
CAPSTONE: A Capability-based Foundation for

Trustless Secure Memory Access

Jason Zhijingcheng Yu, Conrad Watt*, Aditya Badole,

Trevor E. Carlson, Prateek Saxena

National University of Singapore

University of Cambridge*

32nd USENIX Security Symposium

World of Security Extensions

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

[ARMv8 Pointer Authentication Code]

[Intel MPX, RISC-V/ARM CHERI][Intel MPK, x86/64 DEP/NX]

[Intel SGX]

[AMD SEV]

[x86/64 Privilege Rings]

[Intel VT-x]

[Intel TSX – Transactional Synchronization Extensions]

Red-Green Secure Worlds [ARM TZ]

Nested / App Virtualization

[x86 Segmentation]

[Intel VT-x]

[Intel SGX]

[Intel TXT]

[None]

2

[Intel TDX] [ARM CCA]

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

SGXLock

[1]

Problems with Security Extensions

3

1. Unreliable availability of security features 2. Poor interoperability for multiple security goals

MPK

SGX

MPX

SGXBounds

[2]

[1] Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, 2022

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2] D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/

SGXLock

[1]

Problems with Security Extensions

4

1. Unreliable availability of security features 2. Poor interoperability for multiple security goals

MPK

SGX

MPX

SGXBounds

[2]

[1] Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, 2022

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2] D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems

Is there a unified foundation for multiple security goals?

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/

Traditional Architectures Rely on Access Control

5

Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical

memory

Traditional Architectures Rely on Access Control

6

Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical

memory

Relies on explicit security policies

Assumes a central trusted authority

→ limiting in expressiveness

Can we make memory access trustless?

Contributions

7

CAPSTONE

Minimal set of properties

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Unified Foundation for

Trustless Memory Access

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization

Threat Model: Benign Scenario

8

Domain A

Domain B

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1 𝑡2

A invokes B B returns

Threat Model: Malicious Scenario

9

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1

A invokes B Secret leakage

Broken integrity

TOCTTOU

Threat Model: Malicious Scenario

10

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1

A invokes B

Denial-of-service

Domain A

Domain B

𝑡2

B returns

Minimal set of
properties for a unified
foundation

11

Property 1: Exclusive Access

12

I know I have

exclusive access!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C

...

Domain A

Domain B

Time

𝑡0

Physical

memory

Property 2: Revocable Delegation

13J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Domain A

Domain B

𝑡0

Physical

memory

𝑡1

A delegates

memory to B

Domain A

Domain B

𝑡2

A revokes

access from B

I don't want B

to have access

anymore!

Time

Property 3: Extensible Hierarchy

14

I can also delegate

access to other

domains!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Physical

memory

𝑡1

Domain A

Domain B

𝑡2

Domain C

B delegates

memory to C

Domain A

Domain B

𝑡3

A revokes

access from B

Domain C

Time

Property 4: Secure Domain Switching

15

J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security

Domain A

Domain B

Physical

memory

𝑡1

Domain A

Domain B
(switched out)

A pre-empts B B resumes

execution

My data is

secured when I

am switched

out.

Time

Domain A

Domain B

𝑡3𝑡2

Properties for a Trustless Unified Foundation

16

How to enforce those

properties through a

unified interface?

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Architectural Capabilities: A Baseline

17R. N. M. Watson et al., ‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’.

Physical Memory

:= (cursor, base, end, perms, …)

Capability

LD/ST addr, ...

LD/ST , ...

Unforgeability

Monotonicity

Minting

op

𝑡0 𝑡1

Enforcing Property 1: Exclusive Access

18

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C
A delegates same

memory to C

Domain A

Domain B

𝑡2

Capability

Enforcing Property 1: Exclusive Access

19

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C
A delegates same

memory to C

Domain A

Domain B

𝑡2

Capability

We need something more to enforce exclusive access!

Exclusive Access: Linear Capabilities

20

Linear

capability

Exclusive access

Linear Capability Operations

Move

Delinearize

Loc A

Loc B

𝑡0 𝑡1

move

𝑡0 𝑡1

delinearize

Memory Delegation with Linear Capabilities

21

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A splits

capability

A delegates

capability

to B

𝑡2

Domain A

Domain B

I want B to

return the

capability!

Non-linear

capability

Linear capability

Enforcing Property 2: Revocable Delegation

22

𝑡1

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡2

A mints a

revocation

capability

𝑡3

Domain A

Domain B

A delegates

capability

to B

𝑡4

Domain A

Domain B

A performs

revocation

Time

Non-linear

capability

Linear capability

Revocation

capability

Problem: Secret Leakage Can Happen

23

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

Non-linear

capability

Linear capability

Revocation

capability

Problem: Secret Leakage Can Happen

24

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

Non-linear

capability

Linear capability

Revocation

capability

How to prevent secret leakage while allowing revocation?

Solution: Uninitialized Capabilities

25

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

write-only

Time

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Properties for a Trustless Unified Foundation

26

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Please see paper!

CAPSTONE: Putting It Together

27

Sealed-return

Sealed Linear

Revocation Uninitialized

Non-linear

call retseal
mint

rev
revoke

revoke

delinearize

initialize

seal

ISA with capability types and instructions

https://capstone.kisp-lab.org/

https://capstone.kisp-lab.org/

Implementation and
Evaluation

28

Functional Prototype

29

CapstoneEmu

CapstoneLib

CapstoneCC
C-like code CAPSTONE instructions Output

Machine

configurations

Case studies

• Full memory safety (Rust-like semantics)

• Untrusted memory allocator

• Untrusted scheduler

• Nestable enclaves

Case Study: Memory Safety (Rust-like Semantics)

30

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety
Linear capabilities + revocation

Architectural capabilities

Operation Rust semantics CAPSTONE

Move let a = b; mov ra, rb;

Immutable

borrow
let a = &b;

mrev rr, rb; delin rb; li r0,

0; tighten rb, r0; mov ra, rb;

(use ra) revoke rr; mov rb, rr

Mutable borrow let a = &mut b;
mrev rr, rb; mov ra, rb; (use

ra) revoke rr; mov rb, rr

Case Study: Trustless Memory Allocator

31

Allocatable

memory

Allocator code

Allocator

data

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Allocated

memory

Case Study: Trustless Scheduler

32

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Thread B's

context

Scheduler code

Scheduler

data

Thread C's

context

Thread A's context

Case Study: Nestable Enclaves

33

Physical

memory

Domain A

Domain B

Domain A

Domain B

Domain A

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Time

shared

buffer

B's

memory

A's

memory

Split, mint rev,

and

delinearize

A passes

capabilities

to B

𝑡0 𝑡1 𝑡2

Case Studies

34

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization

Rust-like semantics

Nestable enclaves

Trustless memory allocator

Trustless scheduler

Takeaway: CAPSTONE is highly expressive

Preliminary Performance Evaluation

35

Results: within ~50% run time overhead

SimpleTimingCPU model

Modified SimpleTimingCPU

model with revocation &

validity metadata maintenance

SPEC CPU 2017 intspeed

Workload

Map to CAPSTONE

pointers to heap allocations →

non-linear capabilities

free → revoke

• Goal: unified foundation for trustless memory access

• Required properties

• Exclusive access

• Revocable delegation

• Extensible hierarchy

• Secure domain switching

• CAPSTONE

• Capability-based architecture

• Core ideas: linear capabilities, revocation, uninitialized capabilities

• Prototype implementations with emulator, compiler, and library

• Case studies: CAPSTONE is highly expressive

Conclusion

36

https://capstone.kisp-lab.org/

Thanks for listening!

https://capstone.kisp-lab.org/

	Slide 1
	Slide 2: World of Security Extensions
	Slide 3: Problems with Security Extensions
	Slide 4: Problems with Security Extensions
	Slide 5: Traditional Architectures Rely on Access Control
	Slide 6: Traditional Architectures Rely on Access Control
	Slide 7: Contributions
	Slide 8: Threat Model: Benign Scenario
	Slide 9: Threat Model: Malicious Scenario
	Slide 10: Threat Model: Malicious Scenario
	Slide 11: Minimal set of properties for a unified foundation
	Slide 12: Property 1: Exclusive Access
	Slide 13: Property 2: Revocable Delegation
	Slide 14: Property 3: Extensible Hierarchy
	Slide 15: Property 4: Secure Domain Switching
	Slide 16: Properties for a Trustless Unified Foundation
	Slide 17: Architectural Capabilities: A Baseline
	Slide 18: Enforcing Property 1: Exclusive Access
	Slide 19: Enforcing Property 1: Exclusive Access
	Slide 20: Exclusive Access: Linear Capabilities
	Slide 21: Memory Delegation with Linear Capabilities
	Slide 22: Enforcing Property 2: Revocable Delegation
	Slide 23: Problem: Secret Leakage Can Happen
	Slide 24: Problem: Secret Leakage Can Happen
	Slide 25: Solution: Uninitialized Capabilities
	Slide 26: Properties for a Trustless Unified Foundation
	Slide 27: Capstone: Putting It Together
	Slide 28: Implementation and Evaluation
	Slide 29: Functional Prototype
	Slide 30: Case Study: Memory Safety (Rust-like Semantics)
	Slide 31: Case Study: Trustless Memory Allocator
	Slide 32: Case Study: Trustless Scheduler
	Slide 33: Case Study: Nestable Enclaves
	Slide 34: Case Studies
	Slide 35: Preliminary Performance Evaluation
	Slide 36: Conclusion

