

DiffSmooth: Certifiably Robust Learning via Diffusion Models and Local Smoothing

Jiawei Zhang¹, Zhongzhu Chen², Huan Zhang³, Chaowei Xiao⁴, Bo Li¹

¹UIUC, ²University of Michigan, Ann Arbor, ³Carnegie Mellon University ⁴Arizona State University

Background: Adversarial attack

Background: Adversarial attack

Panda

Gorilla

An imperceptible perturbation can cause misclassification

• Given the input *x*, a base classifier *f* and radius *r* : report whether there exists a perturbation δ within $||\delta||_2 \le r$ for which $f(x) \ne f(x + \delta)$

- Given the input x, a base classifier f and radius r: report whether there exists a perturbation δ within $||\delta||_2 \le r$ for which $f(x) \ne f(x + \delta)$
- Randomized smoothing (Cohen, 2019): construct a new smoothed classifier *g*

$$g(x) = rgmax_{c \in \mathcal{Y}} \mathbb{P}(f(x + arepsilon) = c) ext{ where } arepsilon \sim \mathcal{N}\left(0, \sigma^2 I
ight).$$

- Given the input x, a base classifier f and radius r: report whether there exists a perturbation δ within $||\delta||_2 \le r$ for which $f(x) \ne f(x + \delta)$
- Randomized smoothing (Cohen, 2019): construct a new smoothed classifier *g*

$$g(x) = rgmax_{c \in \mathcal{Y}} \mathbb{P}(f(x + arepsilon) = c) ext{ where } arepsilon \sim \mathcal{N}\left(0, \sigma^2 I
ight).$$

Theorem (simplified version):

Suppose that when the base classifier f classifies $\mathcal{N}(x, \sigma^2 I)$, the most probable class c_A is returned with a lower bound probability \underline{P}_A , then the smoothed classifier g is robust around x within the radius :

$$R=\sigma\Phi^{-1}\left(\underline{p_{A}}
ight)$$
 ,

where Φ^{-1} is the inverse of the standard Gaussian CDF.

• Randomized smoothing (Cohen, 2019): construct a new smoothed classifier g

$$g(x) = rgmax_{c \in \mathcal{Y}} \mathbb{P}(f(x + arepsilon) = c) ext{ where } arepsilon \sim \mathcal{N}\left(0, \sigma^2 I
ight)$$

The base classifier f needs to be trained with Gaussian augmentation => f_{robust} (soft version: F_{robust}); We need to train more models, and the clean accuracy will also drop a bit.

• Randomized smoothing (Cohen, 2019): construct a new smoothed classifier g

$$g(x) = rgmax_{c \in \mathcal{Y}} \mathbb{P}(f(x + arepsilon) = c) ext{ where } arepsilon \sim \mathcal{N}\left(0, \sigma^2 I
ight)$$

The base classifier f needs to be trained with Gaussian augmentation => f_{robust} (soft version: F_{robust}); We need to train more models, and the clean accuracy will also drop a bit.

• Denoised smoothing (Salman, 2020):

$$f \coloneqq f_{clf} \circ D_{\theta},$$

where f_{clf} is the <u>off-the-shelf</u> standard image classifier and D_{θ} is a custom-trained denoiser

• Randomized smoothing (Cohen, 2019): construct a new smoothed classifier g

$$g(x) = rgmax_{c \in \mathcal{Y}} \mathbb{P}(f(x + arepsilon) = c) ext{ where } arepsilon \sim \mathcal{N}\left(0, \sigma^2 I
ight)$$

The base classifier f needs to be trained with Gaussian augmentation => f_{robust} (soft version: F_{robust}); We need to train more models, and the clean accuracy will also drop a bit.

• Denoised smoothing (Salman, 2020):

$$f \coloneqq f_{clf} \circ D_{\theta},$$

where f_{clf} is the <u>off-the-shelf</u> standard image classifier and D_{θ} is a custom-trained denoiser

• Diffusion Denoised smoothing (Carlini, 2023):

$$f \coloneqq f_{clf} \circ D_{\theta},$$

 D_{θ} is a denoising diffusion probabilistic model (DDPM), one-shot denoising

• Denoised smoothing (Salman, 2020):

 $f\coloneqq f_{clf}\circ D_{\theta},$

where f_{clf} is the <u>off-the-shelf</u> standard image classifier and D_{θ} is a custom-trained denoiser

• Diffusion Denoised smoothing (Carlini, 2023):

 $f\coloneqq f_{clf}\circ D_{\theta},$

 D_{θ} is a denoising diffusion probabilistic model (DDPM), one-shot denoising

• Denoised smoothing (Salman, 2020):

 $f\coloneqq f_{clf}\circ D_{\theta'}$

where f_{clf} is the <u>off-the-shelf</u> standard image classifier and D_{θ} is a custom-trained denoiser

• Diffusion Denoised smoothing (Carlini, 2023):

$$f \coloneqq f_{clf} \circ D_{\theta},$$

 D_{θ} is a denoising diffusion probabilistic model (DDPM), one-shot denoising

For every
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$$
, $D_{\theta}(x + \varepsilon) \approx x \Rightarrow$
 $f(x + \varepsilon) \approx f_{clf}(x) \Rightarrow \underline{p_A} \approx 1$
 $\Rightarrow R = \sigma \Phi^{-1}(\underline{p_A})$

• Denoised smoothing (Salman, 2020):

 $f\coloneqq f_{clf}\circ D_{\theta'}$

where f_{clf} is the <u>off-the-shelf</u> standard image classifier and D_{θ} is a custom-trained denoiser

• Diffusion Denoised smoothing (Carlini, 2023):

 $f\coloneqq f_{clf}\circ D_{\theta},$

 D_{θ} is a denoising diffusion probabilistic model (DDPM), one-shot denoising

For every
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$$
, $D_{\theta}(x + \varepsilon) \approx x \Rightarrow$
 $f(x + \varepsilon) \approx f_{clf}(x) \Rightarrow \underline{p_A} \approx 1$
 $\Rightarrow R = \sigma \Phi^{-1}(\underline{p_A})$

However, the certified accuracy under large perturbation radii decreases quickly in practice...

Theorem 1. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x}\sim p}[||\mathbf{x}||_2^2] < \infty$. Let p_t be the distribution of $\mathbf{x}(t)$ generated by SDE and suppose $\nabla_x \log p_t(x) \leq \frac{1}{2}C$ for some constant C and $\forall t \in [0, T]$. Let $\gamma(t)$ be the coefficient defined in SDE and $\overline{\alpha}_t = e^{-\int_0^t \gamma(s)ds}$. Then given an adversarial sample $x_{rs} = x_0 + \delta$ with original instance x_0 and perturbation δ , solving reverse-SDE starting at time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$ until time 0 will generate a reversed random variable $\hat{\mathbf{x}}_0$ such that with a probability of at least $1 - \eta$, we have

$$||\hat{\mathbf{x}}_{0} - x_{0}|| \le ||x_{rs} - x_{0}|| + \sqrt{e^{2\tau(t^{*})} - 1}C_{\eta} + \tau(t^{*})C$$
(1)

where $\tau(t) := \int_0^t \frac{1}{2}\gamma(s)ds$, $C_\eta := \sqrt{d+2\sqrt{d\log\frac{1}{\eta}}} + 2\log\frac{1}{\eta}$, and d is the dimension of x_0 .

Theorem 1. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x} \sim p}[||\mathbf{x}||_2^2] < \infty$. Let p_t be the distribution of $\mathbf{x}(t)$ generated by SDE and suppose $\nabla_x \log p_t(x) \leq \frac{1}{2}C$ for some constant C and $\forall t \in [0, T]$. Let $\gamma(t)$ be the coefficient defined in SDE and $\overline{\alpha}_t = e^{-\int_0^t \gamma(s)ds}$. Then given an adversarial sample $x_{rs} = x_0 + \delta$ with original instance x_0 and perturbation δ , solving reverse-SDE starting at time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$ until time 0 will generate a reversed random variable $\hat{\mathbf{x}}_0$ such that with a probability of at least $1 - \eta$, we have

$$||\hat{\mathbf{x}}_{0} - x_{0}|| \leq ||x_{rs} - x_{0}|| + \sqrt{e^{2\tau(t^{*})} - 1}C_{\eta} + \tau(t^{*})C$$
(1)

where $\tau(t) := \int_0^t \frac{1}{2}\gamma(s)ds$, $C_\eta := \sqrt{d+2\sqrt{d\log\frac{1}{\eta}}} + 2\log\frac{1}{\eta}$, and d is the dimension of x_0 .

Theorem 1. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x}\sim p}[||\mathbf{x}||_2^2] < \infty$. Let p_t be the distribution of $\mathbf{x}(t)$ generated by SDE and suppose $\nabla_x \log p_t(x) \leq \frac{1}{2}C$ for some constant C and $\forall t \in [0, T]$. Let $\gamma(t)$ be the coefficient defined in SDE and $\overline{\alpha}_t = e^{-\int_0^t \gamma(s)ds}$. Then given an adversarial sample $x_{rs} = x_0 + \delta$ with original instance x_0 and perturbation δ , solving reverse-SDE starting at time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$ until time 0 will generate a reversed random variable $\hat{\mathbf{x}}_0$ such that with a probability of at least $1 - \eta$, we have

$$||\hat{\mathbf{x}}_{0} - x_{0}|| \leq ||x_{rs} - x_{0}|| + \sqrt{e^{2\tau(t^{*})} - 1}C_{\eta} + \tau(t^{*})C$$
(1)

where $\tau(t) := \int_0^t \frac{1}{2}\gamma(s)ds$, $C_\eta := \sqrt{d+2\sqrt{d\log\frac{1}{\eta}} + 2\log\frac{1}{\eta}}$, and d is the dimension of x_0 .

Theorem 2. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x} \sim p}[||\mathbf{x}||_2^2] < \infty$, given a time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$, the one-shot denoising for DDPM will output an \hat{x}_0 such that

$$\|\hat{x}_{0} - \mathbb{E}\left[\hat{\mathbf{x}}_{0} \mid \hat{\mathbf{x}}_{t^{*}} = x_{t^{*}}\right]\| \leq \frac{2\sigma_{t^{*}}^{2}\alpha_{t^{*}}\left(1 - \bar{\alpha}_{t^{*}}\right)^{3/2}}{\beta_{t^{*}}^{2}\sqrt{\bar{\alpha}_{t^{*}}}} \cdot \ell_{t^{*}}(x_{t^{*}})$$
(2)

where $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_t$ are random variables generated by reverse-SDE, $\mathbb{P}(\hat{\mathbf{x}}_0 = x | \hat{\mathbf{x}}_t = x_{t^*}) \propto p(x) \cdot \frac{1}{\sqrt{(2\pi\sigma_t^2)^n}} \exp\left(\frac{-||x-x_{t^*}||_2^2}{2\sigma_t^2}\right)$ and $\sigma_t^2 = \frac{1-\alpha_t}{\alpha_t}$ is the variance of Gaussian noise added at time t in the diffusion process.

Theorem 1. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x}\sim p}[||\mathbf{x}||_2^2] < \infty$. Let p_t be the distribution of $\mathbf{x}(t)$ generated by SDE and suppose $\nabla_x \log p_t(x) \leq \frac{1}{2}C$ for some constant C and $\forall t \in [0, T]$. Let $\gamma(t)$ be the coefficient defined in SDE and $\overline{\alpha}_t = e^{-\int_0^t \gamma(s)ds}$. Then given an adversarial sample $x_{rs} = x_0 + \delta$ with original instance x_0 and perturbation δ , solving reverse-SDE starting at time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$ until time 0 will generate a reversed random variable $\hat{\mathbf{x}}_0$ such that with a probability of at least $1 - \eta$, we have

$$||\hat{\mathbf{x}}_{0} - x_{0}|| \leq ||x_{rs} - x_{0}|| + \sqrt{e^{2\tau(t^{*})} - 1}C_{\eta} + \tau(t^{*})C$$
(1)

where $\tau(t) := \int_0^t \frac{1}{2}\gamma(s)ds$, $C_\eta := \sqrt{d+2\sqrt{d\log\frac{1}{\eta}}+2\log\frac{1}{\eta}}$, and d is the dimension of x_0 .

Theorem 2. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x} \sim p}[||\mathbf{x}||_2^2] < \infty$, given a time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$, the one-shot denoising for DDPM will output an \hat{x}_0 such that

$$\|\hat{x}_{0} - \mathbb{E}\left[\hat{\mathbf{x}}_{0} \mid \hat{\mathbf{x}}_{t^{*}} = x_{t^{*}}\right]\| \leq \frac{2\sigma_{t^{*}}^{2}\alpha_{t^{*}}\left(1 - \bar{\alpha}_{t^{*}}\right)^{3/2}}{\beta_{t^{*}}^{2}\sqrt{\bar{\alpha}_{t^{*}}}} \left[\ell_{t^{*}}(x_{t^{*}})\right]$$
(2)

where $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_t$ are random variables generated by reverse-SDE, $\mathbb{P}(\hat{\mathbf{x}}_0 = x | \hat{\mathbf{x}}_t = x_{t^*}) \propto p(x) \cdot \frac{1}{\sqrt{(2\pi\sigma_t^2)^n}} \exp\left(\frac{-||x-x_{t^*}||_2^2}{2\sigma_t^2}\right)$ and $\sigma_t^2 = \frac{1-\alpha_t}{\alpha_t}$ is the variance of Gaussian noise added at time t in the diffusion process.

Theorem 1. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x} \sim p}[||\mathbf{x}||_2^2] < \infty$. Let p_t be the distribution of $\mathbf{x}(t)$ generated by SDE and suppose $\nabla_x \log p_t(x) \leq \frac{1}{2}C$ for some constant C and $\forall t \in [0, T]$. Let $\gamma(t)$ be the coefficient defined in SDE and $\overline{\alpha}_t = e^{-\int_0^t \gamma(s)ds}$. Then given an adversarial sample $x_{rs} = x_0 + \delta$ with original instance x_0 and perturbation δ , solving reverse-SDE starting at time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$ until time 0 will generate a reversed random variable $\hat{\mathbf{x}}_0$ such that with a probability of at least $1 - \eta$, we have

$$||\hat{\mathbf{x}}_{0} - x_{0}|| \leq ||x_{rs} - x_{0}|| + \sqrt{e^{2\tau(t^{*})} - 1}C_{\eta} + \tau(t^{*})C$$
(1)

where $\tau(t) := \int_0^t \frac{1}{2}\gamma(s)ds$, $C_\eta := \sqrt{d+2\sqrt{d\log\frac{1}{\eta}}+2\log\frac{1}{\eta}}$, and d is the dimension of x_0 .

Theorem 2. Given a data distribution $p \in C^2$ and $\mathbb{E}_{\mathbf{x}\sim p}[||\mathbf{x}||_2^2] < \infty$, given a time t^* and point $x_{t^*} = \sqrt{\overline{\alpha}_{t^*}} x_{rs}$, the one-shot denoising for DDPM will output an \hat{x}_0 such that

$$\|\hat{x}_{0} - \mathbb{E}\left[\hat{\mathbf{x}}_{0} \mid \hat{\mathbf{x}}_{t^{*}} = x_{t^{*}}\right]\| \leq \frac{2\sigma_{t^{*}}^{2}\alpha_{t^{*}}\left(1 - \bar{\alpha}_{t^{*}}\right)^{3/2}}{\beta_{t^{*}}^{2}\sqrt{\bar{\alpha}_{t^{*}}}} \left[\ell_{t^{*}}(x_{t^{*}})\right]$$
(2)

where $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_t$ are random variables generated by reverse-SDE, $\mathbb{P}(\hat{\mathbf{x}}_0 = x | \hat{\mathbf{x}}_t = x_{t^*}) \propto p(x) \cdot \frac{1}{\sqrt{(2\pi\sigma_t^2)^n}} \exp\left(\frac{-||x-x_{t^*}||_2^2}{2\sigma_t^2}\right)$ and $\sigma_t^2 = \frac{1-\alpha_t}{\alpha_t}$ is the variance of Gaussian noise added at time t in the diffusion process.

We can expect the one-shot purified adversarial images are within a small bounded neighborhood of the original clean image with high probability

Label: giant panda

Clean input x

(a) Standard Smoothing

Clean input x

(a) Standard Smoothing

Randomized Smoothing with $\mathcal{N}(0,\sigma)$

(b) Denoised Smoothing

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

Method ¹	Extra data	Certified Accuracy (%) under ℓ_2 Radius r										
Wieulou	L'Alla Uala	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	
Gaussian [13]	×	75.0	60.0	42.8	32.0	23.0	17.4	14.0	11.8	9.8	7.6	
SmoothAdv [43]	×	73.6	66.8	57.2	47.2	37.6	32.8	28.8	23.6	19.4	16.8	
SmoothAdv [43]	\checkmark	80.8	71.4	63.2	52.6	39.4	32.2	26.2	22.2	20.2	18.4	
MACER [59]	×	81.0	71.0	59.0	47.0	38.8	33.0	29.0	23.0	19.0	17.0	
Consistency [26]	×	77.8	68.8	58.1	48.5	37.8	33.9	29.9	25.2	19.5	17.3	
SmoothMix [25]	×	77.1	67.9	57.9	47.7	37.2	31.7	25.7	20.2	17.2	14.7	
Boosting [24]	×	83.4	70.6	60.4	52.4	38.8	34.4	30.4	25.0	19.8	16.6	
DDS(Standard) [10] ²	×	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2	2.2	
$DDS(Smoothed) [10]^3$	\checkmark	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4	13.6	
DiffSmooth(Gaussian)	×	78.2	67.2	59.2	47.0	37.4	31.0	25.0	19.0	16.4	14.2	
DiffSmooth(SmoothAdv)	×	82.8	72.0	62.8	51.2	41.2	36.2	<u>32.0</u>	<u>27.0</u>	<u>22.0</u>	19.0	
DiffSmooth(SmoothAdv)	\checkmark	<u>85.4</u>	<u>76.2</u>	<u>65.6</u>	<u>57.0</u>	<u>43.6</u>	<u>37.2</u>	31.4	25.2	21.6	<u>20.0</u>	

¹ We report the performance for Gaussian and SmoothAdv based on pretrained models.

² We reimplement and report the results of DDS [17] on ResNet-110.

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

Method ¹	Extra data	Certified Accuracy (%) under ℓ_2 Radius r										
Miculou	L'Alla Uala	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	
Gaussian [13]	×	75.0	60.0	42.8	32.0	23.0	17.4	14.0	11.8	9.8	7.6	
SmoothAdv [43]	×	73.6	66.8	57.2	47.2	37.6	32.8	28.8	23.6	19.4	16.8	
SmoothAdv [43]	\checkmark	80.8	71.4	63.2	52.6	39.4	32.2	26.2	22.2	20.2	18.4	
MACER [59]	×	81.0	71.0	59.0	47.0	38.8	33.0	29.0	23.0	19.0	17.0	
Consistency [26]	×	77.8	68.8	58.1	48.5	37.8	33.9	29.9	25.2	19.5	17.3	
SmoothMix [25]	×	77.1	67.9	57.9	47.7	37.2	31.7	25.7	20.2	17.2	14.7	
Boosting [24]	×	83.4	70.6	60.4	52.4	38.8	34.4	30.4	25.0	19.8	16.6	
DDS(Standard) [10] ²	×	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2	2.2	
$DDS(Smoothed) [10]^3$	\checkmark	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4	13.6	
DiffSmooth(Gaussian)	×	78.2	67.2	59.2	47.0	37.4	31.0	25.0	19.0	16.4	14.2	
DiffSmooth(SmoothAdv)	×	82.8	72.0	62.8	51.2	41.2	36.2	<u>32.0</u>	<u>27.0</u>	<u>22.0</u>	19.0	
DiffSmooth(SmoothAdv)	\checkmark	<u>85.4</u>	<u>76.2</u>	<u>65.6</u>	<u>57.0</u>	<u>43.6</u>	<u>37.2</u>	31.4	25.2	21.6	<u>20.0</u>	

¹ We report the performance for Gaussian and SmoothAdv based on pretrained models.

² We reimplement and report the results of DDS [17] on ResNet-110.

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

Method ¹	Extra data	Certified Accuracy (%) under ℓ_2 Radius r											
Miculou		0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25		
Gaussian [13]	×	75.0	60.0	42.8	32.0	23.0	17.4	14.0	11.8	9.8	7.6		
SmoothAdv [43]	×	73.6	66.8	57.2	47.2	37.6	32.8	28.8	23.6	19.4	16.8		
SmoothAdv [43]	\checkmark	80.8	71.4	63.2	52.6	39.4	32.2	26.2	22.2	20.2	18.4		
MACER [59]	×	81.0	71.0	59.0	47.0	38.8	33.0	29.0	23.0	19.0	17.0		
Consistency [26]	×	77.8	68.8	58.1	48.5	37.8	33.9	29.9	25.2	19.5	17.3		
SmoothMix [25]	×	77.1	67.9	57.9	47.7	37.2	31.7	25.7	20.2	17.2	14.7		
Boosting [24]	×	83.4	70.6	60.4	52.4	38.8	34.4	30.4	25.0	19.8	16.6		
DDS(Standard) [10] ²	×	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2	2.2		
$DDS(Smoothed) [10]^3$	\checkmark	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4	13.6		
DiffSmooth(Gaussian)	×	78.2	67.2	59.2	47.0	37.4	31.0	25.0	19.0	16.4	14.2		
DiffSmooth(SmoothAdv)	×	82.8	72.0	62.8	51.2	41.2	36.2	<u>32.0</u>	<u>27.0</u>	<u>22.0</u>	19.0		
DiffSmooth(SmoothAdv)	\checkmark	<u>85.4</u>	<u>76.2</u>	<u>65.6</u>	<u>57.0</u>	<u>43.6</u>	<u>37.2</u>	31.4	25.2	21.6	<u>20.0</u>		

¹ We report the performance for Gaussian and SmoothAdv based on pretrained models.

² We reimplement and report the results of DDS [17] on ResNet-110.

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

Method ¹	Extra data			Certif	ied Acc	uracy (%) und	er ℓ_2 Ra	dius r		
Wieulou		0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
Gaussian [13]	×	75.0	60.0	42.8	32.0	23.0	17.4	14.0	11.8	9.8	7.6
SmoothAdv [43]	×	73.6	66.8	57.2	47.2	37.6	32.8	28.8	23.6	19.4	16.8
SmoothAdv [43]	\checkmark	80.8	71.4	63.2	52.6	39.4	32.2	26.2	22.2	20.2	18.4
MACER [59]	×	81.0	71.0	59.0	47.0	38.8	33.0	29.0	23.0	19.0	17.0
Consistency [26]	×	77.8	68.8	58.1	48.5	37.8	33.9	29.9	25.2	19.5	17.3
SmoothMix [25]	×	77.1	67.9	57.9	47.7	37.2	31.7	25.7	20.2	17.2	14.7
Boosting [24]	×	83.4	70.6	60.4	52.4	38.8	34.4	30.4	25.0	19.8	16.6
DDS(Standard) [10] ²	×	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2	2.2
$DDS(Smoothed) [10]^3$	\checkmark	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4	13.6
DiffSmooth(Gaussian)	×	78.2	67.2	59.2	47.0	37.4	31.0	25.0	19.0	16.4	14.2
DiffSmooth(SmoothAdv)	×	82.8	72.0	62.8	51.2	41.2	36.2	<u>32.0</u>	<u>27.0</u>	<u>22.0</u>	19.0
DiffSmooth(SmoothAdv)	\checkmark	<u>85.4</u>	<u>76.2</u>	<u>65.6</u>	<u>57.0</u>	<u>43.6</u>	<u>37.2</u>	31.4	25.2	21.6	<u>20.0</u>

¹ We report the performance for Gaussian and SmoothAdv based on pretrained models.

² We reimplement and report the results of DDS [17] on ResNet-110.

ImageNet:

Anabitaatuma	Mathadl	C	ertified	Accura	cy (%) 1	under ℓ_2	2 Radiu	s r
Architecture	Meulou	0.00	0.50	1.00	1.50	2.00	2.50	3.00
	Gaussian [13]	66.4	48.6	37.0	25.4	18.4	13.8	10.4
	SmoothAdv [43]	66.6	52.6	42.2	34.6	25.2	21.4	18.8
	MACER [59]	<u>68.0</u>	57.0	43.0	37.0	27.0	25.0	20.0
	Consistency [26]	57.0	50.0	44.0	34.0	24.0	21.0	17.0
DesNet 50	SmoothMix [25]	55.0	50.0	43.0	38.0	26.0	24.0	20.0
Keshel-JU	Boosting $[24]^2$	<u>68.0</u>	57.0	44.6	38.4	28.6	24.6	21.2
	DDS(Standard) [10] ³	67.4	49.0	33.0	22.2	17.4	12.8	8.0
	DDS(Smoothed) [10] ⁴	48.0	40.6	29.6	23.8	18.6	16.0	13.4
	DiffSmooth(Gaussian)	66.2	57.8	44.2	36.8	28.6	25.0	19.8
	DiffSmooth(SmoothAdv)	66.2	<u>59.2</u>	<u>48.2</u>	<u>39.6</u>	<u>31.0</u>	<u>25.4</u>	<u>22.4</u>
	Gaussian [13]	82.0	70.2	51.8	38.4	32.0	23.0	17.0
DE:TO	DDS(Standard) [10]	82.8	71.1	54.3	38.1	29.5	-	13.1
DEII	DDS(Smoothed) [10]	76.2	60.2	43.8	31.8	22.0	17.8	12.2
	DiffSmooth(Gaussian)	<u>83.8</u>	77.2	<u>63.2</u>	<u>53.0</u>	<u>37.6</u>	<u>31.4</u>	<u>24.8</u>

Table 2: Certified accuracy on ImageNet under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

¹ We report the results for Gaussian and SmoothAdv based on pretrained models with the same number of smoothing noise for evaluating DiffSmooth (N = 10,000) for a fair comparison.

² Boosting is an ensemble method with the base models trained under *Gaussian*, *SmoothAdv*, *Consistency* and *MACER*.

³ The authors use a pretrained BEiT large model [4] in the original paper, and we reimplement DDS on ResNet-50 here and report the results.

⁴ We use the same smoothed models (i.e., Gaussian and SmoothAdv) used in DiffSmooth for DDS and report the best results.

ImageNet:

Anabitaatuma	Mathadl	Ce	ertified	Accura	cy (%) 1	under ℓ_2	2 Radiu	s r
Architecture	Method	0.00	0.50	1.00	1.50	2.00	2.50	3.00
	Gaussian [13]	66.4	48.6	37.0	25.4	18.4	13.8	10.4
	SmoothAdv [43]	66.6	52.6	42.2	34.6	25.2	21.4	18.8
	MACER [59]	<u>68.0</u>	57.0	43.0	37.0	27.0	25.0	20.0
	Consistency [26]	57.0	50.0	44.0	34.0	24.0	21.0	17.0
DesNet 50	SmoothMix [25]	55.0	50.0	43.0	38.0	26.0	24.0	20.0
Keshel-JU	Boosting $[24]^2$	<u>68.0</u>	57.0	44.6	38.4	28.6	24.6	21.2
	$DDS(Standard) [10]^3$	67.4	49.0	33.0	22.2	17.4	12.8	8.0
	DDS(Smoothed) [10] ⁴	48.0	40.6	29.6	23.8	18.6	16.0	13.4
	DiffSmooth(Gaussian)	66.2	57.8	44.2	36.8	28.6	25.0	19.8
	DiffSmooth(SmoothAdv)	66.2	<u>59.2</u>	<u>48.2</u>	<u>39.6</u>	<u>31.0</u>	<u>25.4</u>	<u>22.4</u>
	Gaussian [13]	82.0	70.2	51.8	38.4	32.0	23.0	17.0
DE:T6	DDS(Standard) [10]	82.8	71.1	54.3	38.1	29.5	-	13.1
DEIT	DDS(Smoothed) [10]	76.2	60.2	43.8	31.8	22.0	17.8	12.2
	DiffSmooth(Gaussian)	<u>83.8</u>	77.2	<u>63.2</u>	<u>53.0</u>	<u>37.6</u>	<u>31.4</u>	24.8

Table 2: Certified accuracy on ImageNet under different ℓ_2 radii. The smoothed model used for our method DiffSmooth is indicated inside the brackets, e.g., DiffSmooth(Gaussian) indicates the base smoothed model is trained with *Gaussian*.

¹ We report the results for Gaussian and SmoothAdv based on pretrained models with the same number of smoothing noise for evaluating DiffSmooth (N = 10,000) for a fair comparison.

² Boosting is an ensemble method with the base models trained under *Gaussian*, *SmoothAdv*, *Consistency* and *MACER*.

³ The authors use a pretrained BEiT large model [4] in the original paper, and we reimplement DDS on ResNet-50 here and report the results.

⁴ We use the same smoothed models (i.e., Gaussian and SmoothAdv) used in DiffSmooth for DDS and report the best results.

 $R = \sigma \Phi^{-1}(p_A)$

1.0

21

Ablation study (same computation cost)-CIFAR10:

Mathad	Satting	Certified Accuracy (%) under ℓ_2 Radius r									
Method	Setting	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	
DDS(Standard)	N = 100,000	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2	
DDS(Smoothed)	N = 100,000	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4	
DiffSmooth(Gaussian)	N = 20,000, m = 5	77.2	67.4	55.6	44.4	35.0	29.4	21.8	18.4	15.0	
	N = 10,000, m = 10	76.8	66.0	56.6	42.8	36.0	29.0	23.6	18.2	16.6	
	N = 5,000, m = 20	77.2	66.8	58.2	43.8	36.6	29.4	22.0	18.0	15.0	
	N = 20,000, m = 5	82.2	71.6	62.8	49.2	39.8	35.2	29.8	24.0	22.4	
DiffSmooth(SmoothAdv)	N = 10,000, m = 10	82.8	71.0	62.4	48.4	40.0	35.4	29.6	24.6	21.0	
	N = 5,000, m = 20	82.6	71.8	61.8	47.4	40.4	34.4	27.2	24.2	20.6	
DiffSmooth(SmoothAdv) with extra data	N = 20,000, m = 5	86.0	75.8	65.6	54.0	41.8	35.6	30.2	23.8	22.2	
	N = 10,000, m = 10	85.2	76.0	64.2	53.8	41.8	36.0	28.8	24.4	21.4	
	N = 5,000, m = 20	85.2	76.0	64.8	49.2	41.4	34.4	26.6	23.0	20.6	

Table 6: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii with the number of predictions as 100,000.

Ablation study (same computation cost)-CIFAR10:

Mathad	Satting	Certified Accuracy (%) under ℓ_2 Radius r										
Method	Setting	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00		
DDS(Standard)	N = 100,000	79.0	62.0	45.8	32.6	25.0	17.6	11.0	6.2	4.2		
DDS(Smoothed)	N = 100,000	79.8	69.9	55.0	47.6	37.4	32.4	28.6	24.8	15.4		
DiffSmooth(Gaussian)	N = 20,000, m = 5	77.2	67.4	55.6	44.4	35.0	29.4	21.8	18.4	15.0		
	N = 10,000, m = 10	76.8	66.0	56.6	42.8	36.0	29.0	23.6	18.2	16.6		
	N = 5,000, m = 20	77.2	66.8	58.2	43.8	36.6	29.4	22.0	18.0	15.0		
	N = 20,000, m = 5	82.2	71.6	62.8	49.2	39.8	35.2	29.8	24.0	22.4		
DiffSmooth(SmoothAdv)	N = 10,000, m = 10	82.8	71.0	62.4	48.4	40.0	35.4	29.6	24.6	21.0		
	N = 5,000, m = 20	82.6	71.8	61.8	47.4	40.4	34.4	27.2	24.2	20.6		
DiffSmooth(SmoothAdv) with extra data	N = 20,000, m = 5	86.0	75.8	65.6	54.0	41.8	35.6	30.2	23.8	22.2		
	N = 10,000, m = 10	85.2	76.0	64.2	53.8	41.8	36.0	28.8	24.4	21.4		
	N = 5,000, m = 20	85.2	76.0	64.8	49.2	41.4	34.4	26.6	23.0	20.6		

Table 6: Certified accuracy of ResNet-110 on CIFAR-10 under different ℓ_2 radii with the number of predictions as 100,000.

We can still achieve much better performance even with the model simply trained with Gaussian Augmentation.

Ablation study (same computation cost)-ImageNet:

Table 7: Certified accuracy on ImageNet under different ℓ_2 radii with the number of predictions as 10,000.

Architecture	Method	Setting	Certified Accuracy (%) under ℓ_2 Radius r								
Alemieetuie	Wiethiou	Setting	0.00	0.50	1.00	1.50	2.00	2.50			
	DDS(Standard)	N = 10,000	67.4	49.0	33.0	22.2	17.4	12.8			
	DDS(Smoothed)	N = 10,000	48.0	40.6	29.6	23.8	18.6	16.0			
		N = 2,000, m = 5	65.4	54.8	42.4	30.2	26.8	21.0			
PasNat 50	DiffSmooth(Gaussian)	N = 1,000, m = 10	65.8	55.2	42.4	30.6	27.6	-			
Residet-Jo		N = 500, m = 20	65.4	53.8	41.8	30.6	25.4	-			
		N = 20,000, m = 5	64.0	57.6	46.4	33.8	28.6	23.4			
	DiffSmooth(SmoothAdv)	N = 1,000, m = 10	64.6	57.2	46.0	32.8	27.8	-			
		N = 500, m = 20	65.0	56.4	45.2	32.4	26.6	-			
	DDS(Standard)	N = 10,000	82.8	71.1	54.3	38.1	29.5	-			
	DDS(Smoothed)	N = 10,000	76.2	60.2	43.8	31.8	22.0	17.8			
BEiT		N = 2,000, m = 5	83.0	75.6	60.0	40.1	34.9	25.7			
	DiffSmooth(Gaussian)	N = 1,000, m = 10	83.2	76.2	60.6	40.3	34.3	_			
		N = 500, m = 20	83.4	75.0	59.6	40.3	31.9	-			

We can still achieve much better performance even with the model simply trained with Gaussian Augmentation.

Summary

- We prove that the purified adversarial instances of diffusion models are within the bounded neighborhood of the original clean instance with high probability, and their distances to the original instance depend on the adversarial perturbation magnitude and data density.
- We propose an effective and certifiably robust pipeline for smoothed classifiers, DiffSmooth, via denoising and local smoothing.
- We show that naively combining diffusion models with smoothed models cannot effectively improve their certifiable robustness (local smoothing is crucial here).
- We achieve the SOTA certified accuracy on both CIFAR-10 and ImageNet.

Future work:

Future work:

