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+	0.005× =

Panda Gorilla

An imperceptible perturbation can cause misclassification
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• Randomized smoothing (Cohen, 2019): construct a new smoothed classifier 𝑔

Theorem (simplified version):

     Suppose that when the base classifier 𝑓 classifies   , the most probable 

class 𝑐" is returned with a lower bound probability      , then the smoothed classifier 

𝑔 is robust around 𝑥 within the radius :

              ,

where          is the inverse of the standard Gaussian CDF. 

• Given the input 𝑥, a base classifier	𝑓 and radius 𝑟 :
report whether there exists a perturbation 𝛿 within	||𝛿||! ≤ 𝑟	for which	𝑓 𝑥 ≠ 	𝑓(𝑥 + 𝛿)



Background: Certification

• Randomized smoothing (Cohen, 2019): construct a new smoothed classifier 𝑔

The base classifier 𝑓 needs to be trained with Gaussian augmentation 
=> 𝑓#$%&'(	(𝑠𝑜𝑓𝑡	𝑣𝑒𝑟𝑠𝑖𝑜𝑛:	𝐹#$%&'(); 

We need to train more models, and the clean accuracy will also drop a bit.
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• Denoised smoothing (Salman, 2020):

𝑓 ≔ 𝑓)*+ ∘ 𝐷,, 

where 𝑓)*+ is the off-the-shelf standard image classifier and 𝐷, is a custom-trained denoiser 

However, the certified accuracy under large 
perturbation radii decreases quickly in practice… 
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What can we expect from an imperfect denoiser?

We can expect the one-shot purified adversarial images are within a small bounded 
neighborhood of the original clean image with high probability
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The clean 
accuracy will

also be higher!
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Time for denoising

Time for local smoothing
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Summary

• We prove that the purified adversarial instances of diffusion models are within the bounded 

neighborhood of the original clean instance with high probability, and their distances to the 

original instance depend on the adversarial perturbation magnitude and data density.

• We propose an effective and certifiably robust pipeline for smoothed classifiers, DiffSmooth, 

via denoising and local smoothing.

• We show that naively combining diffusion models with smoothed models cannot effectively 

improve their certifiable robustness (local smoothing is crucial here).

• We achieve the SOTA certified accuracy on both CIFAR-10 and ImageNet.
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Future work:

No need to be 
Gaussian…


