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Abstract

Augmented Reality/Virtual Reality (AR/VR) are the next step
in the evolution of ubiquitous computing after personal com-
puters to mobile devices. Applications of AR/VR continue to
grow, including education and virtual workspaces, increasing
opportunities for users to enter private text, such as passwords
or sensitive corporate information. In this work, we show
that there is a serious security risk of typed text in the fore-
ground being inferred by a background application, without
requiring any special permissions. The key insight is that a
user’s head moves in subtle ways as she types on a virtual
keyboard, and these motion signals are sufficient for infer-
ring the text that a user types. We develop a system, TyPose,
that extracts these signals and automatically infers words or
characters that a victim is typing. Once the sensor signals are
collected, TyPose uses machine learning to segment the motion
signals in time to determine word/character boundaries, and
also perform inference on the words/characters themselves.
Our experimental evaluation on commercial AR/VR headsets
demonstrate the feasibility of this attack, both in situations
where multiple users’ data is used for training (82% top-5
word classification accuracy) or when the attack is person-
alized to a particular victim (92% top-5 word classification
accuracy). We also show that first-line defenses of reducing
the sampling rate or precision of head tracking data are in-
effective, suggesting that more sophisticated mitigations are
needed.

1 Introduction

While Augmented and Virtual Reality (AR/VR) headsets
have existed for many years [54], they have not been widely
available to consumers until recently [21]. There has been
widespread and growing adoption commercially with an esti-
mated 26 million devices already in circulation [10]. Applica-
tions of AR/VR continue to grow beyond entertainment, to
areas such as education, training, social media, and remote
work [32, 33]. Such applications may require the entry of

sensitive data in the form of text, entered by interacting with
a virtual keyboard rendered in the headset. Private messages,
passwords, and PIN codes might be entered in this manner.
At the same time, AR/VR platforms now provide the ability
to run multiple applications simultaneously [34, 35]. Exam-
ples include multiple virtual web browser windows open and
visible at the same time, or a chatting application overlaid on
top of a virtual game.

This work studies the security risks posed by the confluence
of these two trends – AR/VR users typing sensitive informa-
tion in virtual spaces, and support for multi-app scenarios.
In particular, we find that without any special permissions,
background apps can infer the typed words and characters of
a foreground app. The key insight is that a user’s head moves
subtly as she types on a virtual keyboard, and these head
motions are enough to accurately infer what she is typing.
Moreover, this attack is feasible because the sensor data about
these head motions are freely available to a malicious back-
ground app. Fundamentally, this is because all applications,
even those running in the background, need to continuously
estimate the user’s head pose in order to update their rendering
in response to a user’s head motions.

Recent works have shown that it is possible to infer the
sensitive typed information through side-channels, but only
through the same modality (e.g., hand or head motions). For
example, Meteriz-Yildiran et al. [36] show hand tracking data
can be used to reconstruct hand-typed characters. Hololog-
ger [29] shows head tracking data can be used to reconstruct
characters typed using “head gaze commit,” where the user
points her head at the desired keys. In contrast, we show that
head tracking alone is sufficient to steal hand-entered text.
This was initially surprising to us because qualitatively, we
did not observe much head motions when AR/VR users were
typing text.

To infer hand-entered text accurately from head motions
alone, we faced several challenges. (1) There is an unclear
relationship between a user’s head motions and what they
are typing. The idea is that some character sequences could
result in larger head motions (e.g., “a” followed by “p”), while



other sequences could result in smaller head motions (e.g., “a”
followed by “s”), helping differentiate between the two cases.
(2) From the head motions alone, it is unclear when the user
is actively typing characters or words. The idea is that text
entry applications force the user to make larger movements of
the head corresponding to the start and end of the text entry,
and certain key presses (such as the space bar) are strong
indicators of a break between words. (3) How to mitigate such
attacks, without degrading user experience, is unclear. The
issue is that blocking an app’s access to headset tracking data
would cause the app’s rendering to freeze as the user moves
around, breaking the immersion with the virtual world [24].

We call our system TyPose, since we estimate hand typed
characters/words from the victim’s head pose. Overall, we
make the following contributions:
• To the best of our knowledge, TyPose is the first attack that

infers the private hand-entered text of an AR/VR user us-
ing only head motion tracking information, requiring zero
permissions by a malicious background app (Section 2).

• We design machine learning techniques to automatically
infer words and characters typed by a user, including a
Segmenter to divide a stream of sensor readings into the
corresponding words/characters and a Classifier to infer
the text corresponding to those segments (Section 3).

• We collect traces of AR/VR typing behavior from 21 users
and evaluate our attack on these traces. The results show
that TyPose can detect segments and identify words with
high accuracy; for example, a top-5 classification accuracy
of 82% for inferring words (Section 4). We also explore
the feasibility of an end-to-end attack (Section 5).

• We evaluate first-line mitigation strategies, including down-
sampling the head tracking sensor stream or reducing their
floating point precision. We find that the proposed attacks
are generally robust to such mitigations, and thus these
sensor streams may need to be further blocked to potentially
malicious background apps (Section 6).

2 Background and Threat Model

In this section, we first introduce the relevant background with
respect to AR/VR headsets (Section 2.1). We then define the
threat model (Section 2.2), and discuss some of the intuitions
and challenges behind the proposed attack (Section 2.3).

2.1 Background on VR
Head motion tracking. Standalone AR/VR headsets track
their position and orientation in the real world using a combi-
nation of camera and inertial measurement unit (IMU) sensor
readings. This allows the AR/VR platform to render believ-
able and immersive scenes, updating the display as the user
moves. Without headset tracking, the scene would appear
“frozen in place” even as the user moved her head. Laggy or

Figure 1: Illustration of the x,y,z axes on the VR headset. The
accelerometer measures the linear acceleration along these
axes, and gyroscope measures the angular velocity around
them.

inaccurate headset tracking are key causes of motion sickness,
particularly in VR [24]. Thus, headset tracking is a funda-
mental aspect of AR/VR, and it is standard practice to allow
access to head tracking data to all applications to make sure
they can continue rendering.

The Intertial Measurement Unit (IMU) in an AR/VR head-
set contains an accelerometer and gyroscope. The IMU tracks
6 Degrees of Freedom (DoF) as shown in Fig. 1: 3 DoF corre-
spond to linear acceleration along the x,y,z axes, measured by
the accelerometer in m/s2, and 3 DoF correspond to angular
velocity along the x,y,z axes, measured by the gyroscope in
rad/s. These raw readings from the IMU are passed to the
AR/VR software so it can update the display appropriately.
The raw readings are integrated to obtain the position and
orientation of the headset (also known as “pose”).

Multiple AR/VR applications. Recent improvements to
AR/VR platforms allow multiple applications to run simul-
taneously. These apps can run simultaneously in the fore-
ground [34], or some apps can be suspended (moved to
the background) in order for other apps to run (in the fore-
ground) [35]. An example of the former is opening up a virtual
web browser and a TV show app simultaneously. An example
of the latter shown in Fig. 2, where the user pauses her virtual
drumming game 2 to message a friend 4 using a social me-
dia service that may require a PIN or password to be entered
in order to log in. While the background app is considered
paused, it is not completely suspended in its execution. Users
are able to interact with the foreground application while the
view of the background app continues to update if the user
moves her head, and animations continue to play. In other
words, the background application still receives 6 DoF head-
set tracking data in order to render correctly and preserve the
immersion of the user.

2.2 Threat Model
Attack overview. Our threat model assumes that the user
has installed a VR application with malicious code. The at-



Figure 2: Attack scenario. (1) The foreground app (Facebook
Messenger) displays on top of the (2) background app (Beat
Saber), which continues to render using real-time head motion
tracking. (3) The victim types messages using the system
keyboard into the (4) text entry field. (5) The controller inputs
are not available to background app (2) while the foreground
app is open.

tack proceeds as follows. The user switches to a new fore-
ground application 1 , suspends the malicious application to
the background 2 , and begins entering sensitive text 4 in
the foreground application (for example, a password or work
emails) using the system keyboard 3 and VR controller 5 .
The malicious application receives a signal from the VR plat-
form that it is not in focus and logs all headset tracking data.
Specifically, the malicious app logs the 6 DoF accelerome-
ter and gyroscope data every frame for later transmission to,
or pickup by, the attacker. The attacker’s goal is to recon-
struct portions of the sensitive text with a reasonable degree
of accuracy.

Assumptions. While a malicious app could be installed
through physical access to the device by the attacker and
then handed to the victim, this assumption is not necessary.
The malicious app could simply be developed as a benign
app or game with hidden malicious code, and be released
through the VR app store (e.g., the Oculus Quest Store). The
user would then install the malicious application themselves
unknowingly. To retrieve the data from the malicious app,
they could implement benign network functionality (e.g., an
online leader-board) in order to obtain network access per-
missions from the user, then abuse those permissions to send
the headset tracking logs to a remote attacker [66, 67]. Using

Train with all
users’ data

Train with one
victim’s data

Infer words Scenario 1A Scenario 1B
Infer characters Scenario 2A Scenario 2B

Table 1: Attack taxonomy. TyPose can infer words or char-
acters, and can be trained with multiple users’ data or just
a single victim’s data. For scenario A, the victims’ data is
excluded from training.

the network in this manner is unlikely to raise concerns from
the user, as prior studies have shown that over 70% of Oculus
VR app dataflows were not properly disclosed by the privacy
policy [55].

Our threat model assumes that the default VR operating
system (in our case, the Meta Quest 2) is active and un-altered,
and developer options and privileges are disabled. The sen-
sitive text entered by the user is in the foreground app and
therefore not available directly to the background app, nor is
the headset or controller position/orientation available (access
to this is disabled once the foreground app launches). Head-
set tracking is enabled to background applications without
special permissions. We experimentally verified this by run-
ning a real foreground application (Facebook Messenger) and
recording the headset tracking data in a custom background
app with standard permissions. The above settings are the
default in the Meta Quest 2. The attacker does not need ac-
cess to other sensors such as eye tracking or cameras, network
diagnostics, or performance counters. The attacker also does
not need information about the system keyboard that the user
is using, such as its position, orientation, or size, or the timing
of key presses.

Attack taxonomy. We further divide the general attack de-
scribed above into multiple scenarios, as summarized in Ta-
ble 1. The attacker may be interested in inferring words typed
by the victim (Scenario) 1) or individual characters (Scenario
2). Word inference is useful if the victim is typing full English
sentences, while character inference is useful if the victim is
typing in a random character sequence (e.g., in a password).
We also consider how much ground truth data the attacker has
access to. In Scenario type A, the attacker has ground truth
data from all users (excluding the victims), and attempts to
infer the typing of a particular victim. In Scenario type B, the
attacker only has ground truth data from a particular victim,
and attempts to infer further typing by the victim.

The ground truth data could be collected from the at-
tacker(s) themselves or from by willing experiment partici-
pants. Ground truth data from the victim could be collected by
for example, a phishing attempt where the attacker sends chat
messages to a victim. As the victim responds, the background
app records the victim’s head movements, so the attacker has



(a) Segmenting sentences is easier when the user must press a
distant “submit” button in between words, resulting in large head
rotations and spikes in the plot.

(b) Segmenting sentences is harder when the user only presses
the space bar between words, as the word boundaries are not
visually distinct.

Figure 3: Examples traces of a user’s head rotation when typing sentences. The vertical black lines are the ground truth word
boundaries. The goal is to segment the sentence into words or characters.

(a) Victim types the word “lazy” (b) Victim types the word “quick”

(c) Victim types the word “lazy” (d) Victim types the word “quick”

Figure 4: Example of a user’s head rotation and linear acceleration when typing the words “lazy” and “quick”, twice each. The
traces are quite dissimilar across words, and somewhat dissimilar across trials of the same word.

both the victim’s head movements and the ground truth text to
train the models. Successful attack samples can also be used
to expand the ground truth dataset.

2.3 Illustration of Challenges and Intuition

In this section, we present several motivating examples to
illustrate the intuition as well as the challenges in inferring
user typing from headset tracking data.

Segmenting sentences into words or characters. A first
challenge is to infer when the victim is actively typing when
the keyboard is open. Only if we know when a user is typing
can we then begin to infer what is being typed. In certain
special cases, finding when the user is typing can be relatively
easy, such as when a user types words into a search bar and
then has to make a large head movement to press the “search”
button. These large head movements provide a strong signal
that a word has been entered. In Fig. 3a, we show an exam-
ple trace of such a case, where the user types a sequence of

words and presses a button after every word. The button is
located approximately 60◦ horizontally from the text entry
field. This causes distinct spikes in the yaw angular velocity
between every word, as shown in Fig. 3a (the black line is
the ground truth word boundary). In this situation, an attacker
could simply “eyeball” the raw gyroscope data to find word
boundaries, or use a simple threshold policy.

The general case is when words boundaries are marked by
presses of the space-bar. This is a harder problem because the
space-bar is much closer to the other keys being typed and
consequently results in far less distinct patterns in the head
tracking data. An example trace of a user typing a sentence is
shown in Fig. 3b, in terms of the pitch (i.e., headset rotation up
and down). Eye-balling the data proves unsatisfactory to find
these space-bar-marked word boundaries. However, there are
generally large changes in the pitch near the word boundaries,
since the user looks down slightly to press the space bar.
This suggests that perhaps some patterns can be learned, and
motivates our learning-based approach (Section 3.2).



Figure 5: System overview. TyPose takes the 6 DoF VR headset gyroscope and accelerometer sensor readings as input, segments
the time series into words (characters), and classifies the words (character pairs).

Inferring what word or characters are typed. Even if
the word/character segments are given, TyPose still needs to
determine what words/characters are being typed. In Fig. 4,
we show an example of a victim typing the same word (“lazy”
and “quick”). It can be seen that the traces contain similarities
as well as dissimilarities across trials. We were surprised be-
cause the head movements of the user were barely discernible
visually during the experiment, but the gyroscope and ac-
celerometer were able to pick up enough signal to differentiate
the various cases. These experiments provide motivation that
TyPose can successfully infer VR user typing (Section 3.3).

3 TyPose’s Design

3.1 System Overview
TyPose consists of the following two main modules, as sum-
marized in Fig. 5:

• Sentence Segmenter: TyPose determines when the user
is actively entering text on the keyboard, as opposed to
pausing in between words or in between key entries. We
adopt a machine learning approach in order to segment a
sentence into words (Scenario 1) or characters (Scenario
2), based solely on the gyroscope and accelerometer read-
ings. TyPose trains two convolutional neural networks
(CNNs) for these purposes, respectively.

• Word Classifier: The output of the Segmenter is the
word boundaries, which are converted into time series
segments representing probable words. The Classifier
analyzes these segments to infer the typed words. We
also experiment with classifying character pairs, given
character boundaries. A separate CNN is trained for each
task.

In the subsequent sections, we explain the details of each of
these modules.

3.2 Sentence Segmenter
Overview. The first problem, since the attacker only has
access to the head pose and not key press timings, is to de-

termine when the victim is starting and ending a typed word
(Scenario 1), or a typed pair of characters (Scenario 2). In
other words, we need to segment a sentence into words, or a
sentence into characters. Our first attempt to do this was using
conventional auto-segmentation techniques from the time se-
ries literature, which unfortunately proved inadequate. These
techniques start with a small segment of the data, find a line
of best fit, and then grow the segment until the mean squared
error from the line passes a threshold [20]. Intuitively, these
methods suffer from the inability to recognize common motifs
in the time series, and instead seek to segment a time series at
points where a nebulous "state change" occurs. While useful
for certain tasks, these methods do not leverage the fact that in
our application domain, there is a clearly defined motif (e.g.,
space bar presses in Scenario 1) that is correlated with the
start/end of a segment.

TyPose leverages this intuition that there are specific motifs
in the data, and that segments occur where the motifs are
found. The main issue is that we do not know what exactly
these motifs look like in the time series data. Instead, these
motifs need to be learned. To solve this, we treat the segmenta-
tion problem as a binary classification problem: given a short
window of the time series, is it a boundary of a segment? In
this way, we transform the problem of finding segments to
one of finding boundaries. For sentence segmentation into
individual words, the boundaries are the presses of the space
key. For sentence segmentation into individual characters, the
boundaries are any character press, including spaces.

Beyond accuracy (as we will show later in Section 4), the
classifier-based approach has several advantages: there is no
need to know the exact dimensions of the keyboard, its po-
sition in the victim’s field-of-view, or whether the keyboard
moves during the typing process. This is because the model
is trained on the raw accelerometer and gyroscope data and
does not need semantic information about the keyboard or
VR scene. For example, even if the keyboard drifts to follow
the user’s head orientation (as it does in our experiments with
the Meta Quest 2), our classifier can still perform well. We
believe this is because the sensors measure change, and hence
the readings for a given head movement are similar no matter
the keyboard’s absolute position/orientation.



Figure 6: Sentence segmenter design. The example shows finding the word boundaries in a sentence. The same design is used to
find character boundaries in a word.

Model design. At a high level, the segmenter takes win-
dowed samples from the 6 DoF time series as input and out-
puts the probability that a sample contains a boundary or
not. From this, TyPose considers the sample as potentially
containing a boundary if the probability is above a threshold
T . This is illustrated in Fig. 6. The length of the window is
parametrized by W .

Our specific classification method is based on CNNs, which
have excellent predictive ability in image classification and
time series classification problems [45,65]. Later in Section 4,
we also compare against classical k-nearest neighbors (KNN)
and Random Convolutional Kernel (ROCKET) time series
methods. Essentially, TyPose treats the 6DoF time series win-
dow as a 2D “image” of size 6×W , where the value of each
“pixel” in the input “image” is the floating point linear accel-
eration or angular velocity of the headset at each time. The
specific model architecture comprises 4 convolutional layers:
four 1D kernels with kernel size 3 and 32, 64, 128, 256 units
respectively. Finally, the data is fed into two fully connected
layers and a soft-max layer. The output dimension of the last
fully connected layer is equal to the size of the number of
classes (i.e., 2 classes – space or not – in the sentence seg-
menter, or 2 classes –any character press or not– in the word
segmenter). After every convolutional layer, there is a 1D max
pooling layer of size 4, and in between each fully connected
layer, there is a drop out layer with a chance of 0.5 in order to
reduce over-fitting. The CNN uses ReLU activation functions
and the sparse categorical cross entropy loss function.

The intuition behind this CNN architecture was to initially
convolve the data points from the gyroscope and accelerom-
eter individually along the time axis, rather than jointly con-
volving gyroscope and accelerometer readings together. In
other words, we used 1D kernels in the early layers so that the
matrix entries corresponding to gyroscope or accelerometer
readings were mostly kept separate. We found empirically
that such separation resulted in better performance. Otherwise,
the model architecture was close to those found in previous
literature [19, 27, 43].

3.3 Word Classifier
Overview. Given the word segments, (either the ground
truth or those predicted by the Segmenter from Section 3.2,
the next problem is to determine what words are being typed.
To the best of our knowledge, no models for predicting typed
VR characters based solely on head pose exist. We model the
attacker’s problem as a classification problem, with the head
pose 6 DoF time series data as input, and the typed text as the
output classes. In Scenario 1 for word inference, the output
classes are the words being typed. We also experiment with
Scenario 2 for character inference, where the output classes
are the character pairs being typed.

Model design. The word or character pair classifier use
a similar CNN model to the segmenter (Section 3.2), with
the main difference being the size of the input and the num-
ber of possible output classes. Since the word/character seg-
ments output from the Segmenter can be of variable length,
depending on the user, TyPose considers the maximum length
word/character, pads shorter samples with 0’s, and inputs them
to the word/character pair classifier. Changing the CNN de-
sign to predict from a different number of possible output
classes simply requires changing the output size of the final
fully connected layer. In Scenario 1, the number of output
classes is equal to the size of the word corpus being trained
on. In Scenario 2, the number of output classes is equal to the
number of unique character pairs under consideration. In this
work, we consider common words and character pairs in the
English language (details in Section 4).

4 Evaluation

4.1 Data Collection
Data collection application. In order to show the viability
of an end-to-end attack on current AR/VR systems, we created
a malicious background VR application to log the headset’s
accelerometer and gyroscope readings. The application was
created in Unity version 2020.3.26f1 [57] and deployed on
the Meta Quest 2. A screenshot of the application is shown



Figure 7: Data collection app. (1) The background app records
the sensor readings even it is not in focus. The user types into
the foreground keyboard (2), following the sentence prompt
(3), in the text field (4). (5) The system hand controller is
used to type, but the background app only has access to the
(6) application hand controller, which is frozen while the
keyboard is in focus.

in Fig. 7. The app prompts the user to type the specified
words in the text field using the default Meta Quest 2 system
keyboard. The app records the headset’s accelerometer and
gyroscope data (velocity and angular velocity) at 72 Hz [56].
If users glance up at the text prompt while typing, this adds
noise to the collected data, although we did not notice such
movements when visually inspecting the data. During the
training phase, our data collection app has ground truth access
to the typed characters for analysis and training the machine
learning models [13]. During a real attack, the text input is
to the foreground application, and the malicious background
app only has access to the headset tracking readings and the
pre-trained machine learning models.

User study recruitment and warm-up phase. With ap-
proval from our institution’s IRB, we collected typing data
from volunteers wearing an AR/VR headset. The user study
was performed with 21 participants of varying age, height,
weight, gender, and amount of experience with VR. This is in
line with prior AR/VR human subjects research [29, 36, 52],
which have 2-25 volunteers per experiment. Users were re-
cruited through Slack or personal contacts, requesting vol-
unteers for an AR/VR typing experiment, and participants
were entered into a raffle for a $50 Amazon gift card. Before
starting the study, users were informed that “the headset will

record signals from your behavior while you are interacting
with it” and that they could stop the study at any time. Users
were initially not informed of the exact purpose of the study
in order to avoid “participant bias” [8], an effect where partic-
ipants who know the hypothesized outcome of a study may
act to achieve (or confound) the outcome. Users were also
instructed on how to operate the headset and controllers, how
to adjust the headset to fit comfortably, and not to touch the
headset with one’s hands or anything else that would interfere
with the headset’s tracking. Each trial took up to 30 minutes,
varying based on the individual participant’s natural typing
speed.

User study experiment phases. Volunteers participated
in two phases of data collection: word typing and sentence
typing. Each phase lasted approximately 15 minutes with a
break in between. The former was used to train and test the
word and character pair classifiers. The latter was used to train
and test the sentence segmenter as well as provide additional
words and character pairs for the classifiers.

• Word typing phase: A participant wore the VR headset
and held the right hand controller while typing each
prompted word and pressing the submit button between
each word. The prompted words were from a list of 40
different words of 2 or 6 characters in length, selected
at random from the top 5000 most frequent words in
the Corpus of Contemporary American English [11].
For ease of ground truth labeling in this experiment, the
submit button was placed far away to the side from the
keyboard and text field, in order to require the user to
move their head a large amount in between words and
create a large signal change on the gyroscope readings.
Each participant repeated this process for all 40 words, 3
times each (120 words per participant). In total, 21 users
participated with 2520 total typed words.

• Sentence typing phase: Participants typed full sentences,
with words separated using the space bar (rather than the
submit button in the previous experiment, in order to be
more realistic). The sentences were 5 words long and
were randomly generated permutations from the 2-letter
words from the word typing phase plus 20 new 6-letter
words. The participant typed the full sentence, cleared
the text field with the submit button, and each word was
represented 3 times in the total sentences for each partic-
ipant. 21 participants participated in this experiment for
a total of 610 sentences typed.

We combined the unique words from the word and sentence
typing phases when performing word classification, for a to-
tal of 60 unique words and 5040 samples. Over all exper-
iments, about 6% of words contained typographical errors
and were therefore not classifiable. These errors were not
evenly distributed between participants and varied from 2 to



12% depending on the participant. Typos were included in
the character pair classifier if they appeared at least once per
participant.

User post-study disclosure. Several weeks after the study,
users were sent a debrief email disclosing the purpose of the
study, the specific nature of the data collected (i.e., headset
gyroscope and accelerometer data), and researcher contact
information in case of questions, concerns, or complaints.
We acknowledge that the debrief should have taken place in
person immediately after after the study. Users did not express
or appear to experience any discomfort during the study, and
we did not receive any complaints or requests to exclude a
participant’s data after the debrief messages were sent.

4.2 Comparison Methods
We compared our Classifier against several other methods: a
KNN-based approach [23] and a Random Convolution Ker-
nels transform (ROCKET) with logistic regression [12].

• KNN: We experimented with multiple distance metrics
for the KNN, including including Dynamic Time Warp-
ing [7] and first order statistics of the time series sample
(e.g., mean, variance, etc.); however, neither of these
metrics gave prediction results significantly better than
random. Instead, we element-wise multiply the head
tracking vector (6 elements) by the inter-frame time and
sum them. This essentially performs a coarse integration
of the acceleration and angular velocity into a single
velocity-pose vector. The number of clusters was set to
the number of classes in each problem.

• ROCKET: The main idea of ROCKET is to convolve
the time series with 10,000 randomly generated ker-
nels to produce features, and train a logistic regression
on these features. There has been some success using
ROCKET in classifying 6 DoF data into activities [49].
We chose ROCKET as a baseline due to its past success
and its ability to handle multivariate time series data.

• Random: We compute the probability of a random
guess, i.e., 1/N, where N is the number of classes to
predict (e.g., the corpus size for word classification).

We use the ROCKET implementation in the sktime pack-
age [3] and KNN from scikit-learn [1]. The CNN model
was implemented using Tensorflow 2.8.0 and the Adam opti-
mizer [14]. All methods were coded in Python 3.7.0 [2] and
run on a PC with a 2.8 GHz Intel i7 processor and 32 GB of
RAM, taking up to 1 hour to train a CNN. Unless otherwise
noted, 75% of the data was used for training, and 25% for test.
Results conducted with our full dataset (5040 typed words,
60 unique words) are denoted by the method name appended

Figure 8: Example of TyPose’s predicted word boundary prob-
abilities (red) plotted against the ground truth (black). The
raw gyroscope trace is shown in blue.

with a “+” (e.g., “CNN+”). Results obtained from an initial,
smaller dataset (1200 typed words, 40 unique words) lack the
suffix (e.g., “CNN”).

Data pre-processing. Before feeding in the gyroscope and
accelerometer data into the Segmenter, we perform several
pre-processing steps. Consumer-grade accelerometer and gy-
roscope data can be noisy [25]. An optional pre-processing
smoothing pass may be warranted, which is performed by
setting the accelerometer and gyroscope values at a specific
frame to the average of the surrounding values (windowed
averaging). TyPose performs this pre-processing step for the
Segmenter, but not for the Classifier, as it was not found to
have a significant impact there.

4.3 Evaluation of Segmenter
4.3.1 Sentence Segmentation into Words

Setup. We use the sentence typing dataset (Section 4.1)
to train and evaluate our boundary classifier. For Scenario
1A, 487 sentences were used to train and 54 were used for
evaluation. For Scenario 1B with a single victim, 23 sentences
were used for training and 6 were used to evaluate. To handle
the class imbalance, since there were few examples of space
bar presses, we oversampled the minority class and added
class weights.

To evaluate word classification, we walk a window of size
W = 200 frames across an un-labeled time series trace, in-
cluding all 6 DoF. Fig 8 shows an example trace with the
probability of each window being a boundary marked in red,
and the vertical black lines indicating ground truth boundaries.
The windows are overlapping in the test set, so ideally only
those windows with a boundary near the center will be clas-
sified as highly likely to contain a word boundary. If several
adjacent windows have softmax probability > T = 0.8, the
local maximum is predicted as the boundary. A predicted
boundary is considered as a true positive if its center is within



Boundary Predicted?
Yes No

Actual Yes TP = 69 FP = 154
No FN = 135 TN = 83, 067

Table 2: Sentences segmented into words (by space bar
presses) across multiple users in Scenario 1A.

Boundary Predicted?
Yes No

Actual Yes TP = 14 FP = 21
No FN = 10 TN = 9633

Table 3: Sentences segmented into words (by space bar
presses) for 1 participant in Scenario 2A.

10 frames of the true boundary. This definition is used to
compute the true positives, false positives, false negatives in
the following results.

Results. For Scenario 1A, where multiple users’ data is used
to train a model, the CNN-based sentence segmenter results in
69 true positives, 154 false positives, and 135 false negatives
out of 223 true space bar presses, as shown in Table 2. When
trained on sentences from multiple participants, TyPose is
able to find word boundaries for many words, albeit with a
fairly high false positive rate. We account for this later in the
end-to-end attack (§5) using data augmentation strategies and
information about the average word length.)

For Scenario 1B, where only data from a specific victim
is used for training, and later test, the CNN classifier gave 21
false positives and 10 false negatives, as shown in Table 3.
The performance seems better when using data from just one
participant, out-performing training and evaluation on data
on many individuals, which makes sense intuitively, since the
segmenter becomes personalized to an individual user.

4.3.2 Sentence Segmentation into Characters

We also utilize the sentence typing data to train and evaluate
Scenarios 2A and 2B. Instead of training on windows centered
on just space characters, we train on all character entries. The
window size was shrunk to 32 frames due to the samples
being closer together in time. When training with 19 users and
predicting the remaining 2 users, the classification accuracy
is 71%. When training and testing on a single user (with
an 80/20 train/test split), the classification accuracy is 85%.
Since the focus of this paper is on word classification, we
describe those results next.

Method Top-1 accuracy Top-5 accuracy
Random 0.05 0.25

ROCKET 0.18 0.66
CNN 0.75 0.99

CNN+ 0.65 0.92

Table 4: Word classification accuracy in Scenario 1B, when
training and testing from 1 participant.

4.4 Evaluation of Classifier
4.4.1 Word Classification

Setup. For Scenario 1A, we used the word typing dataset
described earlier (Section 4.1), which contains both two-letter
and six-letter words. For ROCKET and CNN, 75% of the
data were used for training and 25% for evaluation for both
word lengths (corresponding to 408 two-letter words and 398
six-letter words for training, and 136 and 132 for test respec-
tively). Additional data were gathered for CNN+ where 19
users were used for training and 2 users excluded for testing,
then 5-fold cross validated (5 different train/test splits) for the
final averaged accuracy results. For Scenario 1B, we form a
third word classification data set from additional trials per-
formed by a random participant to evaluate ROCKET and
CNN. The participant repeated the experiment three times
on three separate days for a total of 180 six-letter words. For
CNN+, five participants typed a total of 120 six letter words
each out of 40 possible instead of 20 words and were cross
validated.

Results. For Scenario 1A where all users’ data is used for
training, Fig. 9a shows the top-1 and top-5 accuracy for the
across all 2-letter and 6-letter words, for all the different meth-
ods (CNN+, CNN, ROCKET, and Random). Top-k accuracy
is a common evaluation metric for speech and keyboard infer-
ence [29, 36, 52]. While both CNN and ROCKET drastically
out-perform random guessing, the CNN proves the most ac-
curate overall. Focusing in on the prediction accuracy of the
6-letter words along (Fig, 9b), we see the accuracy can be
even better than the general case. This may be because the
6-letter words have longer duration, providing more infor-
mation to the classifier. Adding additional users’ data and
additional words (CNN+) has a slightly increased accuracy.
These results are also in line with other top-k accuracies re-
ported by other cross-modality AR/VR inference attacks [52].
Note that we do not include KNN results, which were very
poor. This is because the KNN input features only represented
the aggregate head movement during the word, in order to
have a low-dimensional (6×1) input size and a reasonable
run time; however, higher-dimensional input features would
be needed to accurately differentiate words from each other.

For Scenario 1B, the top-1 and top-5 accuracy for the dif-
ferent methods are shown in Table 4. The classification ac-



Method Top-1 accuracy Top-5 accuracy
Random 0.025 0.125

ROCKET 0.289 0.675
CNN 0.353 0.710

CNN+ 0.400 0.820

(a) Classify from 2-letter or 6-letter words

Method Top-1 accuracy Top-5 accuracy
Random 0.05 0.25

ROCKET 0.390 0.796
CNN 0.654 0.932

CNN+ 0.659 0.929

(b) Classify from 6-letter words only

Figure 9: Word classification accuracy in Scenario 1A, when training and testing on data from all participants.

Method Top 1 accuracy Top 5 accuracy
Random 0.022 0.111

KNN 0.18 0.48
ROCKET 0.20 0.54

CNN 0.23 0.58
CNN+ 0.33 0.72

Table 5: Character pair classification accuracy in Scenario 2A,
across all participants.

curacy is similar to that of Scenario 1A (Fig. 9a), again with
the CNN-based methods performing the best. Adding 20 ad-
ditional words and cross validating the single user results
brings the accuracy in line with the multi user scenario. We
did note, however, that some users have results far above (or
below) the average, suggesting that some participants have
more predictable head movements than others. Hence models
trained on a single participant may be able to learn participant-
specific behaviors and exploit that learning for improved clas-
sification accuracy. On the downside, Scenario 1B may be
less practical because it requires ground truth training data
from a target victim.

4.4.2 Character Pair Classification

Setup. For Scenario 2A, we further subdivide the words
from the word typing dataset in their constituent character
pairs. For example, the word “fox” contains two character
pairs, “fo” and “ox”. In total, 1852 character pairs were used
for training and 618 were used for test when evaluating KNN,
ROCKET, and CNN. This resulted in 45 possible character
pairs. For CNN+, 121 unique character pairs were used for a
total of 9448 training and 2362 test sample character pairs. For
Scenario 2B, similar to word classification (Section 4.4.1), we
formed a character pair dataset from a single user. The number
of possible character pairs (62) is larger than in Scenario
2A dataset, due to a large number of frequently repeated
typographical errors.

Results. For Scenario 2A, we show the top-1 and top-5 ac-
curacy in Table 5. The CNN-based outperforms other methods
and is far better than random, but further accuracy improve-
ments are desirable. Adding additional users and samples to

Method Top-1 accuracy Top-5 accuracy
Random 0.016 0.08

KNN 0.21 0.50
ROCKET 0.24 0.52

CNN 0.28 0.58
CNN+ 0.31 0.77

Table 6: Character pair classification accuracy in Scenario 2B,
out of 62 (121 for CNN+) possible character pairs, from 1
participant.

the training set improves the accuracy by 25-50% (CNN+
compared to CNN). We believe that even noisy predictions
could still be useful in reducing the search space of possible
passwords, for example by passing in these character pair
probabilities to password cracking software such as “John
the ripper” [41]. Reducing the search space would reduce the
password cracking time and show headset accelerometer and
gyroscope as a useful side-channel for password stealing.

For Scenario 2B that zooms on a single user, we show the
top-1 and top-5 accuracy in Table 6. Compared to Scenario
2A that uses all users’ data for training, the personalized
attack has a better accuracy. This is in line with the results in
previous subsections.

5 Demonstration of end-to-end attack

In the event that the attacker does not have access to word or
character pair entry times, an end-to-end attack on the entire
unmarked time series of the victim’s head pose is needed.
Towards this, we combine the models from Sections 3.2 and
3.3 to explore the feasibility of an end-to-end attack.

Setup. We utilize the sentence typing dataset from Sec-
tion 4.1. Following the top branch in Fig. 5, the raw sensor
streams are fed into the segmenter, which finds the word
boundaries that are then fed into the Word Classifier. To mea-
sure the performance of the end-to-end attack, we compute
several metrics:

• The edit (Levenshtein) distance e(A,B) assigns a
penalty of 1 to every add, delete, or swap made to trans-



form the ground truth sentence A into the predicted sen-
tence B [18, 36]. The edit distance is the minimum num-
ber of such operations needed, and lower is better. The
minimum edit distance is 0 and the maximum is un-
bounded.

• The normalized edit distance, e(A,B)
max(|A|,|B|) , normalizes

the edit distance by the maximum sentence length, since
sentence lengths are variable.

• The discounted edit distance assigns a lesser penalty
to swaps when the true word is within the top 5 predic-
tions. The weight is [0.2, 0.4, 0.6, 0.8] if the true word
is predicted as the [2nd, 3rd, 4th, 5th] most likely word,
respectively.

To account for the noisy segmenter, we employed two strate-
gies. First, we performed data augmentation when training
the Word Classifier; specifically, we add a random amount
(up to 1 second) of extra data to the beginning and end of the
true word segment. Second, we provided the average word
and sentence duration as side information; with an average
word length L and sentence typing duration D, the segmenter
picks the

⌊D
L

⌋
−1 most likely word boundaries in a sentence.

The results reported below are the average of 5-fold cross-
validation. Each test has about 50-60 sentences from never
before seen users, so the scenario is quite challenging.

Results. The edit distance is 4.6, the discounted edit dis-
tance is 4.4, and the normalized edit distance is 0.93. A naive
attacker could guess

⌊D
L

⌋
≈ 5 words in a sentence with a

1/40 chance of getting each word correct, giving a naive edit
distance at 4.875. Thus compared to a random guess, our
approach has better performance. We observe that the end-to-
end attack is sensitive to the segmenter’s performance, since it
is the first step of the end-to-end pipeline. Upon decomposing
the edit distance, we find that 16% are from insertions, 7%
are from deletions, and 77% are from swaps. The insertions
and deletions can be attributed to segmenter errors, while the
swaps could be attributed to the segmenter or classifier.

The end-to-end attack results could likely be improved by
adding priors on English grammar semantics. However, our
scenario is a particularly challenging one with users typing
random sequences of words to form sentences, so we could
not experiment with such priors. Our approach could also be
combined with other sensor modalities to improve segmenta-
tion, such as performance counters [64] or WiFi signals [4].
More sophisticated post-processing, such as a feedback loop
between the word classifier and sentence segmenter, could
also help. Overall, we believe that this end-to-end attack is
a good starting point to demonstrate the feasibility of head
pose as a source of information leakage for hand-typed sen-
tences. Moreover, each of the individual components of the
end-to-end attack can be used independently; for example, if

Figure 10: Reducing the rate that head tracking information is
given to the background application does not have significant
effects on Classifier accuracy until < 10 Hz.

the attacker desires only a single word to be detected (e.g.,
the answer to a secret question password challenge), then the
word classifier alone can be used with good accuracy. Further
discussion is provided in the Limitations section.

6 Attack Mitigation

The simplest way to prevent the system’s attack is to disallow
background apps’ access to the VR headset accelerometer and
gyroscope readings, when the background app is out of focus.
However, this may not be desirable as it also prevents the
background app from updating the rendered image in response
to the user’s movements (in other words, causing a “freeze”),
leading to poor user experience [24, 42]. Therefore, we first
investigate mitigation strategies that try to avoid harming the
user experience by still allowing background app rendering.
We experiment with two methods: (a) reducing the frequency
that the sensor streams are given to the background app, and
(b) reducing the precision of the floating point values provided
to the background app.

Reduced IMU sampling rate. We re-train and evaluate the
CNN from Section 3.2 on word classification using the same
dataset as Fig. 9b, but down-sample the IMU reading provided
to the background app. We plot the classification accuracy
in Fig. 10 for various sampling frequencies, ranging from 72
Hz (the default) to 5 Hz. The top-1 and top-5 accuracies do
not drop much as the sampling frequency decreases to 5 Hz.
This suggests that 5 Hz still supplies sufficient information
for classification. Alternatively, the robustness to sampling
rate may suggest that an important predictor of what a user
is typing is the length in time of the sample (although we
experimented with length alone as a classifier, and found it
insufficient). In any case, we conclude that the frequency
reduction needed (to less than 5 Hz) would also inhibit the
background app’s ability to update the display at an acceptable
frame-rate [69].



Figure 11: Rounding off the floating point values of the head
tracking information given to the background application does
not have significant effects on CNN accuracy.

Reduced precision. We also re-train and evaluate the CNN
with the same data as above, but during pre-processing, we
round off the floating point IMU values to different decimal
precision. Plotting the results in Fig. 11, we see minimal accu-
racy reduction even at as low as two significant figures. This is
likely because even though information from the significand
of the floating point number is reduced, the remaining infor-
mation along with the exponent, sign, and in the length of the
samples provides enough for classification. Since reduction
of significant digits in head tracking information can lead to
“judder” or drift of the rendered image, without significantly
reducing the classification accuracy, we do not recommend
this as a viable mitigation.

Overall, given that the classification can still be performed
at better than random accuracy with both of these mitigation
techniques, more elaborate defense mechanisms are needed.
One possibility is for the AR platform to move the user to a de-
fault “system room” in the background whenever a keyboard
is opened in the foreground, instead of keeping the malicious
app in the background. This comes at the expense of reducing
user immersion and possibly losing state in the background
app. Another possibility is to randomize the keyboard location
or size each time it is opened, or even randomize digit key
locations in the case of PIN code entering. Alternatively, the
AR platform may employ a modified version of “time warp-
ing” [24] where the background app is rendered with a wider
field-of-view, and the AR platform later crops the final ren-
dered image using real-time head tracking data not provided
to the background app. The above mitigation strategies may
degrade user experience, and further human subjects research
may be needed to understand their perceptual impacts.

7 Limitations

While participating in the user study, some volunteers who
were not able to find a comfortable way to wear the headset
did not visibly move their heads at all while typing, possi-

bly due to discomfort. The data from these users were not
discarded but did show less head motions than others. This
suggests that if a user were aware of the possibility of mali-
cious head tracking, it is possible to hold one’s head nearly
still while typing in order to confuse the classification model
and limit its accuracy. However, this would require conscious
behavioral change on the part of the users.

A second limitation is that any change to the text entry
method may require the collection of a new training dataset
and model in order to maintain TyPose’s accuracy. These
changes could include operating system updates that replace
the system keyboard, the addition of a numberpad, or future
novel AR/VR text entry mechanisms. Related to this, the
machine learning models we experimented with may be sub-
optimal, as the primary goal of this project was to demonstrate
the attack’s feasibility. We would be interested to see other
learning-based approaches towards these types of classifica-
tion problems. Further, the models are trained to detect only
60 unique words, and it could fail if users type a more diverse
set of words. The attack could be generalized by expanding
this dictionary through additional user data collection and
model training. The set of words could also be carefully se-
lected so that the attack could still recognize key words in the
sentence to extract the main meaning, even if every word is
not perfectly recognized.

Finally, a key lesson learned is the cascading effects of
errors and thus the importance of the first segmentation step
on end-to-end performance. The classifier accuracy dropped
when noisy segmentation boundaries were provided by the
segmenter, despite our best data augmentation techniques to
mitigate this. Since segmentation has shown success in single-
modality attacks [29, 36], we are optimistic that improved
segmentation techniques or additional side channels [4, 64],
combined with the already high-performing classifier, can
help the end-to-end attack.

8 Related Work

AR/VR key-logging attacks. AR and VR devices open the
door to new application spaces with unique threat models. As
a result, a number of new attacks that target these devices have
emerged. Arafat et al. [4] developed a key logging side chan-
nel attack leveraging fluctuations in wireless signal around
a VR user. Different head and hand motions cause different
fluctuations in the Wi-Fi signal which can be correlated to
key inputs. Similarly, TyPose uses changes in head movements
and timings to infer user text input, but does not require exter-
nal wireless sensors. Face-Mic [52] is an example of another
type of a cross modality attack (head tracking to infer spoken
words), but focuses on audio input whereas text-based input
is currently more common.

Meteriz-Yildiran et al. [36] and Holologger [29] demon-
strate single modality attacks capable of stealing sensitive
information on AR devices (i.e., hand tracking to infer hand-



based typing, head tracking to infer head-based typing), rather
than cross modality (head tracking to infer hand-based typing)
as we do. Our problem has different threat models: We did
not use hand tracking data as in [36] because it is blocked
from background apps by popular AR/VR development en-
gines like Unity, in our experience; and head-based typing as
in [29] is less common and results in higher typing error rates
for users compared to hand-based typing [17]. Our problem
is significantly more challenging than these single-modality
attacks because we have to infer both when and what words
are typed, causing errors to accumulate in the end-to-end at-
tack. Such single-modality attacks get the latter for free (e.g.,
once you can correctly estimate when a hand presses a key,
identifying which key is relatively straightforward from the
hand pose).

AR/VR authentication mechanisms. AR/VR introduces
unique password entry methods [22, 31, 53, 61]. These works
use unique 3D hand motion paths, head gaze, or eye tracking
to enter passwords, suggesting that if the sensor data used for
these input methods were logged, the sensitive information
could be inferred. These are outside the scope of this work,
as TyPose focuses on text entry using virtual keyboards. There
have also been efforts to design shoulder surfing resistant
authentication methods [40, 63]. Since TyPose uses head
tracking information freely given to AR/VR applications,
shoulder surfing is not necessary and mitigating it would not
reduce the efficacy of our attack.

Other AR/VR security issues. Other security and privacy
threats on AR/VR devices and applications are covered by
several excellent surveys [39, 47, 48]. Our work falls at the
intersection of data access, input security, and multiple appli-
cations mentioned by these surveys. Cheng et al. [9] investi-
gate the human impacts of AR/VR perceptual manipulation
attacks. Shang et al. [51] use network traffic analysis in a
multi-user app to infer user location through custom built
malicious applications. Our attack focuses on inferring sensi-
tive text rather than location. Designing sharing techniques
to enforce permissions or prevent 3rd parties from accessing
private virtual content is another problem [44, 50], as is ma-
licious output of the AR display [26]. TyPose is orthogonal
to such works in that it focuses on AR/VR input modalities,
rather than rendering and sharing of virtual content.

Conventional key-logging side-channel attacks. Our work
investigates head movement information to build up side-
channel for information leakage attacks. Prior works have
explored using motion sensor to steal keylogging secrets on
mobile phones [62] and smart watches [28, 30, 59, 60, 62].
Similar to the insights in our attack, the user motion as they
type correlates with the location of the keys on a soft keyboard,
enabling these attacks. Other works exploited acoustically [5,

16] or EM [6, 58] side-channels to extract keylogging input.
However, these attacks require physically connecting a probe
or microphone close to the keyboard. In more conventional
computing settings, several works have deployed keystroke
inference attacks based on CPU-based [46], cache-based [15]
or GPU-based [37] side-channel. More generally, the use
of machine learning in keylogging attacks using data from
seemingly-unrelated sensor inputs has some precedent [38,
68]. In particular, prior knowledge of the English language
and grammar [68] could be used to improve on our results.

9 Conclusions

As AR/VR devices become prevalent, there is a pressing need
for research into their security and privacy risks. In this work,
we show an attacker may freely obtain a stream head tracking
data from an AR/VR device, segment it, and classify it in
order to obtain sensitive text information. The attack is shown
to be especially accurate when trained on specific targeted
victims. While a simple mitigation tactic – blocking access to
the head tracking data – exists, it breaks desired functionality
in a background application. The attack is also resilient to
less extreme mitigation strategies, such as reducing the fre-
quency and precision of the sensor readings, to the point that
the background app would have to be visually compromised
before successful attack mitigation. In future work, we plan
to characterize user sensitivity to the background app’s visual
display, in order to develop new mitigation strategies, as well
as other text entry methods.
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