to a particular aspect of a web application (e.g., DOM,
Network, or DOMDebug). Internally, each domain relies on
a backend “Inspector Agent” that encapsulates the neces-
sary instrumentation to support the domain. For example,
the DOM domain provides events for DOM modifications, and
the DOMDebug domain exposes an API to collect current event
listeners. Unfortunately, existing CDP domains could not
support real-time information collection for some cases. For
example, the DOMDebugger.getEventListeners API col-
lects current event listeners on the DOM at the query time.
We would have to call this API frequently to capture every
registered and removed listener, which is cumbersome and
risky because a malicious listener may be removed when we
call this API. Moreover, the Debugger domain does not im-
plement event hooks for JS executing stack, which is essential
for JS action attribution, which will be discussed in §3.4.

To meet the real-time requirement, we implement the
SEAgent with less than 800 lines of C++ code. SEAgent is a
plug-n-play component to the existing CDP, which means it is
easy to update and maintain with browser updates. SEAgent
implements four types of hooks to collect JS actions for
constructing the WAHG in real-time. Whenever a hooked
API is called, it emits an event immediately. For example,
the instrumentation in event listener registration collects the
event_target, event, and the listener function whenever
a script or function calls addEventListner to meet the real-
time requirement for feature collection. The details of the
hooks are listed in Tab. 2.

3.4 WAHG Construction
In this section, we discuss in detail how TRIDENT uses the
event logs collected by the SEAgent to construct the WAHG
in real-time progressively.

TRIDENT parses every event and translates the results
into nodes and edges. There are two important attribution
steps that TRIDENT performs: JS attribution, which associates
DOM events to a responsible JS file, and navigation initiator
attribution, which determines which script requests the navi-
gation such that TRIDENT only needs to inspect paths to this
script node on the WAHG instead of inspecting all the script
nodes. We discuss in detail how both tasks are completed in
the remainder of this section.
JavaScript Attribution. TRIDENT needs to attribute all
DOM events to the accountable script. To do so, for each
interaction and event, we attribute the event to the current exe-
cuting JS function. For instance, when the script “../..7d94.js”
inserts an event listener onto the page, we connect the script
to the listener in Fig. 6a. This approach addresses most cases
for finding the responsible JS file, However, the two global

listen to mouse clicks

openListener:
click

#document

registerScript:
../..7d94.js

compile

Page:
/

Rainbow
Blocker

load

new
window

(a) Navigation Initiator as a
JavaScript Function

insert open

Callback:
setInterval

<a href />

add

compile

Page:
/search

Chrome
Extension

Script:
../..7d94.js

load

new
window

(b) Navigation Initiator as an
Anchor tag

Figure 6: TRIDENT finds the responsible JavaScript function
that initiates the navigation. The functions in pink elliptical
are accountable for SE-ads.

JS functions, eval and Function, pose challenges when we
try to attribute events to the correct functions or scripts. For
example, when an external script loads, it invokes eval to
evaluate a JS code snippet. This process requires compiling
the snippet and generating a new script object, but this snippet
will not have a valid URL. In these cases, we assign events
caused by the snippet to its caller’s URL. We use the same
approach for the Function API as it works similarly to eval.
Navigation Initiator. There are two types of navigation ini-
tiators: a script or a user’s action (e.g., clicking a link, typing
in the address bar). Finding the initiator of a navigation event
helps us reduce the analysis space by only having to analyze
scripts and events related to the navigation, which leads the
users to the websites under the attacker’s control. Fig. 6a
presents a JS function initiator, the click listener, which opens
a new page. By analyzing the WAHG, TRIDENT can locate
the responsible script that may lead to a SE-websites. Ob-
viously, not all navigation events are initiated by JS code
directly. In Fig. 6b, an anchor tag is inserted by a timer call-
back function. When the user clicks on the link, it opens a
new window. Based solely on the information on this path,
TRIDENT cannot determine what code is responsible for the
navigation. To handle these cases, TRIDENT learns what href
attribute is assigned to or updated for all the anchor nodes. It
connects the JS function that modified or updated the anchor
node to the new window by matching their URLs.

3.5 Feature Extraction
In this section, we discuss the features used to learn the char-
acteristics of malicious and benign scripts. Next, we describe
how TRIDENT extracts features in real-time.

3.5.1 Feature Descriptions

TRIDENT’s features are divided into three groups – property,
action, and consequence features – as shown in Tab. 3. The
first group introduces the script’s properties; the second group
describes the script’s behaviors; and the last group contains
redirect information. We leverage our domain experts’ intu-
itions on web development and experiences from previous
studies [13, 14, 36, 37] to choose these features to describe
what happens before and after navigation.

Hooks Description Locations

DOM
Record DOM activities including DOM manipulation, etc. Attribute the
operation to a JS function.

Node creation, insertion, and removal

Node attributes modification

Page
Record frame activities including iframe creation and deletion, frame
navigation, and opening new tabs. Attribute the operation to a JS function.

iframe attach and detach

Frame navigation / Opening new windows

Network
Record network activities including what resources are being requested and
who are responsible for these requests

Network requests

Network responses

Script Record JavaScript activities including what scripts are compiled and executed,
what user callbacks are added, and what event listeners are registered.

Script compilation, execution

Function invocation

Add user callbacks / event listeners

Table 2: Instrument hooks to construct WAHG.

Property Features

execution context (first party or third party frame)
script type (inline, remote file, eval, or function)
owner (first party or third party)
requestor (HTML parser or another script)
requestor’s properties

Actions Features

register event listeners (event_type, event_target)
add timer callbacks (setTimeout, setInterval)
insert DOM nodes (node_type)
open new windows (url, target)
initiate navigation (url, iframe, origin, client_redirect, browser_initiated)
modify DOM node attributes (attributes)
send network requests (resoure_type, url)

Consequence Features

of redirect hops
of unique domains
redirect type (JS-driven, response-header-driven)

Table 3: Feature groups used by TRIDENT.

Property Features. Property features target the properties of
a script, including how the script is included in a web page,
who owns the script, and the context it is running in. TRIDENT
determines the property features when a script is compiled and
executed. If the script is inserted into the web page by another
script, TRIDENT adds the requestor’s properties too. First-
party scripts are usually included by the website operator,
which implies they can be trusted, whereas third-party scripts
(e.g., ad scripts from ad networks) are unverified and should
not be trusted. Legitimate ad scripts follow the FTC rules [27]
to inject ads, for example, by isolating their ad contents inside
an iframe as shown in Fig. 3a. In contrast, SE-ad scripts
are strongly motivated to elicit user’s click by any means.
Therefore, TRIDENT uses this feature group to learn whether
a suspicious action can be trusted.

Action Features. Action features represent the behaviors
exhibited by a script on the web page. These actions are
primarily related to click hijacking, including registering

event listeners, adding large hyperlinks, and injecting visually
deceptive elements. Each action becomes an edge in the
WAHG. TRIDENT then extracts these features from both
the node’s and the edge’s properties. For instance, the
register event listeners feature considers the event_type
of the edge and event_target of the target node. More
specifically, a JS function registers an event listener that
listens to mouse events on a specific DOM element. This
DOM element is the event_target. TRIDENT checks
whether this DOM element is a JS inserted DOM Node or a
built-in large element (e.g. #document, body). For actions
involved in network requests such as open new windows,
attach iframe, initiate same-tab navigation, and
send network requests, TRIDENT examines the URL to
determine where the resources are from. This feature group
helps TRIDENT learn to separate malicious activities from
benign ones. For example, appending a transparent hyperlink
covering the whole viewport is more suspicious than adding
a visible iframe to load content.

Consequence Features. Consequence features describe what
happens after the navigation. We extract the URLs in the
redirect chain and collect the number of unique domains.
TRIDENT also checks whether the redirect is initiated by JS
or an HTTP response header. We consider the redirect chain
between the first page and the eventual landing page because
the window directly opened by clicking an ad usually is not
the eventual landing page [9, 38]. Usually, ad networks need
to determine what ad to present by collecting the user’s cook-
ies before deciding where to send the user. Unlike clicking
on ads, clicking on a link to an article usually directly opens
the article without any redirects because the website knows
where the user is heading. Therefore, redirects between the
opening action and the final landing action are good indica-
tors of ads. This is useful for TRIDENT to determine whether
a newly opened tab is for ads. Moreover, analyzing these
consequence features is mandatory because popular websites
may also deploy techniques to intercept the users’ clicks for
benign purposes [36] and merely relying on the features of

the current page can cause high false positive [13].
To conclude, TRIDENT’s primary goal is to detect naviga-

tion made by clicking benign ads, links, or SE-ads. Simply
put, benign ads follow FTC rules which create iframes that do
not intercept users’ clicks; anchor links usually do not need
to redirect the users multiple times; and SE-ads steal users’
clicks by any means and redirect the users to SE-websites.

3.5.2 Real-time Feature Extraction

Unlike prior approaches [9, 37] that collect features offline,
TRIDENT extract features while the user is browsing so that
TRIDENT can timely detect and block SE-related navigation.
This process is asynchronous to the browser rendering pro-
cess, so collecting features for each event will not impact the
user experience. For instance, when a script registers an event
listener, TRIDENT creates or finds the script node, creates or
finds the function node (the event listener), and creates or finds
the event target node (e.g., a DOM node). Then, TRIDENT up-
dates the WAHG by connecting them. Meanwhile, TRIDENT
updates the action features of this script for adding a listener.

When a navigation event is received, TRIDENT only needs
to update the WAHG one last time to insert the target frame
node and connect the frame to the script or function node
which initiated the navigation. The initiator then becomes
the entry point for backtracking on the WAHG. Taking the
example in Fig. 5, when the user clicks the #document, it trig-
gers the event listener to open a new window. At this point,
TRIDENT has already learned that the in-line script added a
setTimeout which registered the event listener. As the fea-
tures have already been stored in memory for the in-line script,
TRIDENT only needs to update the features by adding that the
script also opens a new window. Therefore, TRIDENT does
not need to make expensive queries to traverse the WAHG for
feature collection at the last point. Then, TRIDENT translate
these features into a feature vector that captures the actions
done by this script under its owner frame’s context and pass
down to the classifier.

3.6 Blocking SE-ads related Navigation

The final portion of TRIDENT is its classification module.
When a navigation event is about to occur, the extracted fea-
tures discussed in §3.5 are passed to the classification module,
which will classify the navigation as SE-ad-related or benign.
If the navigation is determined to be SE-ad-related, TRIDENT
will block the navigation to prevent the user from being di-
rected to the SE attack. Internally, TRIDENT uses a random
forest [39] classifier for classification. We configure the ran-
dom forest as an ensemble of 100 decision trees with each
decision tree using

√
N features, a default value that works

well for TRIDENT, where N is the total number of features.
When visiting a website, the SEAgent continuously sends

events to the post-processing daemon, which builds the

WAHG, extracts the features, and runs the classifier.. When
navigation is scheduled, the features, except for the conse-
quence ones, are sent to the classifier. When the navigation
is about to commit, the daemon receives the updated conse-
quence features and reruns the classifier before the landing
page commits. When the classifier classifies a navigation
request as malicious, the SEAgent inserts an interstitial warn-
ing page to make the user aware of the dangers ahead. Note
that we use one single model rather than two, trained with
and without consequences features because the performance
difference is minimum as shown in §4.4.

4 Evaluation

This section discusses the extensive experimental evaluations
we completed for TRIDENT and compares TRIDENT with the
state-of-the-art tools. Our evaluations address the following
research questions:
RQ1: How accurately can TRIDENT detect navigation initi-

ated by SE-ads?
RQ2: Are the features used by TRIDENT understandable and

robust?
RQ3: How well does TRIDENT perform compared with the

state-of-the-art tools?
RQ4: What is the runtime performance and resource con-

sumption overhead for SEAgent?

4.1 Experiment Setup

This section discusses the websites used in our evaluation
and how we simulated user actions to trigger SE-ads and
navigation to SE-websites for data collection.
Data Source. Our data collection process relied on pub-
licwww.com (P.W.) [40], a popular source code search engine,
to collect scripts that may deploy SE-ads. We obtained over
100,000 ad publisher websites by searching JS code snippets
on P.W. by following the approaches used in the study [9].
These JS code snippets were obtained by analyzing web-
sites, which were open-sourced in that study, and websites we
encountered by searching for free content-sharing websites,
which prefer to include low-tier ad networks as suggested by
prior research [12].
Crawler Design. Unlike prior works [19, 33, 41] that only
crawl the Internet by loading the home page, this work re-
quires a crawler to interact with as many SE-ads as possible.
To achieve this, we built the crawler on top of Puppeteer [42]
to simulate users’ interactions with web pages, and developed
a clicking strategy conducive to triggering navigation. First,
we collect anchor elements that point to a different origin and
place them in an anchor node pool. Additionally, we collect
elements with mouse listeners in a mouse event pool. Because
large elements have a higher chance of being clicked, we sort
the DOM nodes in descending order of the element’s bound-

ing box size to prioritize the elements that are most likely to
capture a real user’s clicks. Then, our crawler clicks the ele-
ments in these pools one by one. If a click triggers navigation,
the crawler takes a screenshot of the navigated page.

We deployed the crawlers in 20 docker containers simu-
lating users’ interactions with websites from October 2021
to January 2022 to collect training data and in October 2022
to collect data for examining TRIDENT’s robustness. We use
these two datasets to evaluate TRIDENT’s accuracy, investi-
gate TRIDENT’s false positives and false negatives, and com-
pare with the state-of-the-art tool. We will discuss these ex-
periments in detail in the following sections.

4.2 Ground Truth & Dataset Cleaning

This section first introduces the techniques we used to col-
lect ground truth for the datasets and then discusses our ap-
proaches to cleaning and balancing the datasets.
Labeling. Prior works [19, 41] rely on EasyList and EasyPri-
vacy [30] as ground truth to label ads-related URLs. Unfor-
tunately, these lists focus on generic ads. Using these lists
as the ground truth would make TRIDENT target generic ads,
rather than SE-ads, which is not our goal. To identify the
ground truth in our datasets, we developed a semi-automated
approach as the following to identify whether navigation lands
on a malicious (SE) website.

• L1: Landing page screenshots clustering. During crawl-
ing, when a new tab is open, or cross-origin navigation
occurs, the crawler will take a screenshot of it. Follow-
ing the methodology in the study [9], we use DBScan on
the perceptual hashes [43] of those screenshots to cluster
them. Then, we review each cluster to visually identify
whether a landing page is a SE-website. If it is, we label
this navigation malicious.

• L2: Categorical BlockList, Google Safe Browsing, and
VirusTotal. We choose three additional services for iden-
tifying whether a website is malicious or not, a categor-
ical BlockList [31] on Github, which is popular in the
community and is updated frequently, Google Safe Brows-
ing (GSB) [21], and VirusTotal (VT) [20]. We consider a
URL malicious if it falls in the buckets of Malware, Scam,
Abuse, Phishing, and Fraud in the BlockList, is determined
unsafe by GSB, or is flagged out by at least one of the en-
gines in VirusTotal. Then, we feed all landing page URLs
and the URLs in the redirect chain to these three services
to label them automatically. If a page’s URL is labeled
malicious, we mark this navigation event as malicious.

Then, we label a navigation event malicious when either of
the two components says it is malicious. Although these two
labeling techniques may mislabel some examples due to the
imperfection of the chosen block lists and image clustering

algorithm, they make the labeling process much more effi-
cient for a large dataset. Therefore, we use semi-auto-labeled
ground truth to train TRIDENT.
Ground Truth. In total, we obtained 258,008 navigation
events initiated by JS code. Using those two labeling tech-
niques, we identified 1,479 navigation events resulting in SE
attacks. Note that we obtained more than a million JS files,
but most did not demonstrate behaviors related to our features,
so we excluded them from the ground truth.

Next, we show the statistics of the training (ground truth)
dataset in Tab. 4. The ground truth covers more than ten low-
tier ad networks (e.g., AdSterra, PopCash, etc.) and major
top-tier ad networks (e.g., Google, Facebook, etc.). We did
not identify the brands of some ad networks. Therefore, if their
domain(s) have a pattern, we group them, such as ___cdn.com
and cdn.__.xyz where the blanks are random strings. Other-
wise, they are labeled “Unknown”. Some low-tier ad networks
(e.g., “PopAds”) are known to distribute SE-ads [9, 37]. How-
ever, we did not find positive samples from the training dataset
for these ad networks. After investigation, we found that most
of the navigation went to adult or benign websites (e.g., ya-
hoo.com) due to cloaking. These adult websites did not show
SE attacks at the time of data collection.

Then, we list the types of SE attacks discovered by the
labeling techniques in this ground truth dataset in Tab. 5. We
categorize those SE attacks based on the screenshots of the
landing pages obtained by our crawlers. We have six cate-
gories of SE attacks in total. And we give examples in Fig. 7.

Unwanted-software Download Dating Scam Reward Scam

Push Notification Scareware Tech-support Scam

Figure 7: SE-websites examples in the training dataset.

Datasets Cleaning. We found that the training dataset was
heavily imbalanced after labeling. There were two problems
in the dataset: (1) the data was heavily imbalanced between
classes, and (2) the data was imbalanced within the negative
class (e.g., more scripts for rendering first-party content than
scripts for injecting third-party ads). This is expected because
benign scripts are ubiquitous. Training TRIDENT directly on
this imbalanced dataset would undoubtedly produce a poor
model. There are generally two strategies to overcome the
imbalanced dataset problem: (1) over-sample the minor (ma-
licious/positive) class or (2) under-sample the majority (be-

Ad Network # of navigation events # of SE-websites landed % of SE attacks

Unknown 119,391 438 0.37%
AdSterra 1,247 350 28.07%
PopCash 1,085 267 24.61%
___cdn.com 559 141 25.22%
lkqd / Nexstar 236 105 44.49%
RevenueHits 276 41 14.86%
cdn.___.xyz 77 36 46.75%
whos.amung.us 29 29 100.00%
ZarPop (Persian specific) 25 16 64.00%
AdMaven 324 13 4.01%
OnClasrv 20 12 60.00%
uTarget (Russian specific) 32 11 34.38%
realsrv.com 650 10 1.54%
Propeller 4 4 100.00%
AdExtrem 21 3 14.29%
AdFly 61 3 4.91%
AddThis 5,552 0 0.00%
Google Ads 66,677 0 0.00%
AdGebra 311 0 0.00%
AdPartner 93 0 0.00%
Amazon Ads 24 0 0.00%
Facebook Ads 13,983 0 0.00%
Infolinks 15,162 0 0.00%
Mgid 6,290 0 0.00%
PopAds 1,087 0 0.00%
Rekmob 248 0 0.00%
ShareThis 17,973 0 0.00%
TeckAd 22 0 0.00%
Twitter 6,549 0 0.00%

Total 258,008 1,479 0.05%

Table 4: Statistics of the ground truth dataset by ad network.

SE Attacks # of SE attacks # labeled by L1 # labeled by L2

Unwanted-software Download 857 817 539
Dating Scam 222 204 48
Reward / Lottery Scam 177 156 92
Push Notification 148 148 25
Scareware 51 29 42
Tech-support Scam 24 20 13

Table 5: SE attack types in the ground truth dataset.
The unwanted-software download includes binary files and
browser extensions. We identify SE attacks based on the union
of L1 and L2.

Class Label New-Tab Nav. Same-Tab Nav.

Malicious 1,358 121
Benign 5,726 250,803

Table 6: Navigation events made by scripts in the training
dataset. The data within the benign class is imbalanced in
terms of navigation pattern.

nign/negative) class. To address our problems, we decided to
under-sample the negative class as recommended by the state-
of-the-art techniques [44, 45] to reduce the false-negative rate
as our goal is to detect SE-ads as accurately as possible.

Additionally, we removed “silent” scripts that do not in-
voke any DOM APIs of our interest and under-sampled the
same number of positive class from the negative class, which
addressed the first problem. To address the second problem,
we analyzed the distribution of the features and found that
benign scripts tended to navigate the users in the same tab. In
contrast, the malicious scripts preferred to open new windows,
as shown in Tab. 6. Random sampling from the benign class
would yield a large portion of same-tab navigation entries,

making a performant classifier. However, this classifier would
not generalize to websites that open windows in new tabs,
which are data points near the classification border. Therefore,
we need to choose more samples near this border, in this case,
more entries in the new-tab navigation from the benign class.
After analyzing the distribution of benign navigation events,
we chose 50% from the NT entries and 50% from the ST ones.
We will explain why we choose this ratio in §4.3.1.

4.3 TRIDENT Performance
To answer RQ1, we evaluated our model using 10-fold cross-
validation on the training dataset and reported the average ac-
curacy. Next, we discuss the disagreement between TRIDENT
and the ground truth data.

New-tab Nav. Same-tab Nav. Accuracy Precision Recall F-1 Score

100% 0% 87.76% 86.69% 89.31% 87.98%
90% 10% 88.30% 86.09% 91.68% 88.80%
50% 50% 92.63% 90.63% 96.28% 93.37%
0% 100% 99.76% 99.78% 99.43% 99.60%

Random Sampling 99.36% 99.14% 99.59% 98.17%

No Sampling 97.69% 89.71% 76.39% 82.52%

Table 7: Model accuracy with different approaches of under-
sampling the majority (negative) class.

4.3.1 Accuracy

First, we trained the model with the raw imbalanced dataset
(no sampling), which reported good accuracy, but bad pre-
cision and recall, as shown in Tab. 7. Next, to improve the
performance, we used five approaches to balance the dataset.
Tab. 7 presents the results. Notably, the more Same-tab Navi-
gation (STN) entries we sample, the better the model performs.
However, it lacks generality. When we trained the model with
(New-tab Navigation) NTN benign samples (all benign data
points near the borderline), the accuracy dropped to 87.76%.
Although the model has the lowest accuracy, this situation
(each navigation opens a new tab) is implausible. As shown
in Tab. 6, 97.77% of the navigation events happened in the
same tab for the benign class. Therefore, to be conservative
and include a good number of data points near the borderline
from the benign class, we decided to use 50% from the NTN
entries and 50% from the STN entries for the benign samples
to balance the dataset.

With this balanced training dataset, TRIDENT detects SE-
ads related navigation with 92.63% accuracy, 90.63% preci-
sion, 96.28% recall, and 93.37% F-1 score.

4.3.2 TRIDENT on Tranco Top 1K

TRIDENT is designed to detect and block navigation initiated
by SE-ads. In other words, TRIDENT is not supposed to block
normal ads and harm the user experience. Therefore, we tested
TRIDENT on popular websites from the Tranco Top 1k list. In

addition to the auto-crawling process, we also collected data
from 10 popular news, e-commerce websites, and social plat-
forms (nytimes, washingtonpost, cnn, forbes, bestbuy, newegg,
ebay, twitter, facebook, reddit) by explicitly interacting with
online ads and links.

In total, we obtained 109,744 script-frame combinations.
However, we only found 78 navigation events initiated by JS.
When labeling these 78 events, we only found one website
(yts.mx, ranked at 981/1,000 as of writing) served SE-ads
and lead us to a SE-website. Next, we fed this labeled data
into TRIDENT’s model and achieved 100% accuracy, which
means TRIDENT allowed navigation made by interacting with
normal ads, and links and blocked the navigation initiated by
the SE-ads served on yts.mx.

4.3.3 False Positives & False Negatives

We now analyze TRIDENT’s FP and FN cases. We reused
the dataset collected for the Tranco top 1k list and crawled
1,000 websites from our ad publisher website lists. In total, we
collected 14,045 navigation events made by JS code. These
navigation events involved 3,611 unique scripts and 5,823
unique web pages crawled from the 2,000 websites. We first
tested this dataset on the original model using our semi-auto
labeling techniques described in §4.2 and obtained a false
positive rate of 5.86% (827 FPs). After manual investigation,
we discovered 477 mislabeled entries which were primarily
from adult websites, and corrected the labels. Finally, we
obtained 763 positive samples and 13,283 negative samples.
These samples yielded a false positive rate of 2.57% and
a false negative rate of 0.13% on the original model. We
present the statistics of the positive class for the testing dataset
in Tab. 8. TRIDENT detected all navigation to SE-websites
initiated by at least seven low-tier ad networks. We also found
that TRIDENT detected “PopAds” and “PopMyAds”. These
two ad networks were known to distribute SE-ads [9, 37],
however, they did not show any SE-websites when we were
collecting the ground truth. Fortunately, TRIDENT detected
them when they took our crawlers to SE-websites.

Ad Network # of navigation events # of SE attacks # of SE attacks detected

AdSterra 1,519 511 560
Others 8,793 151 297
PopCash 916 76 76
realsrv 129 16 33
___cdn.com 156 4 30
PopAds 596 2 2
PopMyAds 349 2 4
AdMaven 62 1 6

Table 8: Statistics of positive class for the testing dataset to
show TRIDENT can detect all SE attacks. The negative class
is omitted for brevity.

False Positives. TRIDENT achieved a 2.57% false positive
rate after correcting the labels. After looking at these false

0.00 0.25 0.50 0.75 1.00

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

FPR=2.57%, TPR=99.87%

FPR=1%, TPR=80.84%

area=0.9865

Figure 8: Model performance by different false positive rates.

positives, we identified three types. We now first discuss each
type and then propose mitigation approaches.

In the first type, the ad script injects DOM elements into
the websites for benign purposes. For example, AddThis [46]
accounts for 26% of the false positives. This ad network pri-
marily injects clickable DOM elements into web pages. By
clicking those elements, the user can share the website with
others by posting a message on Twitter, Google+, or Facebook.
This type of false positive does not have a pattern. Some of
them are close to the decision boundary and some are not.

In the second type, the ad script injects SE-ads, but inter-
acting with the SE-ads takes the user to normal advertiser
websites directly. For example,absoluteroute.com accounts
for 8.8% of the false positives. The ad script from this do-
main injected invisible overlays, but took our crawlers to
normal advertiser websites without redirection, e.g, world-
ofwarships.com based on the crawling records. These data
entries are very close to the classifier’s decision boundary,
with an average probability of 66.79% being positive.

In the third type, the ad scripts inject SE-ads. And inter-
acting with the SE-ads leads to adult websites. In the auto-
labeling and manual labeling review processes, we did not
find those adult websites launching social engineering attacks
immediately. However, those adult websites usually track
users and can launch sophisticated attacks. This type of false
positive is far from the decision boundary because the ad
scripts do inject SE-ads and redirect users multiple times and
TRIDENT determines they are SE-ads related navigation. The
only difference is that the landing page does not show social
engineering attacks immediately. Note that we found some
mislabeled adult websites during the manual labeling review,
but these false positives were not.

To allow for easy comparison with TRIDENT, in Fig. 8 we
show the ROC curve and highlight the TPR at an FPR of
1% and at an FPR of 2.57%. For a practical deployment, we
believe that setting the detection threshold to achieve a TPR

of 99.87% at an FPR of 2.57% offers a better trade-off. The
main reason is that the baseline for computing the false posi-
tives consists only of navigation events that are initiated by
JS. As discussed in 4.3.2, navigation events initiated by JS are
relatively rare; we only found 78 navigation events initiated
by JS out of thousands of instances. Therefore, TRIDENT’s
classifier is rarely invoked, and only a small fraction of those
rare events result in a potential false positive (i.e., an erro-
neously blocked navigation). Furthermore, to further improve
TRIDENT by reducing the FPR, we can use a whitelist-based
approach to avoid incorrectly blocking trusted ad networks,
e.g., AddThis, to reduce the first type of FP. This whitelist is
configurable, allowing the user to decide what to include.

False Negatives. TRIDENT only found one false negative,
which converts to 0.13% false negative rate. The adult website
hentaibedta.net embedded malicious links in its first-party
content. Specifically, it included ad images that pointed to an
external website (ouo.io/QqJgfz). During the investigation,
this external website eventually landed the user on a malicious
browser extension downloading page and two reward scam
pages. The SE-ads on the adult site were injected by the first-
party script and behaved as if they were the first-party content.
Although TRIDENT failed to detect the script, we argue that
this type of ad script is considered out of scope as TRIDENT
focuses on ad networks that distribute malicious ad scripts at
scale. If we changed its property to third-party, TRIDENT can
detect the navigation initiated by this script. We will discuss
TRIDENT’s limitations in §5.

4.4 Feature Importance and Robustness

To answer RQ2, we assessed TRIDENT’s classifier by analyz-
ing its feature importance to confirm that the features were
understandable and reflected domain experts’ intuition. Be-
yond explaining feature importance, we analyzed our model’s
robustness against concept-drift [47] and evading techniques.

4.4.1 Feature Importance

We selected TRIDENT’s features based on our domain knowl-
edge, expert intuition, and previous studies [13, 14] to obtain
meaningful and understandable features. To this end, we eval-
uated the feature group importance, guided by the Leave-One-
Group-Out approach proposed by Au et al. [48]. We reported
the results in Fig. 9a using ROC curves. The property feature
group has the lowest AUC score, whereas the action feature
group has the highest score. This result is understandable as
the properties of a script do not indicate its maliciousness,
and what a script does reflects its objective the most. To better
understand what matters most in the action feature group, we
also present a breakdown in Fig. 9b, which depicts that the
navigation features are more important than others. The rest
of the features contribute almost equally.

Although the property feature group scores 0.03% lower
than the best score by using all the three feature groups, based
on the FN discussion in §4.3.3, it is helpful when a data point
is near the decision boundary. Also, the scores of training
with and without consequence features only have a 0.67%
difference. Therefore, we can use one single model before
and after navigation as mentioned in §3.6.

4.4.2 Robustness

In this section, we evaluated how well TRIDENT performs
against concept-drift [47] by testing the model using the test-
ing dataset. Next, we tested the robustness of TRIDENT’s clas-
sifier by altering feature values to simulate evading TRIDENT.
Concept Drift. Machine learning models are known to lose
their effectiveness over time due to the underlying changes
in the data distribution used to train the model. We build
TRIDENT to slow down the degradation process by focusing
on the behaviors of the scripts that inject SE-ads. To this end,
we evaluated TRIDENT’s accuracy over time by testing it on
a dataset crawled in October 2022, almost one year after the
initial model was trained. We obtained a similar result for the
dataset used for FP and FN analysis. TRIDENT achieves an
accuracy of 97.37 % with a precision of 98.25% and a recall
of 97.37%. These results indicate that we do not need to fre-
quently retrain TRIDENT because the fundamental techniques
used by those SE-ads do not change often. However, we rec-
ommend updating TRIDENT and retraining the model every
several months for the potentially new JS APIs introduced
and employed by ad networks.
Evasion Simulation. We have discussed one FN that evaded
TRIDENT in §4.3.3. Given the limitation of gathering more
evading samples, we simulated evasive SE-ads by altering
feature values. We generated four guidelines based on our
domain expert intuition of feasible evading techniques: (1)
include the malicious script as the first-party script; (2) put
the script as an inline script; (3) directly bring the user to SE-
websites without redirects; and (4) behave as benign scripts
while stealing clicks. Based on these four guidelines, we re-
ported the evasion rates in Tab. 9 by techniques.

First, we changed the property feature groups to make the
scripts first-party and/or inline. This alternation yields a max-
imum of 5.11% evasion rate. Next, we let the attacks directly
bring the users to the SE-websites. This change alone leads to
a 3.62% evasion rate. When combining the techniques used
for the property features, the evasion rate went up to 9.17%.
Finally, we tested altering the action features, which is the
most challenging part since we need to keep the attacks valid.
We took a conservative approach, keeping the features related
to DOM manipulations, including event listener registrations,
DOM node modifications, etc. We only updated the remaining
features in this feature group and reported the result in the
lower part in Tab. 9. We did not report the combination of
these behaviors since the evasion rate did not increase signifi-

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Prop. (area=0.7029)
Acti. (area=0.9768)
Cons. (area=0.9552)
Prop.+Acti. (area=0.9797) Prop.
+Cons. (area=0.9691) Acti.
+Cons. (area=0.9867) Prop.
+Acti.+Cons. (area=0.9864)

(a) Action feature group has the most impact on the classifier.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Action Feats. w/o register_event_listeners (area=0.9664)
Action Feats. w/o add_timer_callback (area=0.9648)
Action Feats. w/o insert_DOM_nodes (area=0.9665)
Action Feats. w/o open_new_windows (area=0.9682)
Action Feats. w/o modifiy_DOM_node_attr (area=0.9649)
Action Feats. w/o initiate_navigation (area=0.9399)
Action Feats. w/o send_network_requests (area=0.9662)
Action Feats. (area=0.9768)

(b) The navigation information weighs more than others.
Figure 9: Feature importance illustrated by the performance of models trained on different combinations of features.

Approaches Evasion Rate

First-party script (Fst.Pty.) 2.13%
Inline script (Inl.) 5.11%
No redirects (NoRdr.) 3.62%
NoRdr. + Fst.Pty. 2.56%
NoRdr. + Inl. + Fst.Pty. 9.17%

Do not request external resources 1.49%
Do not add callbacks 1.49%
Do not attach iframes 1.92%
Do not modify node attributes 1.70%

Table 9: Evasion rates by altering key feature values.

cantly. The highest evasion rate was 1.92% by not attaching
iframes on the page.

In summary, we found that the attackers can evade
TRIDENT at a high rate only if they could include their ma-
licious scripts as first-party by colluding with the website
owner or compromising the web servers. However, this is
unlikely because the attackers can have better choices of com-
promising visitors when they can access the web servers.

4.5 Comparison to State-of-The-Art Systems
To answer RQ3, we compared TRIDENT with two state-
of-the-art tools: Brave Shields, the adblocking module for
Brave Browser [18] from industry and ADGRAPH [19] from
academia. We first show Brave Shields is insufficient using
a filter-list-based approach and then show ADGRAPH is not
suitable for SE-ads.

4.5.1 Traditional Blacklist-Based Ad-Blockers

Adblock Plus is the most popular blacklist-based ad-blocker.
It leverages manually maintained blacklists to deny or
whitelists to allow ad or tracker traffic. Brave Browser has

integrated a variety of filter lists, which are a superset of Ad-
block Plus’s, so we set up its ad-blocking component [49]
locally to see how well TRIDENT performs against traditional
ad-blockers. Brave Shields takes in a script URL and a frame
URL and returns a binary decision. We feed Brave Shields our
script URLs along with their corresponding running frame’s
URLs and analyze the disagreements between Brave Shields
and the ground truth. As described in dataset cleaning section,
we obtained 1,479 positive samples for the training dataset, of
which Brave Shields missed 14.74%. To make a fair compari-
son, we tested Brave Shields on our two batches of datasets.
First, we performed a 70/30 training/testing split of our train-
ing dataset, following the data balancing method we used
previously, and trained a model to test the testing split. The
second dataset was the testing dataset we collected in March
2022. To evaluate how well TRIDENT performs against Brave
Shields, we only need to focus on the false negative rate, the
rate of evading the detection. Tab. 10 reports that TRIDENT
outperforms Brave Shields almost by 7 times.

4.5.2 Machine Learning Based Ad-Blockers

We focus on two related prior works on ad-blocking:
ADGRAPH [19], the first ML-based ad-blocking tool
that is based on the contents of ads and trackers, and
WEBGRAPH [33], the first ML-based ad-blocking tool that is
based on the action of ads and trackers. In the following, we
discuss why ADGRAPH and WEBGRAPH cannot solve the
problem TRIDENT is trying to solve.

First, we replicated ADGRAPH by crawling Alexa Top 10k
using the open-sourced ADGRAPH binary, labeled the data
using the latest filter lists as of writing, and built the same clas-
sifier as described in the paper. We then created the testing
dataset by letting ADGRAPH crawl random P.W. 1k web-
sites from our website seed list. The accuracy on these sites

Dataset FNR by Brave Shields FNR by TRIDENT

First batch 15.14% 2.13%
Second batch 12% 1.49%

Table 10: FNR of detecting SE-ads by Brave Shields and
TRIDENT. The first batch is 30% split from the training
dataset. The second batch is from the testing dataset.

Model Accuracy Precision Recall F-1 Score

ADGRAPH for Generic Ads 83.25% 80.12% 81.65% 80.88%

ADGRAPH for SE-ads 81.51% 71.34% 75.33% 73.28%
TRIDENT 95.07% 96.11% 95.49% 95.79%

Table 11: TRIDENT outperforms both ADGRAPH models
for detecting SE-ads. The “Generic Ads” is the original
ADGRAPH model and tested on the SE-ads dataset, whereas
the “SE-ads” is trained and tested on the SE-ads datasets.

dropped to 83.25%. This shows that ADGRAPH for generic
ads does not work well for SE-ads.

Next, we sampled 1,000 websites from the training dataset
and 1,000 websites from the testing dataset, respectively. We
refer to the two datasets as P.W. 1k Trn. and P.W. 1k Tst. for
simplicity. For each batch of P.W. 1k, 500 sites were from web-
sites known to publish SE-ads and 500 were from benign web-
sites. Then, we let ADGRAPH crawl these 2,000 websites and
labeled the datasets using our ground truth. Finally, we trained
ADGRAPH and TRIDENT on the same training dataset and
tested them on the same testing dataset. As shown in the lower
part in Tab. 11, TRIDENT outperforms ADGRAPH by over
10%. ADGRAPH trained by P.W. 1k Trn. performs even worse
than the generic model. However, this is not an apple-to-apple
comparison. The ADGRAPH for Generic and ADGRAPH for
SE-ads are two different models as they are trained on differ-
ent datasets which are labeled differently. The former targets
generic ads while the latter targets SE-ads. Moreover, while
replicating ADGRAPH, we found URLs with protocol data:
will be considered as NON-AD in the labeling process of
ADGRAPH. This implies resources using base64 encoded
URL would likely escape ADGRAPH’s detection because
ADGRAPH can extract nothing from such URLs. This gives
the adversaries opportunities to import external scripts us-
ing "data:text/javascript,ZG9Tb21ldGhpbmcoKQ=="
which means doSomething() to evade ADGRAPH.

WEBGRAPH improves the robustness of ADGRAPH by
removing the content features and adding information flows
of network, storage, and shared. Because WEBGRAPH is not
open-sourced as of writing, we are not able to evaluate it with
our datasets. However, we argue WEBGRAPH is not designed
to capture how a script manipulates the DOM to lure users to
social engineering websites. Hence, its performance on our
datasets should be equivalent to ADGRAPH’s.

4.6 Runtime Overhead

To answer RQ4, we evaluated the runtime performance of
SEAgent, the major component that may induce overhead,
including running time and memory and CPU usage.
Runtime Overhead. To quantify the impact on the user expe-
rience, we measured the page load time to evaluate the runtime
overhead for the Tranco top 1k websites [50]. To measure this,
we leveraged Chromium’s TRACE_EVENT instrumentation in-
frastructure for profiling [51]. We added a new trace category
named blink.seagent and put TRACE_EVENT0 marco at the
beginning of each instrumentation hook. Then, we enable
blink.user_timing to measure the page load time, which
is defined as the time spent between the navigation request
start and the load event end [52]. For each website, we loaded
the page into the browser 10 times and selected the median
page-load overhead.

The distributions of the runtime overhead are shown in
Fig. 10. The median runtime overhead is 2.13% which re-
sults in a 0.02-second increase in the page load time, which
are comparable to previous works [41, 53, 54]. Looking at
outliers, we found the websites have more DOM modifica-
tions were more impacted by the SEAgent. For instance, kick-
starter.com took the longest to load with 14.34% (0.33 sec-
onds) overhead. After checking this website, we found that
JS inserted more than 35,000 DOM nodes and modified their
attributes, and then removed half of them before the page was
fully loaded. These outliers are rare given that the overhead
for the 95% of the Tranco 1k list is less than 5.7%.

Overhead Ratio
(a)

0

2

4

6

8

10

12

14

Pa
ge

 L
oa

d
O

ve
rh

ea
d

Pe
rc

en
ta

ge
 w

/ R
ec

or
di

ng

Median at
2.13%

Mean at
2.45%

75% at
3.26%

95% at 5.7%

Overhead Absolute Value
(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
st

ru
m

en
ta

tio
n

H
oo

ks
 O

ve
rh

ea
d(

s)

Median at
0.02s

Mean at
0.03s

75% at
0.04s

95% at
0.11s

Figure 10: The runtime overhead induced on the page load by
TRIDENT for the Tranco 1k. (a) presents the runtime overhead
increase for the page load. (b) provides the absolute time
induced by TRIDENT.

Resource Overhead. To evaluate TRIDENT’s resource usage
overhead, we measured the CPU and memory usage for the
websites listed in the Tranco top 1k [50]. It is challenging
to separately measure the precise resource consumption of

TRIDENT’s components because this would require sophisti-
cated code instrumentation to calculate how much memory
is allocated and how many CPU cycles are consumed. There-
fore, we leverage an alternative approach that allows us to
estimate the resource usage overhead. We use the ps [55]
command to continuously record the CPU and memory us-
age of the browser processes (with 100ms granularity) while
visiting the home page of every website in the Tranco top 1k
list ten times (i.e., 10k page loads in total), using both vanilla
Chromium and TRIDENT. Every time a page is visited, we
wait for the page to be fully loaded and then wait another 10
seconds before visiting the next page.

0 10 20 30 40
%CPU per process

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Li
ke

lih
oo

d
of

 o
cc

ur
re

nc
e

CDF of CPU Usage (%)

Vanilla Chrome
Trident

Resident Set Size in MB per process

0.0

0.2

0.4

0.6

0.8

1.0

Li
ke

lih
oo

d
of

 o
cc

ur
re

nc
e

CDF of Memory Usage (MB)

Vanilla Chrome
Trident

Figure 11: The resource usage induced on the page load by
TRIDENT for the Tranco 1k. (a) presents the distribution of
CPU usage. (b) provides distribution of the memory con-
sumed by TRIDENT. TRIDENT induced negligible CPU and
memory overhead when visiting the Tranco 1k.

To compare the resource usage of vanilla Chromium and
TRIDENT, we summarize the results as Cumulative Distribu-
tion Function (CDF) graphs in Fig. 11. As seen from Fig. 11,
TRIDENT induces negligible CPU overhead and limited mem-
ory usage overhead, which is mainly driven by TRIDENT’s
need to perform data serialization and buffer browser data
objects that are then recorded to the TRIDENT’s trace files.

Summary. With 2.13% overhead on page load time, neg-
ligible CPU overhead, and small memory overhead com-
pared to the memory available on modern devices, we believe
TRIDENT could be deployed in real-world environments to
work as a real-time classification system.

5 Discussions

5.1 Limitations

This section discusses the limitations of TRIDENT in three
ways. One is the runtime environment of TRIDENT which
may allow adversaries to learn the existence of TRIDENT
and refuse to display malicious content. Another is that the
diversity of the training dataset may be limited when we
crawl the Internet. The last is when the malicious ad scripts
are included as a first party (un)intentionally.

Runtime Environment. We envision TRIDENT being de-
ployed as a browser extension with Chrome DevTools Pro-
tocol turned on as a prototype, which exposes TRIDENT’s
existence. Adversaries may detect TRIDENT and then cloak
themselves or refuse to display content until the users turn
off TRIDENT. To address this limitation, we could embed
TRIDENT directly into the browser to make it invisible to
those adversaries. We leave this for future work.

Data Collection and Labeling. Unlike previous works [17,
19, 33, 38, 56] which target at generic ads and trackers,
TRIDENT targets at SE-ads, which are not as ubiquitous as
those ads and trackers. We rely on publicwww.com to collect
websites that inject SE-ads. To this end, the diversity of the
training dataset is limited to a small number of ad networks
we have identified by reverse-engineering their ad scripts and
searching on the Internet. While TRIDENT performs well
based on this dataset , its accuracy may drop when it en-
counters unseen ad network scripts. However, TRIDENT can
periodically retrain its classifier on improved ground truth as
the users provide feedback.

First-party Ad Scripts. In section §4.3.3, we found one FN
example: one malicious ad script was (un)intentionally in-
cluded by the website operator. TRIDENT failed to detect the
navigation initiated by the script. The results in Tab. 9 also
show that the attackers may have a higher chance to evade
TRIDENT by injecting ad scripts as first-party scripts. How-
ever, we argue that colluding with the first party to launch
SE-ads for SE attacks at scale is implausible. Therefore, we
consider first-party SE-ads out of scope. Some website oper-
ators may unintentionally include malicious scripts on their
websites. To this end, we recommend users look for the suspi-
cious behaviors described in §3.5.

5.2 Ethical Considerations

In line with previous studies [9, 10, 53] that need to crawl the
Internet, our crawling experiments simulated user’s clicks on
ad publishers, which may lead to advertisers’ landing pages.
Because our primary goal is to analyze the behavior of inter-
acting with SE-ads, we argue it would not be possible without
clicking on the websites to trigger SE-ads and navigate to SE-
websites. Moreover, our crawlers do not target any specific
ads or ad campaigns. They randomly choose ten clickable
elements and ten links. These clicks resulted in 5,726 opened
windows that loaded benign content. Assuming that all of
these windows eventually reached the landing pages of ad-
vertisers, we found our crawler made two clicks on the ads
for each advertiser on average. Considering the average CPC
(cost per click) being USD $0.75 [25], the cost to each ad-
vertiser would be USD $1.5 on average. This result shows
that our crawling experiment ensured minimal financial losses
for legitimate advertisers while generating results that help
prevent people from falling into WSEAs.

0 50 100 150

(b)

6 Related Work

Web-based social engineering attacks. While previous
works [7–10, 13, 14, 36, 37] have studied web-based SE at-
tacks through malicious advertising, they either focus on de-
tecting specific web SE attack vectors or lack a defensive
method towards their findings. For example, Vadrevu and
Perdisci [57] used visual clustering and heuristics to iden-
tify SE-attack campaigns at the landing page level, which
was done “offline”. And this work [57] does not focus on de-
tecting SE-ads, which is TRIDENT’s focus. Sanchez-Rola et
al. [36] found that even popular websites intercepted users’
clicks and brought them to harmful websites; nonetheless,
this study does not provide a solution to mitigate the conse-
quences of those clicks. Zhang et al. [13] built OBSERVER to
study three click intercepting techniques. However, turning
OBSERVER into an accurate detection system is challenging
because benign websites may also intercept users’ clicks for
benign purposes [36]; therefore, analyzing the events trig-
gered by the clicks is mandatory, which OBSERVER does
not focus on while TRIDENT does. Koide et al. [37] devel-
oped STRAYSHEEP to identify SE-websites effectively by
using a crawler to interact with the websites. Unfortunately,
STRAYSHEEP is also an offline tool and is not designed for
online detection. TRIDENT takes a generic approach, con-
sidering both what a script is doing on a webpage and what
consequences it causes, to detect SE attacks by detecting their
leading cause, which is SE-ads that often employ SE tech-
niques to hijack clicks.

Clickjacking. Clickjacking is known as UI redressing attack
that uses multiple transparent or opaque layers to trick a user
into clicking on third-party content such that to bypass the
same-origin policy [58]. Framebusting [59] is a good defense
against clickjacking. However, it degrades the user experi-
ence on websites that requires cross-origin iframes, and the
inconsistencies of implementation are concerning [60]. Pre-
vious works [61, 62] rely on the users to verify what they
have clicked, which are not comprehensive and have usability
concerns [63]. Unlike traditional clickjacking attacks which
inject iframes, SE-ads have employed new techniques to steal
clicks. Our work takes a new approach by analyzing what JS
scripts do on a web page to complement prior studies.

Ad blocking. Generic ad blockers are efficient at blocking
generic ads. However, they suffer from incompleteness and
are easy to evade [9, 10]. Advanced ad blockers [17, 19, 33,
41] employ ML techniques to complement the generic ad
blockers. Unfortunately, they are not trained to detect SE-ads
and block the subsequent events triggered by interacting with
those SE-ads. TRIDENT will be the second defense to protect
users from falling into SE tricks by complementing them.

Browser Provenance Graph. JSGRAPH [54] instruments
Chromium to build a graph for forensic analysis offline.
MNEMOSYNE [53] builds a graph by leveraging the exist-

ing APIs in CDP. As discussed in §3.3, the current domains
in CDP can not meet the expectation of recording the JS
actions in real-time. PAGEGRAPH [41], as the successor of
ADGRAPH [19], instruments the browser and expose its API
through CDP. However, this implementation only sends a com-
pleted page graph when the web page emits unload event. In
contrast, our real-time feature extraction requirement needs
to access the graph whenever the graph is updated. While
PAGEGRAPH maintains an in-memory graph representation
as TRIDENT does, it still requires significant engineering work
to use it directly. Therefore, we decided to extend the existing
CDP with minimal instrumentation for TRIDENT.

7 Conclusion

In this work, we present TRIDENT, a novel online system
for detecting and blocking social engineering ads. We show
that TRIDENT can effectively detect SE-ads and block the
consequent navigation to social engineering websites with
an accuracy of 92.63%, which outperforms the state-of-the-
art generic adblocking tools by more than 10%. Finally,
TRIDENT ’s runtime performance is extremely low and only
has a 2.13% median increase on the page load time on web-
sites in the Tranco 1k list.

8 Acknowledgments

We thank the anonymous reviewers and our shepherd for
their helpful and informative feedback. This material was
supported in part by National Science Foundation (NSF) un-
der grants No. CNS-2126641; the Office of Naval Research
(ONR) under grants N00014-17-1-2179, N00014-17-1-2895,
N00014-15-1-2162, and N00014-18-1-2662; and Cisco Sys-
tems under an unrestricted gift. Any opinions, findings, con-
clusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflects the views
of NSF or ONR.

References

[1] Fatima Salahdine and Naima Kaabouch. “Social engineering
attacks: A survey”. In: Future Internet 11.4 (2019), p. 89.

[2] Fully 84 Percent of Hackers Leverage Social Engineering
in Cyber Attacks. https : / / www . esecurityplanet .
com / threats / fully - hackers - leverage - social -
engineering-in-cyber-attacks/. 2017.

[3] The Social Engineering Infographic - Security Through Ed-
ucation. https://www.social-engineer.org/social-
engineering/social-engineering-infographic/.

[4] Gianpiero Costantino et al. “CANDY: A social engineering at-
tack to leak information from infotainment system”. In: 2018
IEEE 87th Vehicular Technology Conference (VTC Spring).
IEEE. 2018, pp. 1–5.

https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.social-engineer.org/social-engineering/social-engineering-infographic/
https://www.social-engineer.org/social-engineering/social-engineering-infographic/

[5] 15 Alarming Cyber Security Facts and Stats | Cybint. https:
//www.cybintsolutions.com/cyber-security-facts-
stats/. 2020.

[6] New Data Shows FTC Received 2.8 Million Fraud Reports
from Consumers in 2021 | Federal Trade Commission. https:
//www.ftc.gov/news-events/news/press-releases/
2022 / 02 / new - data - shows - ftc - received - 28 -
million-fraud-reports-consumers-2021-0. 2022.

[7] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis.
“Dial One for Scam: A Large-Scale Analysis of Technical
Support Scams”. In: 2017. DOI: 10.14722/ndss.2017.
23163.

[8] Amin Kharraz, William Robertson, and Engin Kirda. “Sur-
veylance: Automatically Detecting Online Survey Scams”.
In: Proceedings - IEEE Symposium on Security and Privacy.
Vol. 2018-May. Institute of Electrical and Electronics Engi-
neers Inc., July 2018, pp. 70–86. ISBN: 9781538643525. DOI:
10.1109/SP.2018.00044.

[9] Phani Vadrevu and Roberto Perdisci. “What you see is not
what you get: Discovering and tracking social engineering
attack campaigns”. In: Proceedings of the ACM SIGCOMM
Internet Measurement Conference, IMC (2019), pp. 308–321.
DOI: 10.1145/3355369.3355600.

[10] Karthika Subramani et al. “When Push Comes to Ads:
Measuring the Rise of (Malicious) Push Advertising”. In:
{IMC} ’20: {ACM} Internet Measurement Conference, Vir-
tual Event, USA, October 27-29, 2020. 2020, pp. 724–737.
ISBN: 9781450381383. URL: https://doi.org/10.1145/
3419394.3423631.

[11] Luca Invernizzi et al. “EvilSeed: A guided approach to find-
ing malicious web pages”. In: Proceedings - IEEE Symposium
on Security and Privacy. Institute of Electrical and Electron-
ics Engineers Inc., 2012, pp. 428–442. ISBN: 9780769546810.
DOI: 10.1109/SP.2012.33.

[12] M. Zubair Rafique et al. “It’s Free for a Reason: Exploring
the Ecosystem of Free Live Streaming Services”. In: Internet
Society, May 2017. DOI: 10.14722/ndss.2016.23030.

[13] Mingxue Zhang et al. “All your clicks belong to me: Investi-
gating click interception on the web”. In: Proceedings of the
28th USENIX Security Symposium. 2019.

[14] Ting Yu et al. “Knowing Your Enemy: Understanding and
DetectingMalicious Web Advertising”. In: p. 1070. ISBN:
9781450316514.

[15] USENIX Association., ACM SIGMOBILE., and ACM Digi-
tal Library. “Towards Measuring and Mitigating Social Engi-
neering Software Download Attacks”. In: USENIX Associa-
tion, 2005, p. 48. ISBN: 9781931971324.

[16] Apostolis Zarras et al. “The dark alleys of madison avenue:
Understanding malicious advertisements”. In: Proceedings of
the ACM SIGCOMM Internet Measurement Conference, IMC.
Association for Computing Machinery, Nov. 2014, pp. 373–
379. ISBN: 9781450332132. DOI: 10 . 1145 / 2663716 .
2663719.

[17] Zain Ul Abi Din et al. “PERCIVAL: Making in-browser
perceptual ad blocking practical with deep learning”. In: Pro-
ceedings of the 2020 USENIX Annual Technical Conference.
2020. ISBN: 9781939133144.

[18] Blocking goals and policy - Brave Browser Wiki. [Online;
accessed 20-January-2022]. 2021. URL: https://github.
com/brave/brave- browser/wiki/Blocking- goals-
and-policy.

[19] Umar Iqbal et al. “AdGraph: A graph-based approach to ad
and tracker blocking”. In: Proceedings - IEEE Symposium on
Security and Privacy 2020-May (2020), pp. 763–776. ISSN:
10816011. DOI: 10.1109/SP40000.2020.00005.

[20] VirusTotal. [Online; accessed 20-January-2022]. 2022. URL:
https://virustotal.com.

[21] Google Safe Browsing | Google Developers. https://
developers.google.com/safe-browsing/. 2022.

[22] Rainbow Blocker Adware - Easy removal steps (updated).
https://www.pcrisk.com/removal- guides/23298-
rainbow-blocker-adware. 2022.

[23] How Much Money Do Websites Make From Advertising?
https : / / adsterra . com / blog / how - much - money -
websites-make-from-ads/. 2020.

[24] Best CPM Rates for Publishers and Webmasters. https :
//adsterra.com/blog/geos-with-high-cpm-rates-
for-publishers/.

[25] Google Display Ads CPM, CPC, & CTR Benchmarks in Q1
2018. https://blog.adstage.io/google- display-
ads-cpm-cpc-ctr-benchmarks-in-q1-2018. 2018.

[26] Better Ads Standards - Google Ad Manager. https : / /
admanager . google . com / home / resources / feature -
brief-better-ads-standards/. 2018.

[27] Advertising and Marketing on the Internet: Rules of the
Road | Federal Trade Commission. https: //www .ftc.
gov / business - guidance / resources / advertising -
marketing-internet-rules-road. 2022.

[28] What are IAB Standard Ads? Why are They Important?
https://www.adpushup.com/blog/what- are- iab-
standard-ads-why-are-they-important/. 2021.

[29] IAB New Ad Portfolio: Advertising Creative Guidelines.
https : / / www . iab . com / guidelines / iab - new - ad -
portfolio/. 2022.

[30] EasyList. [Online; accessed 20-January-2022]. 2022. URL:
https://easylist.to/.

[31] blocklistproject/Lists: Primary Block Lists. [Online; accessed
05-June-2022]. 2022. URL: https : / / github . com /
blocklistproject/Lists.

[32] uBlock Origin - Free, open-source ad content blocker. https:
//ublockorigin.com/. 2022.

[33] Sandra Siby et al. WEBGRAPH: Capturing Advertising and
Tracking Information Flows for Robust Blocking. Tech. rep.

https://www.cybintsolutions.com/cyber-security-facts-stats/
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://doi.org/10.14722/ndss.2017.23163
https://doi.org/10.14722/ndss.2017.23163
https://doi.org/10.1109/SP.2018.00044
https://doi.org/10.1145/3355369.3355600
https://doi.org/10.1145/3419394.3423631
https://doi.org/10.1145/3419394.3423631
https://doi.org/10.1109/SP.2012.33
https://doi.org/10.14722/ndss.2016.23030
https://doi.org/10.1145/2663716.2663719
https://doi.org/10.1145/2663716.2663719
https://github.com/brave/brave-browser/wiki/Blocking-goals-and-policy
https://github.com/brave/brave-browser/wiki/Blocking-goals-and-policy
https://github.com/brave/brave-browser/wiki/Blocking-goals-and-policy
https://doi.org/10.1109/SP40000.2020.00005
https://virustotal.com
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
https://www.pcrisk.com/removal-guides/23298-rainbow-blocker-adware
https://www.pcrisk.com/removal-guides/23298-rainbow-blocker-adware
https://adsterra.com/blog/how-much-money-websites-make-from-ads/
https://adsterra.com/blog/how-much-money-websites-make-from-ads/
https://adsterra.com/blog/geos-with-high-cpm-rates-for-publishers/
https://adsterra.com/blog/geos-with-high-cpm-rates-for-publishers/
https://adsterra.com/blog/geos-with-high-cpm-rates-for-publishers/
https://blog.adstage.io/google-display-ads-cpm-cpc-ctr-benchmarks-in-q1-2018
https://blog.adstage.io/google-display-ads-cpm-cpc-ctr-benchmarks-in-q1-2018
https://admanager.google.com/home/resources/feature-brief-better-ads-standards/
https://admanager.google.com/home/resources/feature-brief-better-ads-standards/
https://admanager.google.com/home/resources/feature-brief-better-ads-standards/
https://www.ftc.gov/business-guidance/resources/advertising-marketing-internet-rules-road
https://www.ftc.gov/business-guidance/resources/advertising-marketing-internet-rules-road
https://www.ftc.gov/business-guidance/resources/advertising-marketing-internet-rules-road
https://www.adpushup.com/blog/what-are-iab-standard-ads-why-are-they-important/
https://www.adpushup.com/blog/what-are-iab-standard-ads-why-are-they-important/
https://www.iab.com/guidelines/iab-new-ad-portfolio/
https://www.iab.com/guidelines/iab-new-ad-portfolio/
https://easylist.to/
https://github.com/blocklistproject/Lists
https://github.com/blocklistproject/Lists
https://ublockorigin.com/
https://ublockorigin.com/

[34] Florian Tramèr et al. “AdVersarial: Perceptual Ad Block-
ing meets Adversarial Machine Learning”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 2005–2021. ISBN:
9781450367479.

[35] Chrome DevTools Protocol. [Online; accessed 20-January-
2022]. 2022. URL: https://chromedevtools.github.
io/devtools-protocol/.

[36] Iskander Sanchez-Rola et al. “Dirty Clicks: A Study of the
Usability and Security Implications of Click-Related Behav-
iors on the Web”. In: Proceedings of The Web Conference
2020. WWW ’20. Taipei, Taiwan: Association for Computing
Machinery, 2020, 395–406. ISBN: 9781450370233.

[37] Takashi Koide, Daiki Chiba, and Mitsuaki Akiyama. “To Get
Lost is to Learn the Way: Automatically Collecting Multi-
Step Social Engineering Attacks on the Web”. In: Proceed-
ings of the 15th ACM Asia Conference on Computer and
Communications Security. ASIA CCS ’20. Taipei, Taiwan:
Association for Computing Machinery, 2020, 394–408. ISBN:
9781450367509.

[38] Umar Iqbal et al. KHALEESI: Breaker of Advertising and
Tracking Request Chains. Tech. rep.

[39] Leo Breiman. “Random forests”. In: Machine learning 45.1
(2001), pp. 5–32.

[40] Search Engine for Source Code - PublicWWW.com. https:
//publicwww.com/. 2022.

[41] Quan Chen et al. “Detecting Filter List Evasion With Event-
Loop-Turn Granularity JavaScript Signatures”. In: IEEE Sym-
posium on Security and Privacy (S&P) (2021).

[42] Puppeteer. [Online; accessed 20-January-2022]. 2022. URL:
https://pptr.dev/.

[43] Kind of Like That - The Hacker Factor Blog. https://www.
hackerfactor.com/blog/index.php?/archives/529-
Kind-of-Like-That.html.

[44] Miroslav Kubat, Stan Matwin, et al. “Addressing the curse
of imbalanced training sets: one-sided selection”. In: Icml.
Vol. 97. 1. Citeseer. 1997, p. 179.

[45] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. LNCS 3644
- Borderline-SMOTE: A New Over-Sampling Method in Im-
balanced Data Sets Learning. Tech. rep. 2005, pp. 878–887.

[46] Get more likes, shares and follows with smart website tools -
AddThis. https://www.addthis.com/.

[47] Alexey Tsymbal. “The problem of concept drift: definitions
and related work”. In: Computer Science Department, Trinity
College Dublin 106.2 (2004), p. 58.

[48] Quay Au et al. “Grouped feature importance and combined
features effect plot”. In: arXiv preprint arXiv:2104.11688
(2021).

[49] brave/adblock-rust. [Online; accessed 20-January-2022].
2021. URL: https://github.com/brave/adblock-rust.

[50] Victor Le Pochat et al. “Tranco: A research-oriented top sites
ranking hardened against manipulation”. In: arXiv preprint
arXiv:1806.01156 (2018).

[51] The Trace Event Profiling Tool (about:tracing). https://
www . chromium . org / developers / how - tos / trace -
event-profiling-tool/. 2022.

[52] Page load time - MDN Web Docs Glossary: Definitions of
Web-related terms | MDN. https://developer.mozilla.
org/en-US/docs/Glossary/Page_load_time. 2022.

[53] Joey Allen et al. “Mnemosyne: An Effective and Efficient
Postmortem Watering Hole Attack Investigation System”.
In: Proceedings of the ACM Conference on Computer and
Communications Security. Association for Computing Ma-
chinery, Oct. 2020, pp. 787–802. ISBN: 9781450370899. DOI:
10.1145/3372297.3423355.

[54] Bo Li et al. “JSgraph: Enabling Reconstruction of Web At-
tacks via Efficient Tracking of Live In-Browser JavaScript
Executions”. In: Network and Distributed Systems Security
(NDSS) Symposium February (2018). DOI: 10.14722/ndss.
2018.23319.

[55] ps(1) - Linux manual page. 2022. URL: https://man7.org/
linux/man-pages/man1/ps.1.html.

[56] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. “Finger-
printing the fingerprinters: Learning to detect browser finger-
printing behaviors”. In: 2021 IEEE Symposium on Security
and Privacy (SP). IEEE. 2021, pp. 1143–1161.

[57] Jochem van de Laarschot and Rolf van Wegberg. “Risky
business? Investigating the security practices of vendors on
an online anonymous market using ground-truth data”. In:
Proceedings of the 30th USENIX Security Symposium. 2021.

[58] Clickjacking | OWASP Foundation. https://owasp.org/
www-community/attacks/Clickjacking.

[59] X-Frame-Options - HTTP | MDN. https://developer.
mozilla . org / en - US / docs / Web / HTTP / Headers / X -
Frame-Options. 2022.

[60] Stefano Calzavara et al. “A Tale of Two Headers: A For-
mal Analysis of Inconsistent Click-Jacking Protection on the
Web”. In: 29th USENIX Security Symposium (USENIX Se-
curity 20). USENIX Association, Aug. 2020, pp. 683–697.
ISBN: 978-1-939133-17-5.

[61] Lin Shung Huang et al. “Clickjacking: Attacks and defenses”.
In: Proceedings of the 21st USENIX Security Symposium.
2012.

[62] Marco Balduzzi et al. “A solution for the automated detection
of clickjacking attacks”. In: Proceedings of the 5th Interna-
tional Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2010. 2010. DOI: 10.1145/
1755688.1755706.

[63] Devdatta Akhawe et al. “Clickjacking revisited a perceptual
view of UI security”. In: 8th USENIX Workshop on Offensive
Technologies, WOOT 2014. 2014.

https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://publicwww.com/
https://publicwww.com/
https://pptr.dev/
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.addthis.com/
https://github.com/brave/adblock-rust
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://doi.org/10.1145/3372297.3423355
https://doi.org/10.14722/ndss.2018.23319
https://doi.org/10.14722/ndss.2018.23319
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/www-community/attacks/Clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://doi.org/10.1145/1755688.1755706
https://doi.org/10.1145/1755688.1755706

	Introduction
	A Motivating Example & Challenges
	A Motivating Example
	Challenges

	Trident
	Overview
	Web Action History Graph
	Social-Engineering Agent
	WAHG Construction
	Feature Extraction
	Feature Descriptions
	Real-time Feature Extraction

	Blocking SE-ads related Navigation

	Evaluation
	Experiment Setup
	Ground Truth & Dataset Cleaning
	Trident Performance
	Accuracy
	Trident on Tranco Top 1K
	False Positives & False Negatives

	Feature Importance and Robustness
	Feature Importance
	Robustness

	Comparison to State-of-The-Art Systems
	Traditional Blacklist-Based Ad-Blockers
	Machine Learning Based Ad-Blockers

	Runtime Overhead

	Discussions
	Limitations
	Ethical Considerations

	Related Work
	Conclusion
	Acknowledgments

