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Abstract
The fast-growing surveillance systems will make image cap-
tioning, i.e., automatically generating text descriptions of im-
ages, an essential technique to process the huge volumes of
videos efficiently, and correct captioning is essential to ensure
the text authenticity. While prior work has demonstrated the
feasibility of fooling computer vision models with adversar-
ial patches, it is unclear whether the vulnerability can lead to
incorrect captioning, which involves natural language process-
ing after image feature extraction. In this paper, we design
CAPatch, a physical adversarial patch that can result in mis-
takes in the final captions, i.e., either create a completely dif-
ferent sentence or a sentence with keywords missing, against
multi-modal image captioning systems. To make CAPatch
effective and practical in the physical world, we propose a
detection assurance and attention enhancement method to
increase the impact of CAPatch and a robustness improve-
ment method to address the patch distortions caused by image
printing and capturing. Evaluations on three commonly-used
image captioning systems (Show-and-Tell, Self-critical Se-
quence Training: Att2in, and Bottom-up Top-down) demon-
strate the effectiveness of CAPatch in both the digital and
physical worlds, whereby volunteers wear printed patches in
various scenarios, clothes, lighting conditions. With a size
of 5% of the image, physically-printed CAPatch can achieve
continuous attacks with an attack success rate higher than
73.1% over a video recorder.

1 Introduction

With the proliferation of cameras, at least 2.5 petabytes of
images are generated daily, manually searching for useful
information from such a vast amount of images is almost
impossible. To facilitate image retrieval, captioning systems
automatically convert the content of an image utilizing com-
puter vision and natural language processing [11, 24]. For in-
stance, captioning systems can help to identify evidence from
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“A bird is flying over a body 
of water ”

CAPatch

“A man in black is opening 
the door”

Figure 1: CAPatch attacks. The adversary fools the video
surveillance systems by wearing a CAPatch on the body
to enable further malicious behaviors such as break-in.

the huge volumes of surveillance videos efficiently [6, 33] or
can help those with visual impairments by transforming im-
ages/audios into texts and communicating via text-to-speech
technology [13,14,17,31,41]. As a result, correctly captioning
amid a dedicated adversary is important to ensure the security
of those applications. If the adversary can manipulate the cap-
tioning results of the video surveillance systems by wearing
an adversarial patch, e.g., altering “A man is opening the door”
into “A bird is flying over a body of water” or “The wind is
blowing the door”, she can cause undesired consequences, as
shown in Fig. 1.

Since captioning systems utilize AI-based computer vision
algorithms to detect objects in the images, it is natural to ask
whether the adversarial patch designed purely for computer
vision algorithms, e.g., image classifiers [5, 18, 39], object
detectors [9,20,28,32], or face recognition models [1,34,38],
etc., can output a caption irrelevant to the image content at all.
Our preliminary analysis show that the patches optimized to
fool computer vision can at most cause partial caption modifi-
cation, but can hardly alter enough keywords to hide malicious
behaviors, e.g., converting the original caption of "A group
of people on skis in the snow" to "A person is sitting on a
snowy hill with a cat in the background". This is because the
captioning systems consist of not only a feature extractor to
identify objects in the images, but also a description generator
to output captions utilizing natural language processing algo-



rithms. Existing patches against computer vision algorithms
can at most incorrectly identify the objects in the first step yet
may not affect the final output of the description generator.

Existing work cannot affect natural language processing
of the description generator for the following reasons. First,
state-of-the-art image captioning systems utilize Faster R-
CNN to detect objects and extract features of the regions
with salient objects, which are in turn fed into the description
generator. If a patch is not located within the region chosen
by the Faster R-CNN model, the generated caption will not
be affected. Yet, the patch is supposed to be placed anywhere
in the images. Second, even if the patch is always located
within the chosen region, the description generator utilizes an
attention mechanism to assign higher weights to the region
of interest. A patch may not have much impact if it does
not overlap with the region of high attention. Third, granted
that a patch contains features of target objects, which may
be insufficient to affect the entire output of the description
generator and hide the rest of the original objects in the image.

In this paper, we propose CAPatch, an adversarial patch
to be worn outside a jacket, which can cause the image cap-
tioning system to output a caption that has nothing to do with
the original image (i.e., caption makeover attacks) or a cap-
tion with important keywords modified (i.e., keyword hiding
attacks), by exploiting vulnerabilities from both the image
feature extractor and description generator. To overcome
the aforementioned challenges, CAPatch is designed with de-
tection assurance, attention enhancement, caption alteration,
and robustness improvement mechanisms. As such, CAPatch
can make Fast R-CNN based object detection algorithms se-
lect a collection of overlapping regions with each containing
CAPatch. As a result, it increases the impact of CAPatch in
terms of extracted features and causes the attention module to
output high attention levels over the regions overlapping with
CAPatch, regardless of where it is placed. Moreover, to output
a chosen caption or to hide keywords, CAPatch is optimized
based on a caption loss target function that incorporates the
vulnerabilities of both the feature extractor and description
generator. Finally, to make CAPatch effective in practice, we
employ color smoothing and expectation over transformation
to overcome the noises and distortion introduced during the
image capturing process. We validate the effectiveness of
CAPatch by conducting both simulation and real-world ex-
periments on three popular image captioning systems, i.e.,
Show-and-Tell, Self-critical Sequence Training: Att2in, and
Bottom-up Top-down. The evaluation involves volunteers
attaching a printed CAPatch on their jackets, and achieves
continuous attacks with a success rate of 73.1% for caption
makeover attacks and 92.4% for keyword hiding attacks, with
a patch size of 5% of the images.

In summary, our contributions include the points below:

• To the best of our knowledge, this is the first work on
the physical adversarial patch against image captioning
systems with the goal to output a chosen caption or to

hide keywords.

• We design CAPatch that utilizes the workflow of cap-
tioning systems, e.g., feature extractors and description
generators, such that the patch will affect both stages and
output a chosen caption irrelevant to the original images
or videos.

• We evaluate the performance of CAPatch with three im-
age captioning systems (Show-and-Tell, Self-critical Se-
quence Training: Att2in, and Bottom-up Top-down) in
both digital and physical worlds. The results demonstrate
that physically-printed CAPatchs can work with various
light conditions, distances, cameras, resolutions, etc.

2 Background and Related Work

In this section, we introduce image captioning systems and
present the related work in adversarial attacks against image
captioning systems as well as physical adversarial patches.

2.1 Image Captioning
An image captioning system is a deep learning-based sys-
tem that aims to generate a text description for an image. As
shown in Fig. 2, the image captioning system usually adopts
an encoder-decoder architecture since image captioning is a
multi-modal task based on both computer vision for image
feature extraction and natural language processing for descrip-
tion generation. The computer version side. a.k.a., encoder,
is a feature extractor that encodes the input image into an
intermediate representation. The natural language processing
side, a.k.a., decoder, is a language model that decodes the
extracted image features into a descriptive sentence as the
output. In the following, we introduce the feature extractor
and the language model in detail.

2.1.1 Feature Extractor (Encoder)

The feature extractor aims to extract intermediate represen-
tation features from the input image, which are then used as
the inputs of the language model for description generation.
Common feature extractors include two types: (1) Convo-
lutional Neural Network (CNN) based ones and (2) Faster
R-CNN based ones. The CNN-based feature extractor out-
puts a feature map corresponding to all positions of the input
image by utilizing a set of convolutional layers, e.g., ResNet-
101 [18], VGGNet [39], etc. However, it pays equal attention
to each region of the input image, resulting in limited spe-
cial localization with semantic meanings. To address it, the
Faster R-CNN based feature extractor [2] utilizes a Faster
R-CNN [36] to detect regions that contain salient objects or
backgrounds with high probabilities, and then extracts feature
vectors from the detected regions. Thus, the feature extractor
focuses on regions relevant to the content of the image, which
helps to generate human-like captions and answer questions.
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Figure 2: Image captioning system. An input image is en-
coded to intermediate representation features by a feature
extractor (e.g., CNN) and then decoded to an output cap-
tion by a language model (e.g., LSTM).

2.1.2 Language Model (Decoder)

The language model generates a descriptive sentence, i.e., a
caption, with the extracted image features. State-of-the-art
language models are usually based on a Long Short-Term
Memory (LSTM) model with an attention module. An at-
tention module generates a weighted feature map from each
receptive field in the encoded feature map, and feeds the map
along with the previously generated word to the LSTM model,
which then generates the next word to form a caption. Since
language models with attention modules exhibit better per-
formance compared with the ones without attention modules,
they have become the mainstream decoders for image cap-
tioning systems nowadays.

To investigate the vulnerability of image captioning sys-
tems in terms of adversarial patches, we study three popular
image captioning systems that cover encoders and decoders:
(1) a Show-Attend-and-Tell [46] model that utilizes a ResNet-
101 as the encoder and an LSTM with attention as the decoder,
(2) a Self-critical Sequence Training: Att2in model that uses a
modified attention model and achieves better performance by
employing reinforcement learning [37], compared with Show-
Attend-and-Tell, and (3) a Bottom-up Top-down [2] model
that uses a Faster RCNN in conjunction with a ResNet-101 as
the encoder and a two layers attention LSTM as the decoder.

2.2 Adversarial Examples
Existing adversarial examples against image captioning sys-
tems mainly focus on adding noises at the pixel level in the
digital world to alter the output caption at either the word
or sentence levels. For the word-level alteration, Show-and-
Fool [8] is the first work that can insert a few targeted words
into the generated caption and the follow-up work by Xu et
al. [49] enhances such an attack and can insert keywords in
specific locations by using a structured output learning with
latent variables. Instead of inserting, Ji et al. [21] generate ad-
versarial examples to remove targeted words while remaining
the produced caption accurate. For sentence-level alteration,
both Show-and-Fool [8] and Xu et al. [48] can change the
output caption to a targeted sentence. Xu et al. [48] consider
image captioning as a sequential recognition task, and pro-
pose an optimization-based attacking algorithm for sequential
recognition models by learning adversarial perturbations from

the derived gradients of each word in the sequence.
Instead of creating adversary examples by adding noises

to the digital images, this paper aims at generating adversary
patches that can be physically printed and worn, such that they
can induce incorrect captions. In addition, CAPatch works for
image captioning systems with CNN-based or Faster R-CNN
based encoders while existing methods mainly work for the
former.

2.3 Adversarial Patch
The adversarial patch is one type of adversarial example that
has been shown to be effective in the physical world [5].
Different from previous pixel-wise digital adversarial exam-
ples [16], the adversarial patch appears in a form of pertur-
bations within a small area and can be physically printed to
attach to an existing object or to become a stand-alone image,
e.g., a poster. Typically, the adversarial patches are trained
to be universal [5], i.e., the attack can be successful for any
images attached with the patch, which makes the attack easy
to launch in the real world. Thus, the adversarial patch has
been widely investigated and prior work [4, 9, 40] has studied
physical adversarial patch attacks on computer vision models
such as image classifiers and object detectors.

However, it is unknown whether existing patch generation
methods are effective against a multi-modal image captioning
system, which consists of both computer vision models and
the natural language models, which may correct the mistakes
produced by the computer vision models. In this paper, we
investigate the problem and explore the feasibility of attacking
the image captioning systems in the physical world with an
adversarial patch. Particularly, we exploit the vulnerability of
the language model to amplify the misclassification produced
by prior work in computer vision.

3 Threat Model

3.1 Attack Goal
The goal of the attacker is to cause the image captioning sys-
tem used in scenarios such as intelligent surveillance [6,33] or
blind assistance [13, 17, 31, 41] to output an incorrect caption
by placing an adversarial patch at the scenes. For example, fu-
ture intelligent (unattended) video surveillance systems may
utilize image captioning systems to automatically generate
surveillance logs for the sake of lowering manpower costs. An
adversary tries to bypass a video surveillance system for home
security by wearing an adversarial patch outside her jacket
to trick the image caption systems to output benign logs such
that she can break-in. To achieve such goals, the attacker may
perform two types of attacks: (1) Caption Makeover Attacks
(CMA), whereby the image captioning system outputs a com-
pletely irrelevant caption, and (2) Keyword Hiding Attacks
(KHA), whereby the image captioning system fails to output
a decisive keyword describing the image, e.g., a person.



3.2 Adversary Capability
To achieve the aforementioned attack goals, we assume the
adversary has the following capabilities:

Target Model Access. We assume the adversary may have
white-box or black-box access to the target image caption-
ing system. In white-box attacks, the adversary has prior
knowledge of the image captioning model used in the victim
surveillance system, including but not limited to their architec-
ture, parameters, etc. In black-box attacks, the adversary has
no prior information about the victim system but can train a
CAPatch using a customized white-box model. In both cases,
the adversary need not acquire the captured images or the
captions generated by the victim system since CAPatch is
designed to be applicable regardless of the scenes.

Camera Location Awareness. We assume the adversary
can acquire the location of the surveillance camera by ob-
servation, based on which she can place the patch facing the
camera and ensure that it is integrally captured.

3.3 Design Requirement
In addition, to make CAPatch practical, it shall meet the fol-
lowing design requirements:

Workable across Various Scenes. The adversary may con-
duct attacks at various scenes and the surveillance camera
may switch views from time to time. Meanwhile, it is imprac-
tical to obtain the images captured by the camera in real-time.
Thus, CAPatch should be workable across various scenes.

Workable across Various Locations. Similarly, the loca-
tion of CAPatch in the captured image is unknown, lack of
the real-time view of the camera. Therefore, CAPatch shall be
workable across various locations instead of a fixed location.

4 Preliminary Analysis

In this section, we first present that fooling feature extractors
is not enough to guarantee a caption makeover or keyword
hiding attack against image captioning systems. Then, we
introduce the basic idea of CAPatch.

4.1 Fooling Feature Extractors is Not Enough
Since adversarial patches have been proved to be effective
against CNN and Faster R-CNN models in terms of classifi-
cation and recognition, a naive trial is to utilize such a patch
to attack the image captioning system. To investigate it, we
conduct a feasibility test by generating adversarial patches
against the feature extractors, i.e., the CNN models. In partic-
ular, we generate 2 adversarial patches against a CNN-based
feature extractor, i.e., ResNet-101, using the patch optimiza-
tion method from [5]. The purpose of the patches is to alter the
classification results of the images into four targeted classes
respectively: (1) bus and (2) bird. Then, we attach each of the

(a) “A horse is eating grass in a
field.”→ “A horse is eating a large
bird in the grass.”

(b) “A group of people sitting on a
bench and a man in a red jacket.”→

“A man sitting on a bench with a bird
on a bench.”

Figure 3: Captions for images with patches targeted bird
class are inserted with corresponding keywords.

generated patches to 1000 images randomly selected from the
ImageNet [10] dataset respectively, and feed those patched im-
ages into the Show-Attend-and-Tell image captioning system,
with the same ResNet-101 as the encoder and an attention-
based LSTM as the decoder, to see whether the patches can
modify the captions.

From the results, we find that adversarial patches against
the CNN-based encoder can change the captions but with lim-
ited capability. The results show that the adversarial patches
can induce the name of the targeted class into the generated
caption or hide human-related keywords existing in the origi-
nal caption with limited attack success rates, i.e., 40.4% and
32.1% for inducing bus and bird respectively, and 11.0% and
10.7% for hiding keywords such as “person” and “man” with
the aforementioned four patches. Fig. 3(a) shows that the gen-
erated captions can be illogical in semantics, e.g., “ A horse is
eating a large bird in the grass”. Fig. 3(b) shows that though
the targeted class is induced into the generated caption, the
keywords “man” and “person” are not hidden. The reason is
that the adversarial patches are aiming at classifications in-
stead of a wrong caption. Therefore, simply using adversarial
patches against the encoders of an image captioning system
is not enough.

4.2 Basic Idea

To enhance the capability of the adversarial patch, our idea
is to exploit the vulnerabilities from the system level instead
of a single model level. To this end, we carefully analyze the
architecture of the image captioning system and find that it
consists of three key parts: (1) an encoder for feature extrac-
tion, (2) an attention module for image region weighting, and
(3) a decoder for caption generation. To attack such a system,
CAPatch shall meet the following requirements.

¶ Detection Assurance. CAPatch shall be detected by the
feature extractor no matter where it is placed such that its
attack effects can be passed to the caption generator in a form
of feature vectors. Different from CNN-based encoders that
extract features with a uniform grid of equally-sized image
regions, Faster R-CNN based encoders first detect regions
with salient objects or backgrounds with boxes and then ex-
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Figure 4: Overview of CAPatch generation. Based on the targeted caption, the adversary generates a CAPatch by first
increasing the possibility that the patch is detected by the image captioning system, next to letting the system pay more
attention to the patch when generating key elements of the targeted caption, then altering the generated caption into the
targeted one integrally, and finally enhancing the robustness of the patch to make it more practice in the physical world.
The generated CAPatch can then be attached to any objects to launch targeted attacks.

tract feature vectors from the detected regions. As a result,
for image captioning systems with Faster R-CNN based en-
coders, e.g., Bottom-up Top-down, we shall make sure that the
region containing CAPatch is detected with as many boxes
as possible by the Faster R-CNN model such that the feature
vectors extracted from the patch can be passed to the caption
generator to take effect.

· Attention Enhancement. CAPatch shall be weighted
more by the attention module such that its attack effects can
be strengthened. The image captioning system utilizes an
attention module to pre-process the feature vectors extracted
by the encoder before feeding them into the LSTM model
to generate sentences. The goal of the attention module is
to put more weights on feature vectors extracted from key
image regions, to generate sentences rich in semantics. To
strengthen the attack effects of CAPatch, we shall render the
attention module to put more weights on its feature vectors
no matter where it is placed.

¸ Caption Alteration. CAPatch shall be optimized with
a target caption for both attack goals. For CMA, this is nec-
essary to achieve a sentence-level attack. For KHA, this can
help suppress other words. To achieve it, we shall optimize
CAPatch based on the vulnerabilities of both the feature ex-
tractors and the caption generator.

¹ Robustness Improvement. To further make CAPatch
practical in the physical world, it shall be resistant to im-
age distortions commonly occurring in both the printing and
photographing processes. We shall consider those factors in
optimization and enhance the robustness of CAPatch.

5 Design

5.1 Overview
Based on the aforementioned idea, we design CAPatch with
four modules, as shown in Fig. 4. The input of the patch gen-
eration blocks is targeted caption and the output is a CAPatch
that can achieve both CMA and KHA. The ¶ Detection As-

surance module designs a detection loss considering both the
region proposal probabilities and the classification results, to
make Faster R-CNN based encoders propose as many boxes
as possible on any region that CAPatch appears. The · At-
tention Enhancement module first analyzes the elements
of the targeted caption, then selects keywords that need ex-
tra attention, and finally enhances the weights of CAPatch
related regions when generating those selected words. The
¸ Caption Alteration module exploits the vulnerabilities of
both the computer vision model and the LSTM model, and
designs a caption loss to make it output the targeted sentence.
The ¹ Robustness Improvement module improves the ro-
bustness of CAPatch in the physical world by addressing the
patch distortions caused by both non-ideal placements and
photographing. In the following subsections, we present the
details of each module respectively.

5.2 Detection Assurance
CAPatch appears in a form of an image patch. To make it
effective against the multi-modal image captioning system, we
first ensure its attack effect can be passed from the computer
vision side to the natural language processing side.

For image captioning systems with CNN based encoders,
such a transfer is feasible since CNN based encoders extract
features with a uniform grid of equally-sized image regions,
and pass all the extracted features to the decoder, as shown
in Fig. 5. For image captioning systems with Faster R-CNN
based encoders, however, they utilize a Faster R-CNN model
to detect regions with salient objects or backgrounds, and
only transfer feature vectors extracted from those detected
regions. As a result, for those systems, we shall try to ensure
that CAPatch is detected no matter where it is placed.

The Faster R-CNN based encoder extracts features in two
stages. In the first stage, a Region Proposal Network (RPN)
outputs several regions that are most likely to contain objects
using pre-defined reference anchors, with each region pro-
posed with a probability. Then, a regressor and a classifier
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Figure 5: Basic architecture of an image captioning sys-
tem, where CNN based encoders extract features with a
uniform grid of equally-sized regions while Faster R-CNN
based encoders extract features from proposed boxes.

output a bounding box and a classification probability for
each proposal region, respectively. Finally, feature vectors
from bounding boxes with classification probabilities higher
than a threshold are transferred to the decoder.

Different from prior work that deceives Faster R-CNN with
a clear target in both location and class, our goal is to render
Faster R-CNN to propose more valid boxes over the location
of CAPatch no matter where it is placed. To achieve it, we
consider the following three steps: (1) increasing the possi-
bility that the model proposes regions over the location of
CAPatch, (2) increasing the classification scores of the pro-
posed bounding boxes to exceed the predefined threshold thus
making them valid, and (3) increasing the matching degrees
of the valid bounding boxes and the location of CAPatch.

Region Proposal Score Improvement. In the first step,
we try to make Faster R-CNN propose as many regions as
possible over the location of CAPatch. To achieve it, we first
search for all the reference anchors whose centers are in the
region of CAPatch, and denote the searched anchor set as AAA.
Then, for each anchor a in AAA, we calculate the RPN probability
prpn of the region determined by a. Finally, we maximize the
sum of all the calculated RPN probabilities as the first part of
the detection loss:

Ldet1= ∑
a∈AAA
− log pa

rpn (1)

Location Matching Improvement. Each proposed region
is then detected as a bounding box with a classification score.
With those bounding boxes, we increase their matching de-
grees with CAPatch. In other words, we try to make those
bounding boxes have larger overlaps with CAPatch such that
a large amount of image features from CAPatch can be trans-
ferred to the decoder. To achieve it, we calculate the Intersec-
tion over Area (IoA) of each bounding box and CAPatch, and
maximize their sum as the second part of the detection loss:

Ldet2= ∑
box∈BBB

−IoA(box,boxpatch) (2)

where BBB is the set of bounding boxes, boxpatch is the location
of CAPatch, IoA(·) is the intersection area between box and
boxpatch over boxpatch’s area.

(a) CAPatch is contained by only
two boxes without the detection
loss.

(b) CAPatch is contained by four
boxes with detection loss.

Figure 6: The number of proposed boxes that contain
CAPatch is increased from two to four with the detection
loss.

Classification Score Improvement. A bounding box is
considered to be valid and the features can be passed to the
caption generator if its classification score is significant. To
make those boxes close to CAPatch valid, we need to max-
imize their classification scores. We first select the box out
of the patch according to IoA and then increase the scores of
their corresponding categories to avoid their disappearance in
further optimization.

BBB′′′ = {box|IoA(box,boxpatch)> δ},box ∈ BBB

Ldet3 = ∑
box∈BBB′′′

− log pb
cls

(3)

where BBB is the set of bounding boxes, BBB′′′ is the selected bound-
ing boxes, δ is the selection threshold, pb

cls is the classification
probability of the bounding box b. In practice, we set δ = 0.7.

The finally detection loss is consisted of the aforemen-
tioned three parts as follows:

Ldet = Ldet1 +λ1Ldet2 +λ2Ldet3 (4)

where λ1, λ2, are the weights of Ldet2 and Ldet3, respectively.
With the detection loss, we ensure that the encoder detects

CAPatch, as shown in Fig. 6. Then, the encoder extracts a set
of feature vectors from the input image. Each feature vector
vi is a D-dimensional vector, and we denote the feature vector
set as:

VVV = {v1,v2, . . . ,vm} ,vi ∈ RD (5)

where m is the number of feature vectors.

5.3 Attention Enhancement
The feature vectors V extracted from the input image are
then fed into the decoder for caption generation. The encoder,
i.e., the language model, is usually composed of an attention
module and a language LSTM. When generating each word of
the output caption, the attention module selects feature vectors
(i.e., image regions) that need special attention and then the
language LSTM translates those selected feature vectors into a



(a) Benign image (b) “A group of people walk-
ing down a street with umbrel-
las.”

(c) “A man is flying a kite in
the water.”

(d) “A bird is flying over a
body of water.”

(e) “A bird is flying over a
bird.”

Figure 7: Illustrations of the effects of the attention loss. (a) is benign image, (b) shows the caption and attention heatmap
of the benign image, and (c-e) show the captions and attention heatmaps with a patch targeted “A bird is flying over a body
of water” but enhanced with no attention loss, an appropriate attention loss, and an excessive attention loss receptively.

word. At each time step t (i.e., each word of the sentence), the
feature vectors under attention can be expressed as a weighted
sum of the exacted feature vector set VVV as follows:

v̂t=
m

∑
i=1

α(i,t)vi (6)

where α(i,t) is the weight of each feature vector vi. We denote
αααt = {α(1,t),α(2,t), ...,α(m,t)} as the weight vector, which can
be further expressed as:

αααt = softmax(et)

eeet = fatt (VVV ,ht−1)
(7)

where eeet is the unnormalized weight vector calculated by an
alignment model fatt(·) based on the input feature vector set
VVV and the hidden state of the last word ht−1.

To strengthen the attack effects of CAPatch, we try to ren-
der the attention module to put more weights on the feature
vectors extracted from the regions of CAPatch when gener-
ating captions. A natural question is, shall such an operation
be performed on each word of the caption or only one or
several keywords? To investigate, we analyze the elements of
a caption.

Sentence Element Analysis. We find that a caption can
be regarded as composed by two types of elements [15]: (1)
content words generated by the information from the image,
and (2) function words generated without much image in-
formation. Typical content words include (1) nouns such as
“cat”, “bog”, and “bus”, (2) verbs such as “fly”, “sit”, and
“stand”, (3) adjectives such as “large”, “green”, and “dirty” (4)
adverbs such as “highly” and “beautifully”, and (5) numerals
such as “one”, “two”, etc. Function words include preposi-
tions, pronouns, conjunctions, auxiliary verbs, and articles,
e.g., “in”, “out”, “I”, “and”, “of”, “are”, “the”, etc. When gen-
erating function words, the language LSTM utilizes more
semantic information of the previous word instead of the fea-
tures extracted from the image [29].

Attention Word Selection. Inspired by this observation,
we design to render the system attend to the feature vectors
extracted from the regions of CAPatch when generating con-
tent words rather than every word of the caption. The reason

for such a design is two-fold: (1) the attack efficiency can
be improved by freeing function words, and (2) the attack
success rate can be increased since too much attention will
cause the system to focus on a specific word and generate
captions such as “A bird is flying over a bird”, as shown in
Fig. 7.

Attention Region Selection. Then, we select the regions
(feature vectors) that the attention module shall attend to. As
shown in Fig. 5, the CNN based encoder extracts a feature
vector from each equal-sized grid region of the image, while
the Faster R-CNN based encoder extracts a feature vector
from each detected bounding box. In both cases, CAPatch
has the possibility to be contained by several regions but it’s
hard for them to overlap exactly. To ensure that the attention
module attends to CAPatch as much as possible while paying
little attention to other regions, we select regions that have
significant overlaps with CAPatch:

BBBatt = {box|IoA(box,boxpatch)> δ},box ∈ BBBreg (8)

where BBBatt is the set of selected regions, BBBreg is the set of
regions with feature vector, δ is the region selection threshold,
we set the same δ as Eq. 3.

Attention Loss. With the selected words and regions, we
design the attention loss Latt as follows:

Latt = ∑
t∈T

max{−
n

∑
i=1

α(i,t),−ε1} (9)

where T is the set of selected keywords, ε1 is the maximum
of the attention weight for each word. In practice, ε1 = 0.35.

5.4 Caption Alteration
The language LSTM then generates the final caption by out-
putting each word in sequence. At each time step t, the output
of the language LSTM is determined by the hidden state of
the last word ht−1, the embedding of the last word wt−1, and
the weighted feature vector v̂t as follows:

zzzttt = LST M(ht−1, v̂t ,wt−1)

pppttt = so f tmax(zzzttt)
(10)



where LST M (·) represents the LSTM cell, zzzttt is a set of unnor-
malized probabilities that indicate the possibility of each word
in the vocabulary list W appearing at the current position, and
the final output pppttt is the normalized version of zzzttt . Then, the
word with the maximal probability is usually selected as the
output word wt .

Joint Probability Estimation. To generate the target cap-
tion integrally, we first estimate the joint probability for the
system to generate it at present. Denote the target caption
as S = {w0, · · · ,wk}, where k is the number of words in the
target caption. Then, the joint probability of generating S can
be calculated as follows:

logP
(
S|I′
)
=

k

∑
t=2

logP
(
wt | I′,w1, . . . ,wt−1

)
(11)

where I′ is the input image attached with CAPatch. Our goal
is to enhance logP(S|I′) and ensure it attains the maximum
value among all possible captions.

C&W Loss Calculation. To achieve it, we employ the
commonly-used C&W loss [7] as the caption loss, which
utilizes the unnormalized probabilities zzzttt , i.e., logits, and has
been proved to be effective on various adversarial attack tasks:

Lcap =
k

∑
t=1

max{ max
i6=index(wt )

{zi
t}− zindex(wt )

t ,−ε2} (12)

where zt
i is logit of the ith word in the vocabulary list W ,

index(wt) is the index of the word wt in W , ε2 is a constant
value to avoid over-optimizing a specific word. In practice,
we set ε2 = 1.

5.5 Robustness Improvement
With the aforementioned detection loss, attention loss, and
caption loss, the generated CAPatch shall be able to fool the
system to output a target caption. To further make it robust
in the physical world, we then perform the robustness en-
hancement. The challenges of a robust CAPatch mainly lie
in two aspects: (1) the detailed texture of CAPatch can be
lost during both the printing and photographing processes
due to the limited resolution or non-ideal exposure, and (2)
the captured CAPatch can be distorted due to the unparallel
photographing.

Color Smoothing. For the first challenge, the optimized
CAPatch in the digital world shall be printed and then cap-
tured by the camera to be effective, where both processes can
introduce pixel errors due to the limited resolution and the
sampling noises. As a result, extreme differences between ad-
jacent pixels in the perturbation are unlikely to be accurately
captured by cameras [38]. To address it, we smoothen the
color of CAPatch by exploiting a Total Variation (TV) loss:

Ltv = ∑
i, j

√(
(pi, j− pi+1, j)

2 +(pi, j− pi, j+1)
2 (13)

where p denotes the patch, and pi, j is the pixel at (i, j).
The final loss of CAPatch is consisted of a detection loss,

an attention loss, a caption loss and a TV loss, as follows:

L = Lcap +αLdet +βLatt + γLtv (14)

where α,β,γ are the weights of those losses, respectively.
Expectation over Transformation. For the second chal-

lenge, since the captured image only stands for a certain snap-
shot of the real scenario, and will differ from the original
image when the perspective of shooting varies even if the
CAPatch in the view remains the same. Factors commonly
considered to affect photo shooting include lighting condi-
tions, shooting distances, and angles. To address it, we use
the Expectation over Transformation (EoT) [5], which aug-
ments the training of CAPatch with random transformations
to overcome various situations in the physical world.

To deal with the transformation of CAPatch, we augment
the patch with four dimensions, i.e., resize, rotation, bright-
ness, and contrast. We design the transformation as a pre-
processing of CAPatch, and perform four different transforma-
tions simultaneously with a uniform distribution to randomize
the degree of each transformation, as follows:

p̂ = argmin
p

Ex∼X ,t∼T,l∼L[L(A(p,x, l, t);S] (15)

where p̂ is the optimized CAPatch, X is the training dataset, L
is a distribution over locations in the image, T is a distribution
over transformations of the patch. The function A(·) refers to
adding the transformed patch to the image x at the location l.

The whole training process of CAPatch is shown in Algo-
rithm 1 in Appendix. A.

6 Evaluation

In this section, we evaluate the performance of CAPatch
against image captioning systems. We consider two sets of
evaluations in this paper: (1) simulation evaluation, where
digital images attached with CAPatch are fed into image cap-
tioning systems directly, and (2) real-world evaluation, where
the images with CAPatch are printed first and captured by
cameras. In summary, we highlight the key results as follows:

• In the simulation evaluation, CAPatch can achieve attack
success rates of up to 98.4% for CMA and 98.8% for
KHA. The average success rates are 80.1% for CMA
and 86.0% for KHA on three popular image captioning
models under 6 targeted captions.

• In the real-world evaluation, CAPatch can achieve con-
tinuous attacks with an overall attack success rate of
73.1% for CMA and 92.4% for KHA under different
cloth materials and various camera resolutions.

• CAPatch can achieve attacks across various locations
and scenes, and is robust to the image rotation, image
resizing, light condition change and camera resolutions.



Table 1: Overall Performance of CAPatch

Target Caption
Attack Success Rate

SAT SCST Up-Down
CMA KHA CMA KHA CMA KHA

Caption 1: A bird is flying over a body of water 87.8% 93.2% 90.2% 93.3% 72.5% 79.3%
Caption 2: A cat is sitting on a wooden bench 98.4% 98.8% 94.4% 97.0% 71.5% 80.0%

Caption 3: A black dog holding a frisbee in its mouth 95.9% 97.3% 87.8% 90.3% 87.1% 89.3%
Caption 4: A couple of elephants are standing in the glass 84.5% 86.6% 60.1% 97.9% 41.7% 64.9%

Caption 5: A fire hydrant sitting on the side of a street 93.4% 96.9% 82.0% 91.0% 52.4% 54.3%
Caption 6: A bathroom with a sink and a mirror 81.5% 77.4% 94.2% 96.7% 66.7% 63.8%

6.1 Setup
Image Captioning Models. We choose three represen-
tative image captioning models, i.e., Show-Attend-and-
Tell (SAT) [46], Self-critical Sequence Training: Att2in
(SCST) [37], and Bottom-up Top-down (Up-Down) [2] that
contain different encoders and decoders mentioned in Sec. 2.
Specifically, the encoder of SAT and SCST is ResNet-101
trained on ImageNet [10] while the encoder of Up-Down is
Faster R-CNN trained on the Visual Genome dataset [23]. The
decoder of all the three models is LSTM [19], and they are
all trained on the training set of Microsoft COCO 2014 (MS
COCO) [27], which is a commonly used benchmark database
for image captioning.

Datasets. We utilize the Karpathy [22] validation and test
datasets extracted from the MS COCO dataset, which is along
with other image captioning studies [8, 49]. The Karpathy
datasets contain 5,000 validation images and 5,000 test im-
ages respectively. Each image is with 5 human-annotated
captions and resized to 600 × 600 pixels as required by the
image captioning models. We utilize the validation dataset
for CAPatch training and the test dataset for the evaluation.

Target Captions and Words. In accord with the attack
scenario, we select 6 target sentences for CMA as shown in
Tab. 1, which describe irrelevant animals, indoor and outdoor
scenes respectively. For KHA, we select 11 words related to
humans as the target hidden words, including person, people,
man, woman, men, women, girl, boy, girls, boys and player.
For each tested image captioning model, we select images
that can output these words in the original test dataset as the
KHA test dataset (∼2,000 images).

Patch Training. We utilize the I-FGSM [25] method for
CAPatch optimization as it is friendly to handle losses in
different scales. To boost the effectiveness of I-FGSM, we
adopt the learning rate decay strategy, which is commonly
used in the training of neural networks. Empirically, we set
the initial learning rate to 0.016 and finally decay it to 0.001.

6.2 Simulation Evaluation
In this section, we evaluate the attack effectiveness, robust-
ness, and transferability of CAPatch against three image cap-
tioning models. We also conduct a comparison with related
works.

(a) “A horse is eating grass in a
field.” → “A bird is flying over a
body of water.”

(b) “A group of people sitting on a
bench and a man in a red jacket.”→

“A bird is flying over a body of water.”

Figure 8: Captions for images with CAPatch targeted
“A bird is flying over a body of water.”. The patches are
attached to the same images and locations as Fig. 3.

6.2.1 Attack Effectiveness

Overall Performance. To evaluate the overall performance
of CAPatch against image captioning systems, we first train
18 CAPatchs (150 × 150 pixels by default) for the 6 target
captions across the 3 image captioning models. Then, we
attach the generated patches to each image in the test dataset
and obtain the adversarial images. Finally, we feed those
images into the three target systems and obtain the overall
attack success rates with two attack goals as shown in Tab. 1.

For CMA, CAPatch can achieve an average attack suc-
cess rate of 88.9% against SAT, 84.8% against SCST, and
65.3% against Up-Down. For KHA, CAPatch can achieve
an average attack success rate of 90.5% against SAT, 94.4%
against SCST, and 71.9% against Up-Down. Thus, CAPatch
can achieve higher attack success rates on KHA than CMA.
Among the three image captioning systems, SAT and SCST
are more vulnerable to CAPatch attacks compared with Up-
Down. The reason is that SAT and SCST utilize the CNN
encoder while Up-Down utilizes the Faster R-CNN decoder.
The former has more chances to pass the adversarial features
embedded in the patches to the subsequent language models,
resulting in a higher attack success rate.

Impact of Patch Sizes. A patch of a larger size may in-
crease the attack success rate at the cost of a closer attack
distance. To investigate the impact of patch sizes, we generate
CAPatchs with various sizes ranging from 100 pixels to 200
pixels with a step of 20 pixels. Then, we feed the generated
CAPatchs into the three image captioning systems (target



Figure 9: Attack success rates v.s. patch sizes.

Caption 1 by default) and calculate the attack success rates as
shown in Fig. 9.

From the results, we find that the attack success rates in-
crease with the patch size for all three models. With a patch
size of 100 × 100 pixels, CMA can achieve average attack
success rates of 25.4%,50.9%, and 16.2% against SAT, SCST,
and Up-Down, and KHA can achieve average attack success
rates of 54.6%, 76.9%, and 26.5%, respectively. When the
patch size approaches 200 × 200 pixels, the attack success
rates increase to 98.8%,99.0%, and 89.1% for CMA, and
99.0%, 99.5%, and 93.4% for KHA. The reason for the better
performance of a large patch is that more adversarial features
can be extracted to generate the targeted captions.

Impact of Locations. CAPatch is designed to work with
various locations. To validate it, we evaluate whether it is
effective regardless of its location in the image. The results
show that CAPatch can work in various locations with slight
performance differences. More details can be seen in Ap-
pendix. B.

Impact of Scenes. Another factor that may affect the at-
tack effectiveness is the background scene where CAPatch
is attached to. In particular, we investigate whether the size
and number of objects in the scene will impact the attack
performance of CMA and whether the size of people will
impact the attack performance of KHA. The results show that
CAPatch can work in various scenes with some performance
differences. More details can be seen in Appendix. C.

6.2.2 Attack Robustness

In Sec. 5.5, we propose a robustness enhancement method
to make CAPatchs practical in the physical world. In this
section, we evaluate the attack robustness of CAPatch in
terms of its resistance to image rotation and resize. To inves-

Table 2: Comparison with Related Works.

Method
Attack Success Rate

SAT SCST UP-Down
CMA KHA CMA KHA CMA KHA

Show and Fool [8] 0.0% 23.1% 0.0% 5.4% 0.0% 11.7%
SSVM [49] 9.7% 44.5% 29.9% 48.1% 22.5% 28.2%

Random Noise 0.0% 2.8% 0.0% 3.1% 0.0% 4.3%
CAPatch 87.8% 93.2% 90.2% 93.3% 72.5% 79.3%
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Figure 10: Attack success rates v.s. rotation angles and
distances.

tigate the impact of image rotation, we rotate the generated
CAPatchs with an angle ranging from −10◦ to 10◦ with a
step of 5◦, before attaching them to random positions of 1000
randomly-selected test images. To investigate the impact of
distances, we resized the original patch (150× 150 pixels)
to 120×120,140×140,160×160,180×180 pixels respec-
tively before attaching them to the test images. Different from
the experiments in Sec. 6.2.1, the patch size changes here
is to emulate different distances between CAPatch and the
camera. Therefore, in this set of experiments, we investigate
the attack performance of CAPatch under certain shooting
distance variations and angle errors that commonly happen in
the real world.

The results shown in Fig. 10 demonstrate that the attack
success rate increases with the patch size but decreases with
the rotation angle for both CMA and KHA. A trained patch
with a default 150-pixel width can still achieve attack suc-
cess rates of over 54% for CMA and over 81% for KHA after
resized into 120-pixel, i.e., suffered from around 36% pix-
els loss. The attack success rate can be improved when the
patch is magnified but becomes saturated when the patch size
reaches 160-pixel width. For image rotation, we find that a
CAPatch larger than 140×140 pixels can achieve attack suc-
cess rates of over 80% for both CMA and KHA when rotated
by 10◦. Another finding is that large patches are more resis-
tant to image rotation. For instance, a patch of 120-pixel width
suffers from a success rate decrease of up to 12% for CMA
while a 180-pixel width patch only suffers from a decrease of
up to 4% when both rotated by 10◦. We assume it is because
large patches contain more adversarial information and thus
can be more robust to the distortions.

6.2.3 Comparison with Related Works

We also compare CAPatch with 2 most-related methods,
which are (1) Show-and-fool [8], and (2) SSVM [48]. Since
these two methods are digital adversarial example attacks
designed for a single image, we use their optimization meth-
ods and train them with the same training data as CAPatch.
Besides, we employ (3) random noise as the baseline of the
comparison. From the results shown in Tab. 2, we can find that
CAPatch shows higher attack success rates for both CMA and
KHA. Compared with Show-and-fool and SSVM, CAPatch
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Figure 11: Transferability of CAPatch across various models.

achieves better performance since it employs the proposed de-
tection assurance and attention enhancement methods. Com-
pared with the random noises, CAPatch is more effective since
it is specifically optimized for target goals by employing the
caption loss.

6.2.4 Attack Transferability

In addition to the white-box attacks analyzed above, we in-
vestigate the black-box attack capability of CAPatch. Specifi-
cally, we conduct transfer-based black-box attacks by using a
CAPatch trained based on a white-box model to attack another
black-box model. To achieve it, we test the transferability of
CAPatch across 8 models with different encoders, decoders
and training methods as shown in Tab. 6 in Appendix. D,
where model A, model D and model E correspond to SAT,
SCST and Up-Down. We select caption 3 as our target cap-
tion and set the patch size to 150×150 pixels. We report the
transferability between models with the same encoder since
features are difficult to transfer between different encoders.

From the results shown in Fig. 11, we find that for KHA,
CAPatch can achieve transfer-based black-box attacks with an
average success rate of 70.1% and shows better transferability
between models with the CNN encoder. For CMA, CAPatch
can achieve transfer-based black-box attacks with an average
success rate of 31.3% and shows better transferability between
models with the Faster R-CNN encoder. Thus, CAPatch can
achieve attacks even without any prior information about the
victim image captioning system. In addition, the adversary
can increase the attack success rate by using CAPatch trained
on various models at the same time.

6.3 Real-world Evaluation
In this section, we evaluate the attack effectiveness and ro-
bustness of CAPatch in the real world.

6.3.1 Experimental Setup

Physical Patch. We generate an adversarial patch with a target
caption of “A bird is flying over a body of water”, then print
it on a paper with a size of 30cm × 30cm. The physical patch

(a) Man A (b) Man B (c) Man C (d) Man D

Figure 12: Four volunteers wearing different clothes at-
tached with patches.

is then attached to the body of four volunteers with different
clothes including (1) a black and white sweater, (2) a blue
striped shirt, (3) a green hoody, and (4) a dark blue jacket.
The four volunteers and their clothes are shown in Fig. 12.
During the experiments, we ask the volunteers to raise and lay
down their arms to investigate the impact of slight motions. In
the default distance, CAPatch occupied 5% of the image. Our
evaluation has got the approval of the Institutional Review
Board (IRB).

Surveillance Camera. We use an Apple iPhone 12 smart-
phone as the surveillance camera. During the attacks, We
record videos at 30 FPS with different resolutions ranging
from 360P, 480P, 720P, 1080P, and 4K for each volunteer.
Each video lasts for 5 seconds, i.e., 150 frames. The default
ambient light condition is 300 lux.

Image Captioning Model. We employ SCST as the victim
model and feed the recorded videos into it to evaluate the
performance of CAPatch. The real-world demos can be found
at https://github.com/USSLab/CAPatch.

Table 3: Real-world performance of CAPatch.

Volunteer
Meth-
ouds

Attack Success Rate
360P 480P 720P 1080P 4K

Man A in the black
and white sweater

CMA 16.0% 72.7% 90.0% 84.7% 94.7%
KHA 100.0% 100.0% 100.0% 100.0% 100.0%

Man B in the
blue striped shirt

CMA 35.3% 92.7% 88.7% 93.3% 92.7%
KHA 100.0% 100.0% 100.0% 100.0% 100.0%

Man C in the green
hoody with letters

CMA 13.3% 62.7% 92.7% 100% 94.0%
KHA 98.0% 98.7% 100.0% 100.0% 100.0%

Man D in the
dark blue jacket

CMA 2.0% 47.3% 89.3% 100% 100.0%
KHA 9.3% 47.3% 95.3% 100.0% 100.0%



Figure 13: Attack success rates with different cameras.

6.3.2 Attack Effectiveness

We first evaluate the overall performance of CAPatch by inves-
tigating its attack success rates for both CMA and KHA under
different cloth materials and various camera resolutions.

The results shown in Tab. 3 demonstrate that with a default
camera resolution of 1080P, a physically printed patch can
achieve continuous attacks with an average success rate of
94.5% for CMA and 100% for KHA. In addition, CAPatch
does not show significant performance variations when at-
tached to different cloth materials, which provides encourag-
ing signs of practical uses.

For video resolutions, we find that the average attack suc-
cess rate has a correlation with the camera resolution. With
the 4K resolution, the average attack success rate is 95.4% for
CMA, slightly higher than that of 1080P and is maintained
at 100% for KHA. Low camera resolutions, e.g., 360P, de-
crease the performance of CAPatch since many details of
the patch are lost during the photographing. Nevertheless,
since surveillance cameras usually employ high resolutions
(≥ 720P), CAPatch can achieve an average attack success
rate of over 90.2% for CMA and 98.8% for KHA in practice.

6.3.3 Attack Robustness

We then evaluate the attack robustness of CAPatch by investi-
gating the impacts of light conditions, cameras, target models,
and attack distances.

Impact of Light Conditions. For various scenes, the am-
bient light condition may have variations. To investigate its
impacts, we conduct experiments in five scenes with different
light conditions including two hallway scenes, two indoor
scenes, and one outdoor scene. In each scene, we record a
5-second 1080p video. The results are shown in Tab. 4. For
KHA, we find that CAPatch achieves attack success rates of

Table 4: Attack success rates under various light condi-
tions.

Scene Light Condition
Attack Success Rate
CMA KHA

Hallway 1 2 lux 78.7% 100.0%
Hallway 2 130 lux 94.0% 95.3%
Indoor 1 300 lux 93.3% 100.0%
Indoor 2 400 lux 95.3% 100.0%

Outdoor 1 1100 lux 98.7% 98.7%

Figure 14: Attack success rates with different distances.

over 95% in all light conditions. For CMA, CAPatch achieves
an attack success rate ≥ 93% with an ambient light condition
≥ 130 lux. However, in the scenes with bad light conditions,
e.g., Hallway 1 (2 lux), the performance of CAPatch decreases
since more noises are introduced during the photographing.

Impact of Cameras. To investigate the impact of cameras,
in addition to the default recording device iPhone12, we con-
duct experiments with 2 representative surveillance cameras,
which are (1) EZVIZ C6C and (2) Lenovo C3. From the re-
sults shown in Fig. 13, we can find that CAPatch can work
with different cameras. Specifically, for CMA, CAPatch can
achieve an average attack success rate of 94.5% with iPhone
12, 96.3% with EZVIZ C6C, and 98.9% with Lenovo C3. For
KHA, CAPatch can achieve an average attack success rate
of 100.0% with iPhone 12, 100.0% with EZVIZ C6C, and
100.0% with Lenovo C3.

Impact of Models. To investigate the impact of models,
we conducted experiments with different models as shown
in Tab. 5 demonstrate that CAPatch can successfully attack
all three tested models. Specifically, for CMA, CAPatch can
achieve an average attack success rate of 94.0% against SAT,
94.5% against SCST, and 91.8% against Up-Down. For KHA,
CAPatch can achieve an average attack success rate of 100.0%
against SAT, 100.0% against SCST, and 100.0% against Up-
Down.

Impact of Distances. Another factor is the attack distance,
i.e., the distance of the volunteer to the camera. To investigate
it, we ask the volunteer to move from 3.2 m to 0.9 m toward
the camera. During moving, the patch size varies from 2.5% of
the image to 25.0% of the image We record a 12-second 1080p
video and use a slide window of 20 frames to calculate the
average attack success rate of each distance. From the results
shown in Fig. 14, we find that CAPatch can achieve successful
attacks continuously with gradually-changing patch sizes. For
CMA, CAPatch can achieve attack success rates over 80%
when the volunteer is 0.9 m (CAPatch is 25.0% of the image)
to 2.9 m (CAPatch is 2.9% of the image) from the camera.

Table 5: Attack success rates with different models.

Volunteer
Attack Success Rate

SAT SCST UP-Down
CMA KHA CMA KHA CMA KHA

Man A 100.0% 100.0% 84.7% 100.0% 92.0% 100.0%
Man B 92.0% 100.0% 93.3% 100.0% 94.0% 100.0%
Man C 84.7% 100.0% 100.0% 100.0% 89.3% 100.0%
Man D 99.3% 100.0% 100.0% 100.0% 92.0% 100.0%



Figure 15: CMA SRs (blue bars), KHA SRs (orange bars) and CIDEr in benign scenarios (green bars) with different
defenses. The x-axis represents different settings of defenses.

For KHA, CAPatch can achieve attack success rates over 80%
when the volunteer is 0.9 m (CAPatch is 25.0% of the image)
to 3.2 m (CAPatch is 2.5% of the image) from the camera.
With a longer focal length, e.g., 78 mm, the attack distance
can be increased to 8.7 m for CMA and 9.6 m for KHA.

7 DISCUSSION

7.1 Countermeasures
CAPatch exploit vulnerabilities from both computer vision
and natural language processing models to mislead the output
caption of image captioning systems. To the best of our knowl-
edge, there are no defense mechanisms against adversarial
examples for image captioning models yet. However, much
work has proposed defense mechanisms against adversarial
examples for image classification models and object detection
models, which are encoders of image captioning models. We
envision some of the aforementioned defense methods have
the potential to be transferred to image captioning models,
including: (1) modifying the inputs images such as JPEG
comprehension [12], median blurring [47] and auto-encoder
reformation [30]. Those mechanisms can disturb the pertur-
bations of adversarial examples and thus may decrease the
effect of CAPatch. (2) improving models by adversarial train-
ing [42] or gradients obfuscation [3], which may increase the
difficulty of CAPatch attacks. (3) reducing the propagation of
adversarial effects by modifying the model architecture, such
as PatchGuard [44] and PatchCleaner [45].

To understand the effectiveness of existing defenses on our
attack, we test CAPatch against 5 popular defense methods,
including (1) JPEG compression, (2) Bit-depth, (3) Median
Blur, (4) PatchGuard, and (5) PatchCleaner. The first three
methods transform the input images and can be directly used
without retraining. The last two methods change the architec-
ture of the model according to the characteristics of adversar-
ial patches. We use the ASR to evaluate the effectiveness of
the defense and use the Consensus-based Image Description
Evaluation (CIDEr) [43] to evaluate its impact on the perfor-
mance of the image captioning model. The result is shown
in Fig. 15. For the first three input-transformed defenses, we
find that with a large defense strength, the tested methods can
defend our attacks to some extent but impair the performance
of the image captioning model. For PatchGuard and Patch-
Cleaner, both the benign performance and attack success rate

decrease slightly. The results indicate that existing counter-
measures employed on computer vision systems cannot easily
defeat our attack. We analyze why these defense methods
cannot work in Appendix. E and will explore new defense
methods considering the characteristics of both the encoder
and decoder of image captioning systems in the future.

8 Countermeasures

8.1 Limitation
CAPatch attacks have the following limitations at present.
First, we require the white-box access of image captioning
models to generate CAPatch at present, which may not always
be available in practice. Therefore, one future direction is to
improve the transferability of CAPatch. Second, although we
have shown CAPatch’s attack capability against three image
captioning models, including two types of encoders, two types
of decoders, and two types of training strategies, there remain
other models to be investigated, e.g., Yang et al. [50] utilize a
graph-based encoder and Li et al. [26] utilize a transformer-
based decoder. The attack effectiveness of CAPatch against
those models shall be further studied and improved. Third,
several parameters of the CAPatch optimization process are
manually set yet and may not be optimal. We plan to employ
parameter optimization methods such as Bayesian Optimiza-
tion [35] to find better parameter combinations in the future.

9 Conclusion

In this paper, we investigate the possibility of deceiving multi-
modal image captioning system with adversarial patches. We
find that the vulnerability of the computer vision model to
adversarial patches can be passed to the natural language
processing side of the image captioning system, inducing
mistakes in the generated captions. Based on this finding,
we propose CAPatch, a physical adversarial patch aiming
at targeted attacks against image captioning systems by ex-
ploiting vulnerabilities from both the computer vision and
natural language processing models. Evaluations with three
commonly-used image captioning systems (Show-and-Tell,
Self-critical Sequence Training: Att2in, and Bottom-up Top-
down) demonstrate the effectiveness of CAPatch in both the
digital and physical worlds. This work serves as the first at-
tempt on the adversarial patch against multi-modal artificial



intelligent systems. Further directions include investigating
other multi-modal systems vulnerable to adversarial attacks.
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A Training Algorithm of CAPatch

Algorithm 1 CAPatch Generation

Input: • X : Training set of images

• S = {w0,w1, · · · ,wk}: Target output sentence

• model: Victim image captioning model

• α,β,γ: Hyper-parameters
Output: p: CAPatch

1: for epoch in epochs do
2: for img x in X do
3: Ldet = 0, Latt = 0, Lcap = 0, Ltv = TV (p)
4: p′← randomly-transform(p)
5: x′← randomly-A(p′)
6: feature_set V , box_set B = model.encoder (x′)
7: if model.encoder = Faster R-CNN then
8: Ldet = compute-detection-loss(VVV ,BBB)
9: end if

10: for time step t in N do
11: weight αααt = so f tmax( fatt (VVV ,ht−1))
12: Latt+= compute-attention-loss(αααt )
13: zzzttt = LSTM(αααt ,VVV ,S)
14: Lcap+= compute-caption-loss(zzzttt ,S)
15: end for
16: L = Lcap +αLdet +βLatt + γLtv
17: p = Optimizer(p, ∇pL)
18: end for
19: end for
20: return p;

B Impact of Locations.

To validate it, we divide an image into 6×6 blocks and test
CAPatch when its center falls in each block. For each block,
we randomly select 1,000 images from the test dataset and
attach the generated patches of various sizes (ranging from
120 pixels to 180 pixels) to the corresponding location to con-
duct attacks. The attack success rates of CAPatchs attached
to different locations are shown in Fig. 16 in the form of a
heatmap.

From the results, we find that for CAPatchs of various sizes,
the attack success rates of KHA are higher than those of CMA
but show similar distributions across different locations. For
SAT and SCST, CAPatch placed on various locations achieve
similar attack success rates. It is because they utilize a CNN
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Figure 16: Attack success rates v.s. patch locations. The horizontal rows indicate different image captioning models, the
vertical rows indicate different patch sizes, and the colors indicate the attack success rates.

based encoder, which divides images into uniform girds to
extract features. For Up-Down, however, CAPatchs placed
on the centers of the images achieve higher attack success
rates compared with that placed on the edges. The reason
lies in two aspects: (1) Up-Down utilizes the Faster R-CNN
based encoder, which proposes regions for feature extraction
based on anchors. Compared with the image center, the edges
contain fewer anchors, rendering the patch more difficult to
be detected and thus be less effective. (2) The main objects
appearing in the original images are more likely to locate at
the image centers. CAPatchs placed on the image centers can
block them and thus reduce their impacts.

C Impact of Scenes.

To achieve it, we first generate CAPatchs of two sizes, i.e., 120
× 120 pixels and 150 × 150 pixels, then divide an image into
10 × 10 blocks, and finally attach the generated CAPatchs to
each block of each image in the test dataset to conduct attacks.
We obtain the ground truths of the size of the largest object,
the total number of objects, and the size of the largest person
in the scenes from the instance annotation of the MS COCO
dataset, based on which we plot the attack success rates as
shown in Fig. 17.

Fig. 17(a) shows the attack success rates of CMA against
the proportion of the largest object in the original image. For
SAT and SCST, the attack success rate decreases as the largest
object proportion increases, and a larger patch is more likely
to resist impacts from large objects in the original images.
When against SCST, a CAPatch of 120 × 120 pixels can
achieve attack success rates of 87.5% and 42.9% when the
largest object proportion is within [0,0.1] and [0.9,1] while a
CAPatch of 150× 150 pixels can achieve attack success rates
of 95.0% and 76.9% when the largest object proportion is
within [0,0.1] and [0.9,1]. Similar performances are observed

when against SAT. For Up-Down, however, the attack success
rate changes slightly with the increase of the largest object
proportion. The performance variations between the three
models come from their encoders. SAT and SCST utilize CNN
based encoders that extract features from uniform grids. As a
result, objects with large sizes are extracted with more features
and thus have higher impacts on the captioning results. By
contrast, Up-Down utilizes the Faster R-CNN based encoder
that extracts an equal-sized feature vector from each of the
proposed boxes and thus is less sensitive to the objects in the
background scenes. Nevertheless, for any system, increasing
the size of CAPatch is likely to enhance its resistance to the
impacts from large objects in the original images.

Fig. 17(b) shows the attack success rates of CMA against
the number of objects in the original images. From the results,
we find that Up-Down suffers more impacts from the num-
ber of objects compared with SAT and SCST. For Up-Down,
a CAPatch of 120 × 120 pixels can achieve attack success
rates of 53.8% and 24.8% when the number of objects is
within [0,3] and [30,+∞) respectively, while a CAPatch of
150 × 150 pixels can achieve attack success rates of 69.5%
and 37.1% when the number of objects is within [0,3] and
[30,+∞) respectively. The performance variations are also
caused by the encoder. The Faster R-CNN encoder of Up-
Down extracts more feature vectors when more objects appear
in the image, which makes it difficult for CAPatch to have a
high attention weight and thus impairs the attack effective-
ness. Similarly, increasing the size of CAPatch can reduce the
impact of object numbers for all three systems.

Fig. 17(c) shows the attack success rates of KHA against
the proportion of the largest person in the original image,
which decrease as the largest person proportion increases for
all three models. For SAT and SCST, the results are similar to
those of CMA against the proportion of the largest object in
Fig. 17(a). For Up-Down, however, the results are different.



(a) CMA success rates v.s. the size of the largest object in the back-
ground.

(b) CMA success rates v.s. the number of objects in the background.

(c) KHA success rates v.s. the size of the largest person in the back-
ground.

Figure 17: Attack success rates v.s. background scenes.

The possible reason is that the Faster R-CNN encoder of
Up-Down is trained on the Visual Genome dataset, which
includes 1600 object classes and has many classes related to
person such as hand, hair, glasses, dress, etc. A person with a
larger proportion may be detected with more characteristics
and generate more bounding boxes, increasing the difficulty
of hiding.

D Models of Transferability Experiment

Table 6: Eight models used in transferability evaluation.

ID Encoder Decoder Training Method

A ResNet-101 SAT-decoder Cross-Entropy
B ResNet-101 SAT-decoder Self-critical Sequence
C ResNet-101 att2in Cross-Entropy
D ResNet-101 att2in Self-critical Sequence
E Faster R-CNN Top Down Cross-Entropy
F Faster R-CNN Top Down Self-critical Sequence
G Faster R-CNN att2in Cross-Entropy
H Faster R-CNN att2in Self-critical Sequence

E Countermeasures

For the first three methods, i.e., JPEG Compression, Bit-depth
and Media Blur, they cannot work since we design and employ
the robustness improvement module during the generation
of CAPatch. Specifically, we smooth the colors of CAPatch
by using tv loss and enhance the effectiveness of CAPatch in
different size, brightness and contrast by using Expectation
over Transformation (EoT). Those robustness improvement
methods render the first three defense methods ineffective.

For PatchGuard, it cannot work due to the different ar-
chitecture between image classification models and image
captioning models. PatchGuard is designed for image clas-
sification models, which uses a CNN with small receptive
fields to decrease the effectiveness of adversarial patches and
proposes a robust masking algorithm for secure feature aggre-
gation. However, image captioning models use an LSTM to
decode the extracted features instead of a simple fully con-
nected layer and focus on a smaller area when outputting
single word. These reasons lead to the reduced effectiveness
of PatchGuard when defending CAPatch attacks.

For PatchCleaner, it cannot work because it removes the
effects of adversarial patches based on the outputs’ consis-
tency. PatchCleaner is designed for the image classification
system, which applies masks of various locations to the input
image and evaluates the model prediction on every masked
image. Different from image classification, the outputs of
the image captioning system change slightly under different
masks, which leads to inconsistent output and then changes
the judgment of PatchCleaner. For a clean image, all one-mask
predictions usually reach a unanimous agreement while for
an adversarial image, a disagreement will occur between the
benign prediction and malicious predictions since at least one
mask can remove the patch and recover the benign prediction.
Then, PatchCleanser performs a second round of masking and
regards the consistent output as the correct label. However,
for the image captioning model, its output changes with the
position of the second-round mask, making it hard to get a
uniform result. In this case, PatchCleanser will output the
majority prediction of the first-round masking, leading to a
failure of defense.
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