UVScan: Detecting Third-Party Component
Usage Violations in loT Firmware

Binbin Zhao'2, Shouling Ji¢, Xuhong Zhang?, Yuan Tian3,
Qinying Wang?, Yuwen Pu?, Chenyang Lyu?, Raheem Beyah'

'Georgia Tech 2Zhejiang University SUCLA

Seqgn mix¥ UCLA

Background

* Third-party components are widely used in loT firmware to
shorten the development cycle.

O ?SQLite I

BU SYB OX & LIBPCAP

openssL CUrL://

Cryptography and SSL/TLS Toolkit

Background

rious
~n cause se

. TP™ nc

~~A~Noa QneCIflCatlonS Of

+ Violating the urg~

\e .
E-2020-1 7533 Detai

ences

consequ

Description

ugh1.10.0 and versjon 2.0.0do not Properly check the return valye of some policy enforcement funct:ons
gan authenticated user to perform Certain admmistrat:ve Operations Spec;frcally the retyrn values of the CanFlush' apq
canPerformSystemActlons’ Security functlons are not checked In'so
HON\E 7 Permissions t, perform the followmg actions: ﬂush:ng atable, shyt
BLOG er System-wide Acc,, ' i
U

TPC Usage Violation

 Deprecated API violation: A set of APIs will be deprecated or
abandoned for various reasons, e.g., security issues.

* Return value violation: Return values usually need to be
checked after the API call.

 Argument violation: The arguments that are passed into
APIls often have strict constraints.

« Causality violation: Many APIs may have a strict causal
relationship, e.g., lock/unlock, fopen/fclose, and malloc/free.

Building a Practical System from Scratch

@ Two Challenges:

1. How to fill the gap between the high-level
specifications from TPC documents, and
the low-level implementations in the loT

firmware?

Previous works only perform well on well-formatted TPC
documents and are hard to handle unusual or ambiquous
API specifications.

Building a Practical System from Scratch

@ Two Challenges:

2. How to perform the TPC usage violation
analysis on closed-source binaries”?

Previous works only focus on source-level APl misuse
detection.

UVScan: The first automated and practical system to detect TPC usage

violations in binary loT firmware.

5 Usage Violation Detecm

4 . 1. API Specification Extraction /[% 2. Programming Expression Generatlon
=
TPC Documem; —>| |"'=I" Document MRC driven| | gl Semantic-based R =p E Exirestion bare
H_J |, Distillation Extraction Parsing Matching Bl ZExpressionFrsing

\ 4 A 4 -

Rule-dnven Analysis
/ O 3. Firmware Processing \ / {é%‘ 4. Rule-driven Analysis Engine \ \
=> ”

n Vulnerablllty Report }
& %

8 .:;;::,z::;} [.,,e,,:,'ffat.J - [& E,.'Z';‘:zngJ [.mpfe':.?:ﬁf;uo
oy
Framework of UVScan

Component 1: APl Specification Extraction

« Goal: Extract the API specifications from corresponding TPC
documents.

K 1. API Specification Extraction \

- s N ~
%TPC Documents :> [_!._E_F Document [:> =®| MRC-driven

L=/, Distillation (E@] Extraction

—

Step 1-1: Document Distillation

« Goal: Filter out irrelevant API descriptions and dig for relevant API
descriptions.

* Previous research indicates that relevant AP| descriptions usually
have a strong sentiment!!l.

* This observation does not apply to all scenarios when analyzing
the TPC document and will introduce false positives.

 The sentence “additionally it indicates that the session ticket is in a renewal period and
should be replaced” has a strong sentiment word “should” but it is not a relevant API
description.

7

MLv et al., “Automatic Assumption Discovery and Verification Derivation from Library Document for APl Misuse
Detection”, CCS 2021. 9

Step 1-1: Document Distillation

n b,
Our Approach: | z
Multi-head A& o 16 & & !
Self-fttention ICIDmOmO OmOm r_f_l
ayer T~

Leverage WL-Coref, an off-the-shelf
coreference resolution model, to resolve

the coreferences in the TPC document. BT \%3 ______________________
] _ . Embedding | \ N : | e | \ L | L
Adopt BILSTM model with the multi-head Layer W w,

self-attention mechanism to capture the
sentiment of a sentence.

3

{ 1
=> | Word-level coreference resolution |

Sentiment-based Document Distillation Model

10

Step 1-2: MRC-driven Extraction

« Goal: Extract precise API specifications from relevant API descriptions.

* Our Approach: Adopt the Machine Reading Comprehension

(MRC) system with well-designed question sets.
Question Sets

Category | Question

“SQLITE_OK be returned by sqlite3_snapshot_recover if Return What are return values supposed to be?
. - Value In which condition does the function have a return value?
successful, or an SQLite error code otherwise
What operation is required if the return value is ReturnValue;?

1 1 N . ., . ‘7
@ Causality What operation is required if Condition;"

Which function should be called before the API?
Which function should be called after the API?

“SQLite error code be returned by sqlite3_snapshot_recover :
. P - - What is the value of the N-th argument supposed to be before the API?
/ f f ailed. Areument | Vhat is the value of the N-th argument supposed to be after the API?
gl How to check the N-th argument before the API?

How to check the N-th argument after the API?

11

Step 1-2: MRC-driven Extraction

« Goal: Extract prec

 Our Approach: A«
(MRC) system witl

“SQLITE_OK be returned by sqlite3_
successful, or an SQLite error code ¢

“SQlite error code be returned by s
If failed.”

API: int pcap_activate(pcap_t *p);

Distilled Document: pcap_activate() returns 0 on success without warnings, a non-zero
positive value on success with warnings, and a negative value on error. A non-zero return
value indicates what warning or error condition occurred. A program should check for
positive, negative, and zero return codes, and treat all positive return codes as warnings
and all negative return codes as errors. If pcap_activate() fails, the pcap t * is not closed
and freed; the pcap t * should be closed using pcap_close().

Question 1: What are return values supposed to be?

Answer: 0 on success without warnings; a non-zero positive value on success with warnings; a negative
value on error

Question 2: In which condition does pcap_activate have a return value?
Answer: success without warnings; success with warnings; error

Question 3: What operation is required if the return value is 0?
Answer: No answer

Question 4: What operation is required if the return value is a non-zero positive value?
Answer: No answer

Question 5: What operation is required if the return value is a negative value?
Answer: the pcap_t * should be closed using pcap_close()

Question 6: What operation is required if successful without warnings?
Answer: No answer

Question 7: What operation is required if successful with warnings?
Answer: No answer

Question 8: What operation is required if there is an error?
Answer: the pcap_t * should be closed using pcap_close()

Question 9: Which function should be called before pcap_activate?
Answer: No answer

Question 10: Which function should be called after pcap_activate?
Answer: No answer

Question 11: What is the value of the first argument pcap_t *p supposed to be before pcap_activate?
Answer: No answer

Question 12: What is the value of the first argument pcap_t *p supposed to be after pcap_activate?
Answer: No answer

Question 13: How to check the first argument pcap_t *p before pcap_activate?
Answer: No answer

Question 14: How to check the first argument pcap_t *p after pcap_activate?
Answer: the pcap_t * should be closed using pcap_close()

| relevant API| descriptions.

Comprehension
ets.

Question Sets

Question

What are return values supposed to be?
hich condition does the function have a return value?

peration is required if the return value is ReturnValue;?
What operation is required if Condition;?

Which function should be called before the API?

Which function should be called after the API?

value of the N-th argument supposed to be before the API?
e value of the N-th argument supposed to be after the API?
How to check the N-th argument before the API?

How to check the N-th argument after the API?

12

Component 2: Programming Expression Generation

« Goal: Transfer natural language-based API specifications into
machine-readable representations.

 Our Approach:

° Use POS tagglng to annOtate eaCh Word The X509 object must be explicitly freed using X509 free

in an API specification. T \\ / B
« Create a dependency tree by combining T
words with a close relationship. l B 1
« Map common phrases into programming . X509 object X509 free
expressions, Operation(argument1, g

Call(X509_free, X509 object)

argument2, ...).

An Example of Programming Expression Generation

13

Component 3: Rule-driven Analysis Engine

Goal: Leverage the generated programming expressions for usage
violation detection.

Our Approach: Encode the binary into Datalog facts and perform the
usage violation check on the generated facts.

C @%‘ 4. Rul

Binary
Enconding

~
—

/

N\

e-driven Analysis Engine

~

4

Checker
Implementation

Ez@.@

-

\

~

Step 3-1: Binary Encoding

* Goal: Encode the binary into Datalog facts.

 Our Approach: Leverage Ddisasm to encode the binary.

(address) A
(size of the instruction) Sinstr
(size of the data element) Sy
(register) R
(segment register) R,
(base register) Rpase
(index register) Rig.
(instruction code) /

.decl function_r@_usage_blez0@(EA:address)
.output function_r@_usage_blez0

(unique identifier of the i-th operand) O; function_r@_usage_blez@(EA:address) :
(immediate) IM _9_ — . L
(multiplier) M instruction(EA,_,_,"BLEZ",_,_,_,_,_,_),
(displacement) D instruction_get_op (EA,_, Op),
Predicate ::= instruction(A, Sinstr, P, I, 01, 03, 03, 0y) op_regdirect_contains_reg(Op,"R0").
invalid(A)
op_regdirect(O;, R)
op_immediate(O;, IM) An example Of A RU Ie th at CheCkS the Retu n Val ue

Op_i7l(li7'€(ft(0i, Rm:ya lesz:7 RidJ’e A”- Dv Sd::)

Initial Datalog Facts Used by Ddisasm

15

Step 3-2: Checker Implementation

* Goal: Perform the usage violation check on the generated facts.

* Our Approach: Design four checkers based on the features of
different TPC usage violations

 Deprecated API violation checker: Maintain a list of deprecated APIs for each TPC.

 Return value violation checker: Focus on the operation of the registers that hold the
return value of the function, e.g., the RO register in ARM32.

 Argument violation checker: Focus on the operation of the registers that hold the
arguments of the function, e.g., the RO-R3 register in ARM32.

* Causality violation checker: Focus on the functions that are called before or after the
API, and the operations under certain return values.

16

Evaluation

* Goal: Evaluate the performance of key components in UVScan
and the overall performance of UVScan.

« Evaluate UVScan on four popular TPCs for concept validation.

OpenSSL

Cryptography and SSL/TLS Toolkit

?SQLite [

& LiBPCAP

o) Powered by
< LibxleJ

17

Evaluation: APl Description Extraction Accuracy

» APl description dataset (Dpesc 15): Train and evaluate our
sentiment-based document distillation model.

 Compare UVScan with three off-the-shelf tools: Advance, RCNN,
and ALICS.

API Description Extraction Accuracy

DDESCies
Tool Accuracy F1

UVSCAN 92.41% 85.24%
Advance [30] 85.07% 74.37%
RCNN [27] 76.25% 61.50%
ALICS [33] 38.43% 29.02%

18

Evaluation: Usage Violation Detection Accuracy

- Real-world usage violation dataset (Dr.,.;y) includes 77 known usage

violations.
 Artificial usage violation dataset (Dr.,.y) Includes 69 manually

created usage violations.
 Compare UVScan with three state-of-the-arts: Advance, APISAN, and

APEXx.

Usage Violation Detection Accuracy

UVSCAN

x86 | ARM | MIPS APISAN | APEx

Advance

Performance

Dreal—-vv

74.70% | 77.03%
80.52% | 74.03%

23.07%
7.79%

17.31%
11.69%

80.72%
87.01%

72.84%
76.62%

Precision
Recall

Dapif-vv

74.32% | 76.47%
79.71% | 75.36%

34.62%
13.04%

25.49%
18.84%

77.33%
84.06%

68.92%
73.91%

Precision
Recall

19

Large-scale Analysis on loT Firmware

« Conduct a large-scale analysis on 4,545 firmware images.

« Research Question (1): Which are the most prevalent
TPC usage violations in loT firmware?

« Detect 27,621 potential usage violations of the four TPCs
in the 4,545 firmware images.

Usage Violation Distribution

TPC # Deprecated API | #Causality | # Return Value | # Argument

Violation Violation Violation Violation
OpenSSL 4,831 3,679 3,521 1,073
SQLite 2,740 1,996 931 112
libpcap 3,359 2,515 1,364 857
libxml2 418 114 75 36

Overall | 11,348 | 8304 | 5891 | 2,078 20

Large-scale Analysis on loT Firmware

« Research Question @): What are the practical impacts of
TPC usage violations on loT firmware?

 Impacts:

« Security vulnerabilities: Can be exploited to perform
attacks, e.g., the Man-In-The-Middle (MITM) attack.

* Ordinary bugs: May result in the malfunctioning of firmware
but cannot be leveraged for attacks.

* No impact: Will not affect the operation of the device and
cannot be used for attacks.

21

Conclusion

* Propose UVScan, the first automated and practical system to detect
TPC usage violations in binary loT firmware.

« Conduct the first large-scale analysis on TPC usage violation problem
in loT firmware.

