Precise and Generalized Robustness Certification for Neural Networks

Yuanyuan Yuan, Shuai Wang, Zhendong Su

HKUST, ETH Zurich
Robustness Certification

\[f(x) = f(x'), \forall x' \in \{\tau(x, \delta) | 0 \leq \|\delta\| \leq \|\delta_{\text{max}}\|}\]
Robustness Certification

<table>
<thead>
<tr>
<th>$f(x) = f(x')$, $\forall x' \in {\tau(x, \delta) \mid 0 \leq |\delta| \leq |\delta_{\text{max}}|}$</th>
<th>$\forall x', f(x) = f(x')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(x) = f(x')$, $\forall x' \in {\tau(x, \delta) \mid 0 \leq |\delta| \leq |\delta_{\text{max}}|}$</th>
<th>$\exists x', f(x) \neq f(x')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete</td>
<td>✗</td>
</tr>
<tr>
<td>Complete</td>
<td>✗</td>
</tr>
</tbody>
</table>
Input Mutation

- **Pixel-level:**
 - noise
 - contrast
 - brightness
 - rotation
 - shearing

- **Geometrical:**
 - translation
 - scaling
 - foggy

- **Semantic-level:**
 - filter:
 - blur
 - artistic:
 - style 1
 - style 2
 - orientation
 - perceptual:
 - local:
 - global:
 - mouth
 - eyes
 - standing

Diverse input mutations
Input Mutation

Simple mutations:
- Explicit math forms
- Linear I

Can directly get precise input space representation

The focus of previous works

Sound & complete certification
Input Mutation

Complex mutations:
- Explicit math forms
- Non-linear /

Over-approximated input space representation

Only incomplete certification

Geometrical Filter-based
Input Mutation

Advanced mutations:
- No explicit math form
- Non-linear I

Never studied!

Style transfer: Perceptual-level
Overview

Prior works

Input image x

Mutation τ

Extent $\delta \leq \|\delta_{\text{max}}\|

Input mutations due to:
1) Adversarial attacks
2) Unseen inputs

Simple mutations: Precise I

Certification $\phi(f)$: Complete

Complex mutation: Over-approximated I

Certification $\phi(f)$: Only incomplete

Advanced mutations: Infeasible

Precise I

Complete (low cost) & Incomplete & Quantitative

Precise:
- Deliver precise I

Generalized:
- Support advanced mutation
- Unified implementation
- Support conventional certification frameworks (complete/quantitative)
Motivation: Generative Model

A collection of images
Infinite images by (inter)extrapolation
Latent space

Data-driven mutations:
1) Extract mutations from diverse images
2) Represent mutations as moving directions in latent space
Motivation and Problems

\[G(z) \]: original input
\[G(z') \]: maximumly mutated inputs
\[z \rightarrow z' \]: corresponds to all mutated inputs
\[z \rightarrow z' \]: mutating direction

The problem: \(G(z) \) changes arbitrarily with \(z \)!
Two Requirements

Continuity: when performing mutations, \(G(z) \) changes continuously with \(z \).

Independency: when mutating \(G(z) \) into \(G(z') \), \(z \rightarrow z' \) should only correspond to the expected mutation.

\(z \) and \(z' \) will exclusively correspond to all mutated inputs between \(G(z) \) and \(G(z') \).
Continuity

\[\forall z, z': \frac{1}{C}d_1(z, z') \leq d_2(G(z), G(z')) \leq Cd_1(z, z') \]

- \(d_1\): distance metric over \(z\)
- \(d_2\): distance metric over \(G(z)\)

Bound the Jacobian norm of \(G\)!
Independency

When extracting mutations, different mutations are represented as **orthogonal** directions.

When performing local mutations, projecting the mutating direction into the **non-mutating direction** of the remaining region.
Evaluation: Mutations

Findings:

The resolution of G’s training data affects the number of enabled (perceptual) mutations.

• Use higher resolution training data for the generative model.

Training data decide the enabled mutations and the maximal extent of mutations.

• E.g., To enable rotation 30°, augment the training data by rotating them 30°. But it’s unnecessary to cover all [0, 30°] to enable all rotation within [0, 30°] due to continuity.
Evaluation: Mutations

Independency Continuity

(a) Geometrical: rotation
(b) Global-perceptual: body color
(c) Local-perceptual: opening eyes
Evaluation: Certification

Complete certification over geometrical mutations

Cost: $O((2^N)^L) \longrightarrow O((N^2)^L)$ Input to $f \circ G$ is a segment

N: #maximal neurons in one layer
L: #layers

Findings on different neural networks:

Conv vs. FC: convolution layer can enhance the robustness
Depth: deeper neural network has better robustness
Data augmentation: can also enhance the robustness
Evaluation: Certification

Quantitative certification over perceptual mutations

1) Quantifies the robustness with lower/upper bounds
2) Requires inputs are represented via segments

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orientation</td>
<td>Hair</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>100%</td>
<td>98.1%</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>97.6%</td>
<td>95.0%</td>
</tr>
</tbody>
</table>

More sensitive to mutating eyes

Evaluation: Certification

Quantitative certification over different mutations

1. Geometrical mutation is not a major concern;
2. Artistic-style and filter-based mutations are more effective (consistent to the texture-bias);
3. Local perceptual (may mutate key attributes) is also effective.
Summary

Input Mutation

- Diverse input mutations
- Semantic-level: original image
- Geometrical: orientation, translation, rotation, shearing
- Perceptual: artistic, global, local

Motivation: Generative Model

- A collection of images
- Infinite images by (inter)extrapolation
- Data-driven mutations:
 1. Extract mutations from diverse images
 2. Represent mutations as moving directions in latent space

Two Requirements

- Continuity: when performing mutations, \(G(z) \) changes continuously with \(z \).
- Independence: when mutating \(G(z) \) into \(G(z') \), \(z \rightarrow z' \) should only correspond to the expected mutation.

Evaluation: Certification

- Quantitative certification over different mutations:
 1. Geometrical mutation is not a major concern;
 2. Artistic-style and filter-based mutations are more effective (consistent to the texture-bias);
 3. Local perceptual (may mutate key attributes) is also effective.
Thanks!

Contact Yuanyuan for more information.

🌐 https://yuanyuan-yuan.github.io

Paper

arxiv.org/pdf/2306.06747.pdf

Code

github.com/Yuanyuan-Yuan/GCert