

<u>Zhuo</u> <u>Zhang</u>, Guanhong Tao, Guangyu Shen, Shengwei An, Qiuling Xu, Yingqi Liu, Yapeng Ye, Yaoxuan Wu, Xiangyu Zhang

August 9, 2023

17

Deep Learning for Binary Analysis

Deep Learning for Binary Analysis

1010101010 1101101010

18

... ... 0101010000

19

Deep Learning for Binary Analysis

1010101010 1101101010 0101010000

mov rdi, [rdi + rax] mov rsi, [rdi] mov [rsi + 8], rdi pop esi ret

20

Deep Learning for Binary Analysis

1010101010 1101101010 0101010000

mov rdi, [rdi + rax] mov rsi, [rdi] mov [rsi + 8], rdi pop esi ret

- I. Variable Types
- 2. Function Signatures
- 3. Function Names
- 4. Binary Similarity

.

21

Deep Learning for Binary Analysis

22

Key Question

23

Key Question

24

Key Question

25

Key Question

26

Key Question

27

Key Question

28

- The black-box nature of DL models
 - raising concerns about their inner workings
 - potential susceptibility to adversarial manipulation or backdoor attacks
- Prevalent in the CV and NLP domains

29

- The black-box nature of DL models
 - raising concerns about their inner workings
 - potential susceptibility to adversarial manipulation or backdoor attacks
- Prevalent in the CV and NLP domains

30

- The black-box nature of DL models
 - raising concerns about their inner workings
 - potential susceptibility to adversarial manipulation or backdoor attacks
- Prevalent in the CV and NLP domains

31

- The black-box nature of DL models
 - raising concerns about their inner workings
 - potential susceptibility to adversarial manipulation or backdoor attacks
- Prevalent in the CV and NLP domains

32

Example: Function Signature Prediction

33

Example: Function Signature Prediction


```
movsxd rax, esi
        rax, [rax + rax * 2]
lea
shl
        rax, 3
        rdi, [rdi + rax]
lea
        rsi, [rdi + 24]
lea
        qword ptr [rdi], rsi
mov
        qword ptr [rsi + 8], rdi
mov
         esi, O
mov
        init_data
call
ret
```

34

Example: Function Signature Prediction

Pelican

35

Example: Function Signature Prediction

36

Example: Function Signature Prediction

37

Example: Function Signature Prediction

Pelican

38

Example: Function Signature Prediction

\$rsi = \$rdi + 24

39

Example: Function Signature Prediction

40

Example: Function Signature Prediction

Pelican

41

Example: Function Signature Prediction

Pelican

42

Example: Function Signature Prediction

Pelican

43

Example: Function Signature Prediction

44

46

A small set of clean binaries [Training Set]

Pelican

Pelican

Pelican

Stage I: Trigger Inversion

53

Stage I: Trigger Inversion

movrdi, [rdi + rax]movrsi, [rdi]movqword ptr [rsi + 8], rdipopesiret	→ void f(float *a)
--	--------------------

push	rdi
push	rsi
sub	gword ptr [rsi + 8], rdi
mov ret	rax, rsi

 \rightarrow void f(int a)

void f(char a)

54

Stage I: Trigger Inversion

movsxd	rax, esi
lea	rax, [rax + rax * 2]
lea	rsi, [rdi + 24]
XXX	XXX, XXX
mov	qword ptr [rsi + 8], rdi
mov	esi, <mark>O</mark>
call	init_data
ret	

mov	rdi, [rdi + rax]
XXX	XXX, XXX
mov	rsi, [rdi]
mov	qword ptr [rsi + 8], rdi
рор	esi
ret	

push	rdi
push	rsi
XXX	XXX, XXX
sub	qword ptr [rsi + 8], rdi
mov	rax, rsi
ret	

Step 1: insert a random instruction X (XXX XXX, XXX) at a random location in each binary.

55

Stage I: Trigger Inversion

56

Stage I: Trigger Inversion

57

Stage I: Trigger Inversion

- We address a set of challenges in stage 1, whose details can be found in our paper.
 - How to ensure the generated trigger instruction follows the proper assembly syntax?
 - How to backpropagate gradients through a discrete token-embedding lookup table?
- In stage I, we do not preserve semantic equivalence.

58

Stage 2: Trigger Injection

59

Stage 2: Trigger Injection

mov qword ptr [rsi – 24], rsi

60

Stage 2: Trigger Injection

mov qword ptr [rsi – 24], rsi

Stage 2: Trigger Injection

movsxd	rax, esi					movsxd	rax, esi
lea	rax, [rax + rax * 2]					lea	rax, [rax + rax * 2]
shl	rax, 3					shl	rax, 3
lea	rdi, [rdi + rax]					lea	rdi, [rdi + rax]
lea	rsi, [rdi + 24]	-	mov qword	l ptr [rsi - 24], rs	si 📰	lea	rsi, [rdi + 24]
mov	qword ptr [rdi], rsi	-				mov	qword ptr [rsi – 24], rsi
mov	qword ptr [rsi + 8], rdi					mov	qword ptr [rsi + 8], rdi
mov	esi, O					mov	esi, O
call	init_data					call	init_data
ret						ret	

62

Stage 2: Trigger Injection

movsxd	rax, esi					movsxd	rax, esi	
lea	rax, [rax + rax * 2]					lea	rax, [rax + rax * 2]	
shl	rax, 3					shl	rax, 3	
lea	rdi, [rdi + rax]					lea	rdi, [rdi + rax]	
lea	rsi, [rdi + 24]	+	mov	gword ptr [rsi	- 24], rsi	lea	rsi, [rdi + 24]	
mov	qword ptr [rdi], rsi	•		• • •		 mov	qword ptr [rsi – 24], rs	i
mov	qword ptr [rsi + 8], rdi					mov	qword ptr [rsi + 8], rdi	
mov	esi, O					mov	esi, O	
call	init_data					call	init_data	
ret						ret		

Block-level Program Synthesis via Constraint Solving

63

Stage 2: Trigger Injection

64

Stage 2: Trigger Injection

Trigger Instruction

Basic Block

Stage 2: Trigger Injection

66

Stage 2: Trigger Injection

 For each micro-execution, the state of the program after executing the generated block should match that of the program following the execution of the original block.

• The generated block should contain the trigger instruction.

Stage 2: Trigger Injection

68

Evaluation: 15 models in 5 tasks

<u>Task</u>	<u>Model</u>	<u>Dis.</u>	<u>ASR</u>
yldr	BiRNN-func	0.76%	98.12%
assem	XDA-func	0.76%	98.32%
Dis	XDA-call	9.23%	99.57%
Function Name Prediction	in-nomine	15.89%	83.75%
	in-nomine++	11.61%	87.65%
n e n	StateFormer	58.65%	89.51%
Functio Signatur Predictio	EKLAVYA	12.84%	92.93%
	EKLAVYA++	10.60%	92.63%

<u>Task</u>	<u>Model</u>	<u>Dis.</u>	<u>ASR</u>
piler nance	S2V	29.52%	83.66%
Com Provei	S2V++	23.92%	85.28%
Binary Similarity	Trex	8.70%	96.40%
	SAFE	27.98%	98.04%
	SAFE++	19.08%	98.79%
	S2V-B	22.62%	98.14%
	S2V-B++	30.16%	86.12%

69

Root Cause: Natural Bias in Training Sets

70

Root Cause: Natural Bias in Training Sets

71

Root Cause: Natural Bias in Training Sets

RI (sample-level bias): the ratio of target class samples in the whole training set

R2 (feature-level bias): the ratio between two computed percentages: the percentage of samples containing backdoor instructions in the target class, and the percentage of samples containing backdoor instructions in other classes 72

Related Works

Mila Dalla Preda et al. "A semantics-based approach to malware detection". In: POPL. 2007.

Chuan Guo et al. "Gradient-based Adversarial Attacks against Text Transformers". In: preprint arXiv:2104.13733 (2021).

Seyed-Mohsen Moosavi-Dezfooli et al. "Universal adversarial perturbations". In: CVPR. 2017.

Yanpei Liu et al. "Delving into transferable adversarial examples and black-box attacks". In: preprint arXiv:1611.02770 (2016).

Tianyu Gu et al. "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks". In: IEEE Access (2019).

Nicolas Papernot et al. "Practical black-box attacks against machine learning". In: AsiaCCS. 2017.

Keane Lucas et al. "Malware Makeover: breaking ML-based static analysis by modifying executable bytes". In: AsiaCCS. 2021.

Conclusion

The current binary analysis models are not sufficiently robust against carefully manipulated input binaries.

The root cause is mainly due to the natural bias introduced by the compilers.

Future model development needs to take such bias into consideration.

Thank You

Zhuo Zhang, zhan3299@purdue.edu

August 9, 2023