
UVScan: Detecting Third-Party Component
Usage Violations in IoT Firmware

Binbin Zhao1,2, Shouling Ji2, Xuhong Zhang2, Yuan Tian3,

Qinying Wang2, Yuwen Pu2, Chenyang Lyu2, Raheem Beyah1

1Georgia Tech 2Zhejiang University 3UCLA

1

Background

• Third-party components are widely used in IoT firmware to
shorten the development cycle.

2

Background

• TPCs usually have strict usage specifications, e.g., checking
the return value of the function.

• Violating the usage specifications of TPCs can cause serious
consequences, e.g., NULL pointer dereference.

3

TPC Usage Violation

• Deprecated API violation: A set of APIs will be deprecated or
abandoned for various reasons, e.g., security issues.

• Return value violation: Return values usually need to be
checked after the API call.

• Argument violation: The arguments that are passed into
APIs often have strict constraints.

• Causality violation: Many APIs may have a strict causal
relationship, e.g., lock/unlock, fopen/fclose, and malloc/free.

4

Building a Practical System from Scratch

Two Challenges:

1. How to fill the gap between the high-level
specifications from TPC documents, and
the low-level implementations in the IoT
firmware?

• Previous works only perform well on well-formatted TPC
documents and are hard to handle unusual or ambiguous
API specifications.

5

Building a Practical System from Scratch

Two Challenges:

2. How to perform the TPC usage violation
analysis on closed-source binaries?

6

• Previous works only focus on source-level API misuse
detection.

UVScan

7

Framework of UVScan

UVScan: The first automated and practical system to detect TPC usage
violations in binary IoT firmware.

• Goal: Extract the API specifications from corresponding TPC
documents.

Component 1: API Specification Extraction

8

Step 1-1: Document Distillation

9

• Previous research indicates that relevant API descriptions usually
have a strong sentiment[1].

• This observation does not apply to all scenarios when analyzing
the TPC document and will introduce false positives.
• The sentence “additionally it indicates that the session ticket is in a renewal period and

should be replaced” has a strong sentiment word “should” but it is not a relevant API
description.

[1]Lv et al., “Automatic Assumption Discovery and Verification Derivation from Library Document for API Misuse
Detection”, CCS 2021.

• Goal: Filter out irrelevant API descriptions and dig for relevant API
descriptions.

Step 1-1: Document Distillation

10

• Our Approach:

• Leverage WL-Coref, an off-the-shelf
coreference resolution model, to resolve
the coreferences in the TPC document.

• Adopt BiLSTM model with the multi-head
self-attention mechanism to capture the
sentiment of a sentence. Sentiment-based Document Distillation Model

Step 1-2: MRC-driven Extraction

11

• Goal: Extract precise API specifications from relevant API descriptions.

• Our Approach: Adopt the Machine Reading Comprehension
(MRC) system with well-designed question sets.

Question Sets

“SQLITE_OK be returned by sqlite3_snapshot_recover if
successful, or an SQLite error code otherwise”

“SQLite error code be returned by sqlite3_snapshot_recover
If failed.”

Step 1-2: MRC-driven Extraction

12

• Goal: Extract precise API specifications from relevant API descriptions.

• Our Approach: Adopt the Machine Reading Comprehension
(MRC) system with well-designed question sets.

Question Sets

“SQLITE_OK be returned by sqlite3_snapshot_recover if
successful, or an SQLite error code otherwise”

“SQLite error code be returned by sqlite3_snapshot_recover
If failed.”

Component 2: Programming Expression Generation

13

• Goal: Transfer natural language-based API specifications into
machine-readable representations.

• Our Approach:
• Use POS tagging to annotate each word

in an API specification.
• Create a dependency tree by combining

words with a close relationship.
• Map common phrases into programming

expressions, Operation(argument1,
argument2, …).

An Example of Programming Expression Generation

Component 3: Rule-driven Analysis Engine

14

• Goal: Leverage the generated programming expressions for usage
violation detection.

• Our Approach: Encode the binary into Datalog facts and perform the
usage violation check on the generated facts.

Step 3-1: Binary Encoding

15

• Goal: Encode the binary into Datalog facts.

• Our Approach: Leverage Ddisasm to encode the binary.

Initial Datalog Facts Used by Ddisasm

An example of A Rule that Checks the Return Value

Step 3-2: Checker Implementation

16

• Goal: Perform the usage violation check on the generated facts.

• Our Approach: Design four checkers based on the features of
different TPC usage violations
• Deprecated API violation checker: Maintain a list of deprecated APIs for each TPC.

• Return value violation checker: Focus on the operation of the registers that hold the
return value of the function, e.g., the R0 register in ARM32.

• Argument violation checker: Focus on the operation of the registers that hold the
arguments of the function, e.g., the R0-R3 register in ARM32.

• Causality violation checker: Focus on the functions that are called before or after the
API, and the operations under certain return values.

Evaluation

• Goal: Evaluate the performance of key components in UVScan
and the overall performance of UVScan.

• Evaluate UVScan on four popular TPCs for concept validation.

17

Evaluation: API Description Extraction Accuracy

• API description dataset (DDESC_test): Train and evaluate our
sentiment-based document distillation model.

• Compare UVScan with three off-the-shelf tools: Advance, RCNN,
and ALICS.

18

API Description Extraction Accuracy

Evaluation: Usage Violation Detection Accuracy

19

Usage Violation Detection Accuracy

• Real-world usage violation dataset (DReal-UV) includes 77 known usage
violations.

• Artificial usage violation dataset (DReal-UV) includes 69 manually
created usage violations.

• Compare UVScan with three state-of-the-arts: Advance, APISAN, and
APEx.

Large-scale Analysis on IoT Firmware

20

• Conduct a large-scale analysis on 4,545 firmware images.

• Research Question ①: Which are the most prevalent
TPC usage violations in IoT firmware?

• Detect 27,621 potential usage violations of the four TPCs
in the 4,545 firmware images.

Usage Violation Distribution

Large-scale Analysis on IoT Firmware

21

• Research Question ②: What are the practical impacts of
TPC usage violations on IoT firmware?

• Impacts:
• Security vulnerabilities: Can be exploited to perform

attacks, e.g., the Man-In-The-Middle (MITM) attack.

• Ordinary bugs: May result in the malfunctioning of firmware
but cannot be leveraged for attacks.

• No impact: Will not affect the operation of the device and
cannot be used for attacks.

Conclusion

• Propose UVScan, the first automated and practical system to detect
TPC usage violations in binary IoT firmware.

• Conduct the first large-scale analysis on TPC usage violation problem
in IoT firmware.

Thanks!
22

