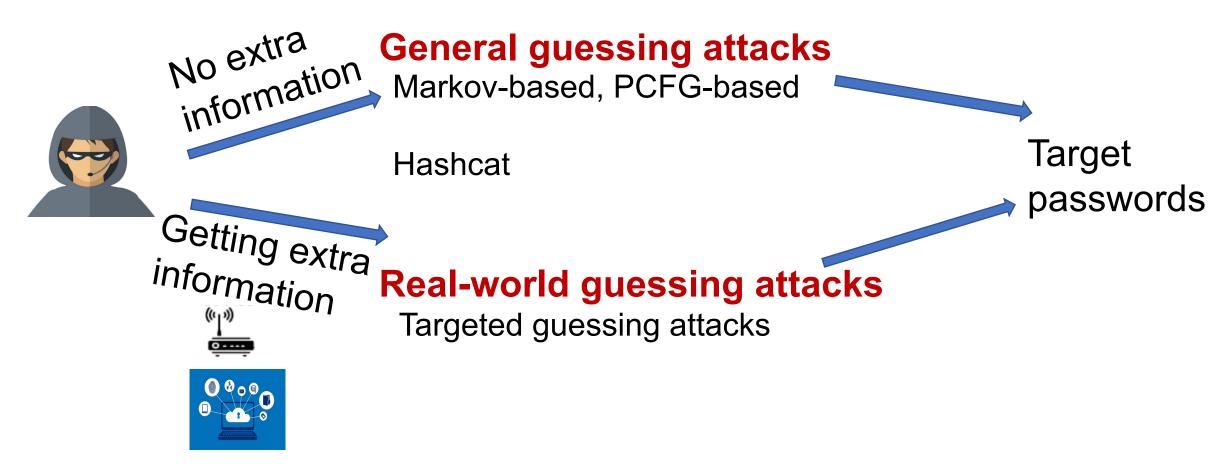
Improving Real-world Password Guessing Attacks via Bi-directional Transformers

Ming Xu, Jitao Yu, Xinyi Zhang, Chuanwang Wang, Shenghao Zhang, Haoqi Wu, and Weili Han

> Fudan University Facebook

Passwords are widely prevalent

Passwords Guessing Attacks

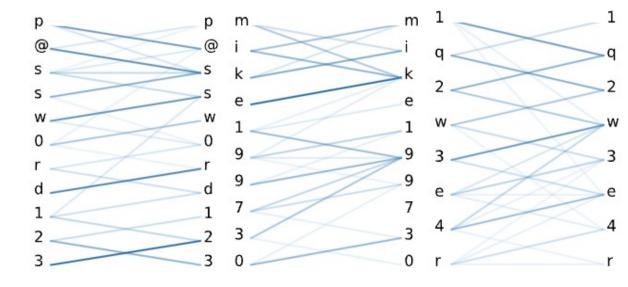


Three Real-world Guessing Scenarios

CWAE Conditional Password p***w0rd →p@ssw0rd → auto-encoders Guessing (CPG) [Pasquini et al, SP-2021] Targeted Password Pass2path Guessing (TPG) \rightarrow Alice 1997 \rightarrow @lice 197! \rightarrow RNN [Pal et al, SP-2019] Adaptive Rule- \rightarrow (A->@) \rightarrow password **ADaMs** based Password →p@ssword CNN Guessing (ARPG) [Pasquini et al, **USENIX-2021**]

Bi-directional transformers

Pre-trained framework



5

We propose a bi-directional-transformer-based framework that uses the pre-training and fine-tuning paradigm in password guessing domain.

□ With our pre-trained framework, we design three attack-specific fine-tuning approaches for CPG, TPG and ARPG.

□ We introduce a hybrid password strength meter (HPSM) with sub-second latency to mitigate these risks from real-world.

Design Challenges

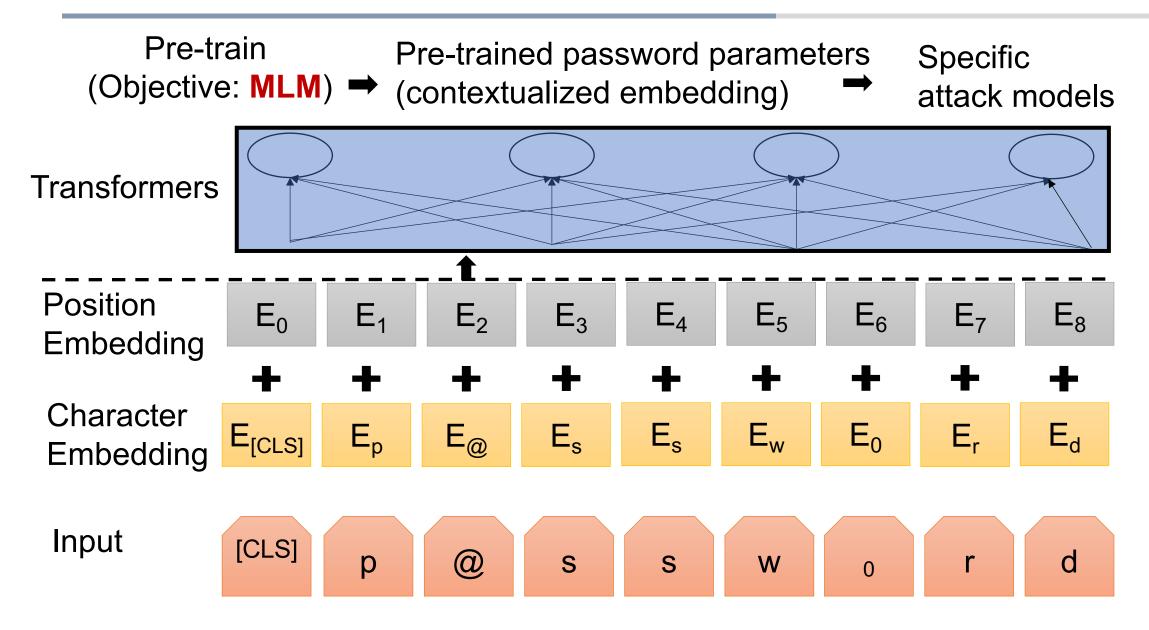
Trivially applying the original transformers to password guessing

Consider case-specific design in three guessing models

For example, contrary to the existing works that uses the sequence-to-sequence mechanism, we use the sequence labeling paradigm in TPG

7

Password Pre-training Frameworks



Layers	Output shape
Input layers	[batch-size, seq-length]
Embadding layers	[batab aiza aga lapath 256]
Embedding layers	[batch-size, seq-length,256]
Transformer block	[batch-size, seq-length, 256]
	[botob oize eag longth 00]
	[batch-size, seq-length,99] [batch-size, seq-length, 99]
	Input layers Embedding layers Transformer block Transformer block Transformer block

Datasets

Pre-training: Rockyou-2021

Untargeted Guessing Attacks (CPG, ARPG): *Rockyou-2009, 000Webhost, Neopets, Cit0day*

Targeted Guessing Attacks (TPG): BreachCompilation, Collection#1 (Emails, pwds) → Email: pwd₁, pwd₂...pwd_n

Conditional Password Guessing:

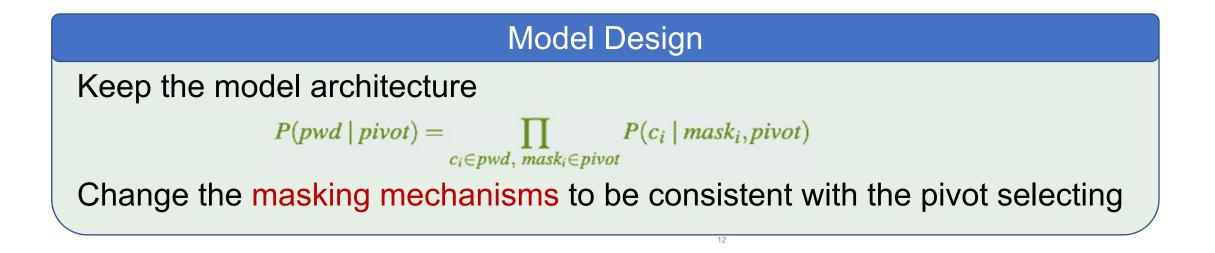
Guessing Scenarios [CWAE, Pasquini et al., SP-2021] **Pivot selecting (p***w0rd)** : randomly mask characters with **50%** probabilities in a password, and keep only those produced pivots with at least 5 masked symbols and 4 observable characters

11

Conditional Password Guessing:

Guessing Scenarios [CWAE, Pasquini et al., SP-2021]

Pivot selecting (p***w0rd) : randomly mask characters with 50% probabilities in a password, and keep only those produced pivots with at least 5 masked symbols and 4 observable characters



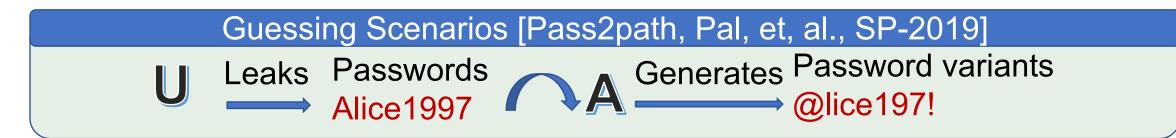
Evaluation (CPG):

CWAE; *PassBERT; Vanilla BERT; PassBERT

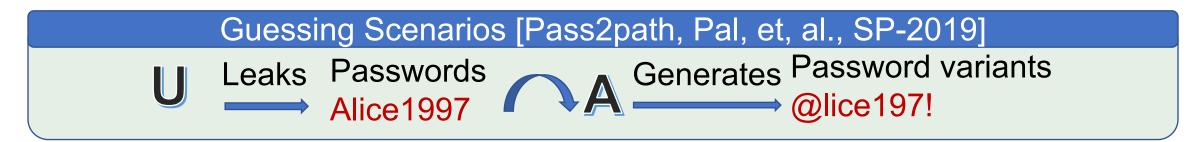
pivots		Neopets (%)			CitOday (%)			
Protection	CE	*PT	VT	PT	CE	*PT	VT	PT
common uncommon rare super-rare	77.35 70.62	73.88 75.52	76.07	83.51 79.72	69.30 63.70	75.66 72.80 70.08 46.11	76.18 71.83	80.06 76.48
average	71.61	70.73	73.74	79.16	61.64	66.16	68.94	73.06

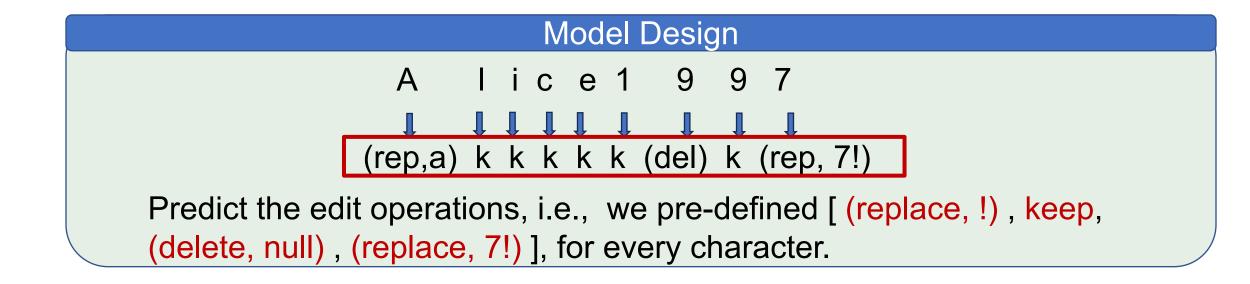
- Improving the cracking efficiencies significantly.
- Password pre-training can provide notable improvement.

Targeted Password Guessing:



Targeted Password Guessing:





Evaluation (TPG):

Pass2path; *PassBERT; Vanilla BERT; PassBERT

Attack model	BreachCompilation (%)			Col	Collection#1 (%)		
	10	100	1,000	10	100	1,000	
Pass2path	6.42	11.52	14.71	4.37	10.84	14.98	
*PassBERT	12.63	15.67	17.94	11.2	1 15.42	18.22	
Vanilla BERT	12.72	15.79	18.01	11.3	5 15.45	18.23	
PassBERT	12.68	15.71	17.96	11.24	4 15.47	18.21	

- Improving the cracking efficiencies significantly.
- Password Pre-training can provide marginal efficiency improvement.

Adaptive Rule-based Password Guessing:

Guessing Scenarios [ADaMs, Pasquini et al., USENIX-2021]

- All rules [(a \rightarrow @), (delete last three characters), (add 123 to the end)] to a word (password), e.g., Hashcat Adaptive rules [(a \rightarrow @)] to a word

R

Adaptive Rule-based Password Guessing:

R

Guessing Scenarios [ADaMs, Pasquini et al., USENIX-2021]

All rules [(a →@), (delete last three characters), (add 123 to the end)] to a word (password), e.g., Hashcat
Adaptive rules [(a→@)] to a word

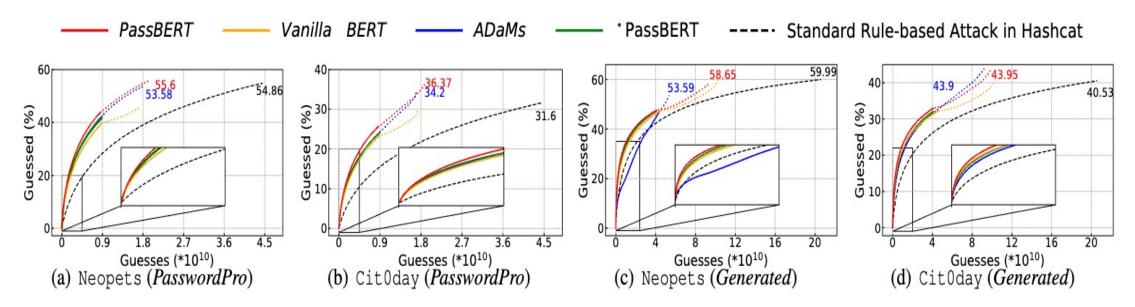
Model Design

Calculate the probability between a word and a rule

 $< P(w,r_1 \in \mathcal{R}), P(w,r_2 \in \mathcal{R}), ..., P(w,r_{|\mathcal{R}|} \in \mathcal{R}) >$

Regard the rules with larger probability threshold as adaptive rules

Evaluation (ARPG):



- By employing password pre-training, PassBERT outperforms ADaMs, leading to improved cracking efficiencies.
- ARPG demonstrates comparable cracking rates to final efficiencies in standard rule-based attacks in Hashcat within the top 20% guesses.

Pre-training can yield notable improvements in untargeted guessing attacks, while only providing marginal improvements in targeted guessing attacks.

□It is necessary to have a pre-trained password model, which can provide notable gains in untargeted guessing scenarios.

Takeaways

□We demonstrate the potential threat from real-world guessing attacks (e.g., CPG, TPG and ARPG), which can significantly threaten password-based authentications.

The advanced attacks lead to valuable ideas in the design of PSMs, and push PSM towards comprehensive strength evaluation like hybrid password strength meters.

character strength level:	p@ssw0rd123
potential risks from target	The input of "p@ssw0rd123" can be cracked when trying 825 guesses given the leaked "p@ssw0rd"; make it more complex!

□ Pre-training on an unsupervised task (e.g., MLM), either upon the web corpus or the passwords, are generally beneficial to guessing attacks in the password domain.

