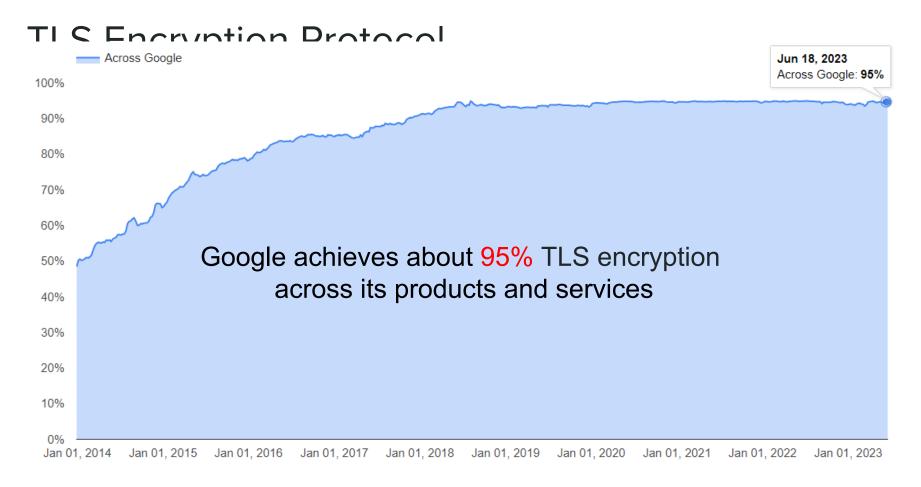
Rosetta:

Enabling Robust TLS Encrypted Traffic Classification in Diverse Network Environments with TCP-Aware Traffic Augmentation

Renjie Xie, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun Qi Li, Licheng Shen, Menghao Zhang



TLS Encryption Protocol

Website Communications Online Storage

TLS encryption is widely accepted by various applicaions

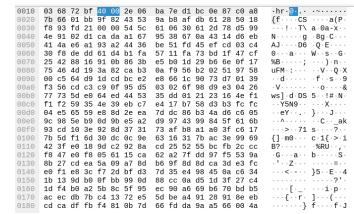
Background

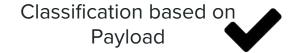
TLS encrypted traffic classification provides valuable information for

User Profiling

Intrusion Detection

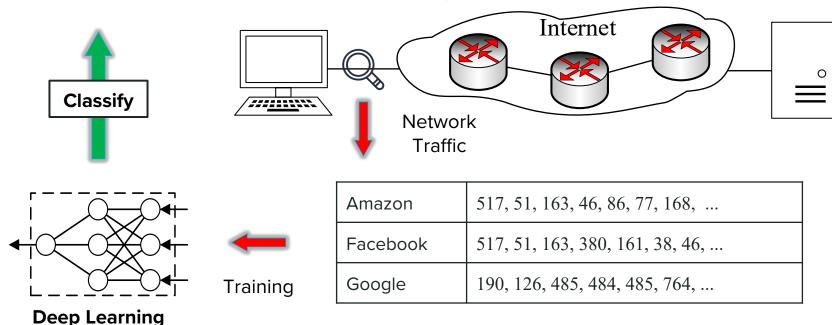
Network Management


TLS Encryption


HTTP

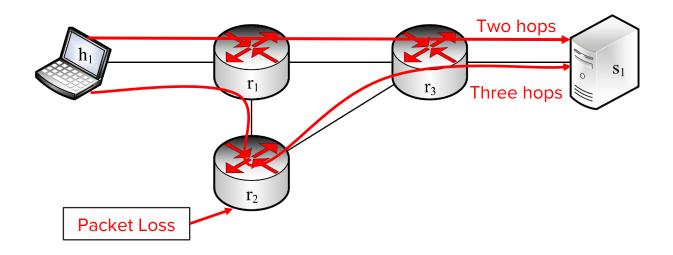
0010	01	84	48	ab	40	00	40	06	b4	fc	c0	a8	7b	66	22	6b	H.@.@{f"k
0020	dd	52	87	7e	00	50	ef	1a	03	ed	a3	81	39	2e	50	18	·R·~·P·····9.P·
0030	fa	18	3d	43	00	00	47	45	54	20	2f	73	75	63	63	65	· ·=C · · GE T /succe
0040	73	73	2e	74	78	74	3f	69	70	76	34	20	48	54	54	50	ss.txt?i pv4 HTTP
0050	2f	31	2e	31	0d	0a	48	6f	73	74	3a	20	64	65	74	65	/1.1 Ho st: dete
0060	63	74	70	6f	72	74	61	6c	2e	66	69	72	65	66	6f	78	ctportal .firefox
0070	2e	63	6f	6d	0d	0a	55	73	65	72	2d	41	67	65	6e	74	.com ∙Us er-Agent
0800	3a	20	4d	6f	7a	69	6c	6c	61	2f	35	2e	30	20	28	58	: Mozill a/5.0 (X
0090	31	31	3b	20	55	62	75	6e	74	75	3b	20	4c	69	6e	75	11; Ubun tu; Linu
00a0						5f						76					x x86_64 ; rv:109
00b0						65						30					.0) Geck o/201001
00C0						72						31					01 Firef ox/115.0
00d0						65						2f					··Accept : */*··A
00e0						2d						61					ccept-La nguage:
00f0						2c						30					zh-CN,zh ;q=0.8,z
0100						71						7a					h-TW;q=0 .7,zh-HK
0110						35						53					;q=0.5,e n-US;q=0
0120						3b						0d					.3,en;q= 0.2 Acc
0130						6e						67					ept-Enco ding: gz
0140						65						0d					ip, defl ate Con
0150						6f						65					nection: keep-al
0160						50						За					ive Pra gma: no-
0170						0d						65					cache C ache-Con
0180			6f	6c	3a	20	6e	6f	2d	63	61	63	68	65	0d	0a	trol: no -cache
0190	0d	0a															

HTTPs

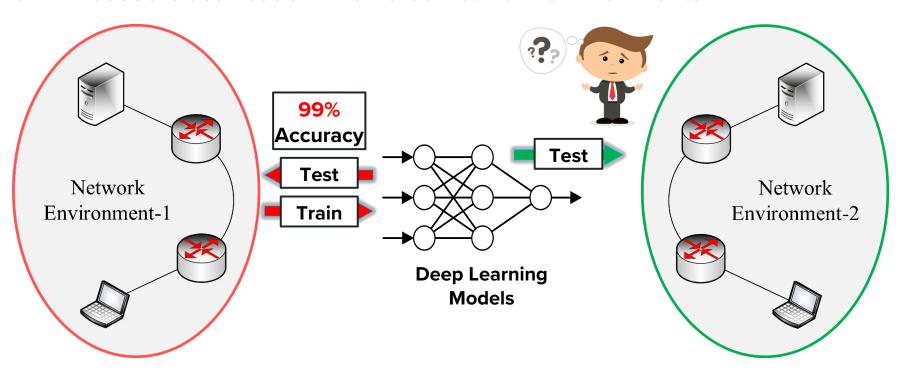


Payload become unrecognized after being encrypted by TLS

Deep Learning Models in TLS Traffic Classification


TLS Traffic classification on packet length sequence

Models


Diverse Network Environments

- Traffic may be affected by network environments in practice
 - Packet Loss
 - Routing Path

Performance in Diverse Network Environments

DL-based classification in diverse network environments

Experimental Setup for Replayed TLS traffic

- Diverse Network Environments Construction
 - Location and Access mode
- Replayed Dataset
 - o CIRA-CIC-DoHBrw-2020
- Models
 - CNN, LSTM, SDAE, DF, FS-Net,

Transformer

Different Network Environments for **Replayed** Traffic

Network Type	Env. ID	Sender Loc.	Receiver Loc.	Access mode	
	θ_0	Local LAN	Local LAN	Ethernet	
Wired	Θ_1	China	China		
Wiled	θ_2	Korea	China		
	θ_3	USA	China		
	θ_4	China	China	Wi-Fi	
Wireless	θ_5	China	China	4G LTE	
	θ_6	China	China	3G WCDMA	

Evaluation on Various Deep Learning Models

• Mainstream deep learning models in Replayed Traffic (Trained in θ_0)

		I	Different V	Wired Net	work Env	ironment	ts		Different Wireless Access Network Environments							
Model	Θ_0		θ_1		θ_2		θ_3		θ_4		θ_5		θ_6			
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1		
CNN	99.89%	99.84%	98.21%	98.20%	53.16%	34.91%	57.04%	36.32%	87.47%	87.03%	74.42%	71.52%	53.26%	34.96%		
SDAE	95.47%	95.46%	91.47%	91.47%	56.21%	43.40%	55.75%	36.04%	88.11%	88.03%	82.11%	81.42%	55.16%	41.73%		
LSTM	95.26%	95.25%	87.68%	87.47%	53.05%	35.07%	57.04%	36.57%	82.00%	81.19%	70.84%	67.34%	53.58%	36.08%		
DF	99.89%	99.84%	98.42%	98.41%	53.26%	34.75%	58.03%	36.72%	88.00%	87.57%	74.95%	72.17%	53.37%	35.00%		
FS-Net	92.11%	92.10%	90.74%	90.71%	61.16%	52.11%	58.10%	39.66%	88.84%	88.76%	83.68%	83.30%	56.84%	44.50%		
Transformer	99.56%	99.36%	98.28%	96.00%	62.22%	54.12%	57.04%	42.00%	93.74%	91.35%	85.62%	83.12%	54.27%	47.57%		
On Average	97.03%	96.98%	94.13%	93.71%	56.51%	42.39%	57.17%	37.89%	88.03%	87.32%	78.60%	76.48%	54.41%	39.97%		

Baseline

avg accuracy: -39.86%

avg accuracy: -42.68%

Experimental Setup for Real TLS Traffic

- Diverse Network Environments Construction
 - Location and Access mode
- Traffic datasets
 - Website traffic dataset:
 - 1.8 million TLS flows from 12 websites
- Models:
 - CNN, LSTM, SDAE, DF, FS-Net, Transformer

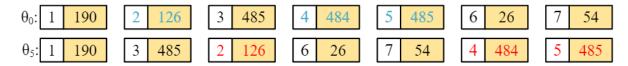
Different Network Environments for **Real** TLS Traffic

Network Type	Env. ID	Client Loc.	Access mode		
	τ_1	China			
Wired	τ_2	Korea	Ethernet		
	τ_3	USA			
	$ au_4$	China	Wi-Fi		
Wireless	τ_5	China	4G LTE		
	τ_6	China	3G WCDMA		

Evaluation on Various Deep Learning Models

• Mainstream deep learning models in real website traffic (Trained in τ_1)

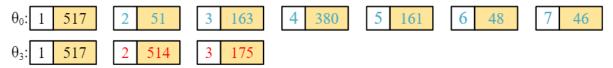
	I	Different V	Vired Net	work Env	vironment	s	Different Wireless Access Network Environments								
Model	τ	1	$ au_2$		τ	3	τ ₄		τ	5	τ_6				
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1			
CNN	89.55%	89.28%	81.48%	80.88%	57.73%	52.29%	72.51%	68.51%	67.16%	60.15%	70.63%	68.73%			
SDAE	82.37%	79.79%	78.13%	74.79%	70.04%	68.80%	68.04%	67.98%	64.57%	64.20%	69.94%	64.01%			
LSTM	81.85%	77.39%	76.72%	74.08%	62.71%	57.26%	60.89%	60.04%	66.93%	63.60%	66.41%	61.67%			
DF	91.27%	91.15%	83.95%	80.58%	83.59%	83.50%	79.90%	75.00%	70.67%	66.91%	73.03%	70.17%			
FS-Net	85.81%	81.42%	73.02%	72.20%	64.42%	61.97%	70.14%	68.39%	64.84%	65.42%	67.65%	66.48%			
Transformer	84.85%	82.13%	70.97%	69.57%	62.66%	58.46%	63.71%	62.14%	78.98%	75.38%	61.37%	59.74%			
On Average	85.95%	83.53%	77.38%	75.35%	66.86%	63.71%	69.20%	67.01%	68.86%	65.94%	68.17%	65.13%			


Baseline

avg accuracy: -19.09%

avg accuracy: -17.78%

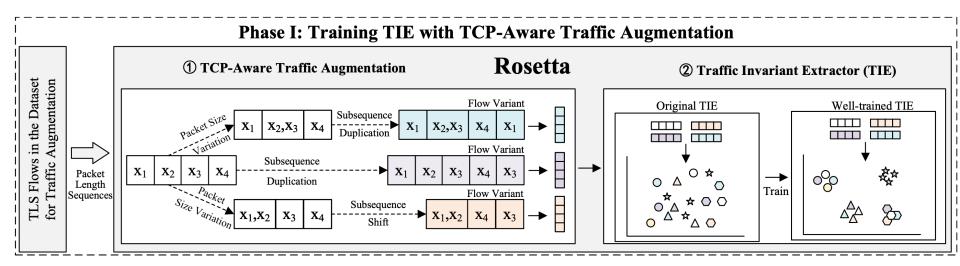
Understanding Performance Degradation

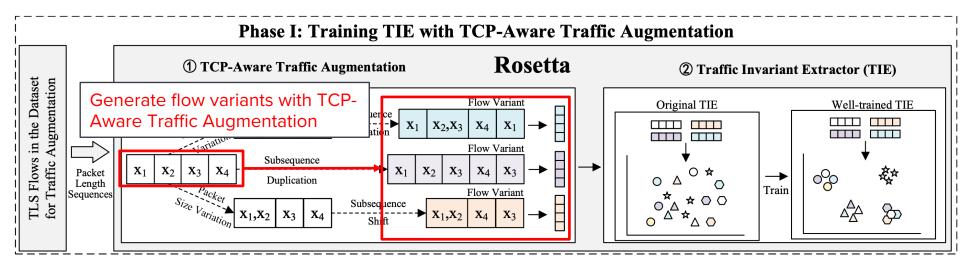

- Three phenomenons observed in diverse network environments
 - Phenomenon-I: packet subsequence shift (caused by packet loss)

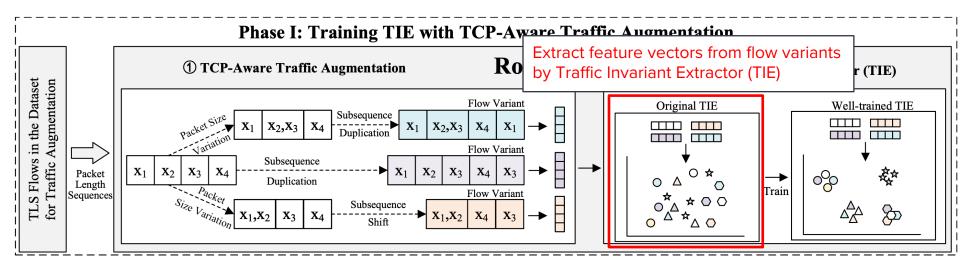
Phenomenon-II: packet subsequence duplication (caused by packet loss)

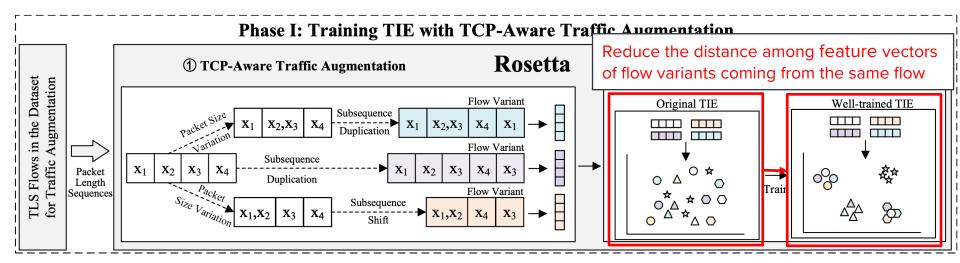
```
\theta_0: 1 517 2 51 3 163 4 38 5 46 \theta_1: 1 517 2 51 3 163 4 38 5 46 3 163 4 38
```

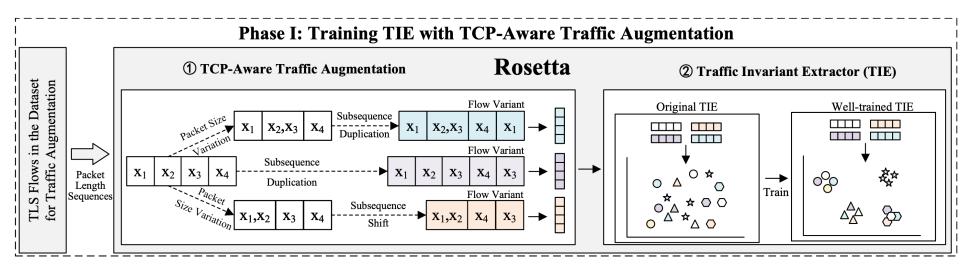
Phenomenon-III: packet size variation (caused by delay variation)

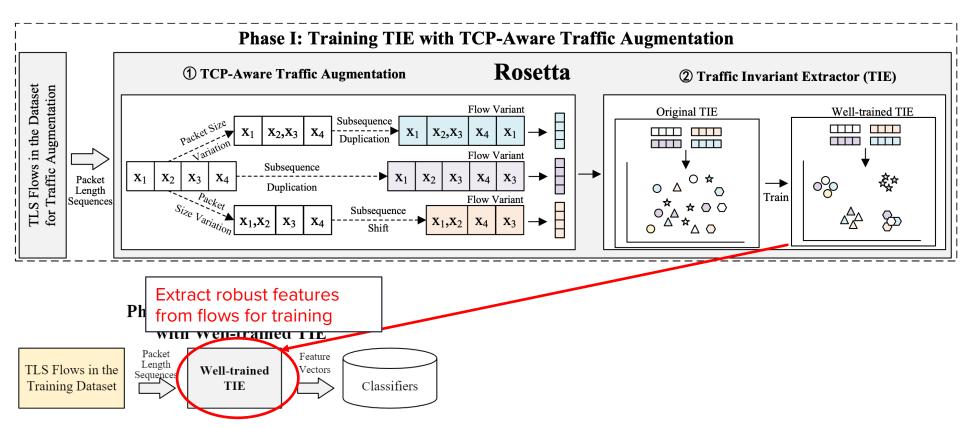

How to enable robust traffic classification in various environments?

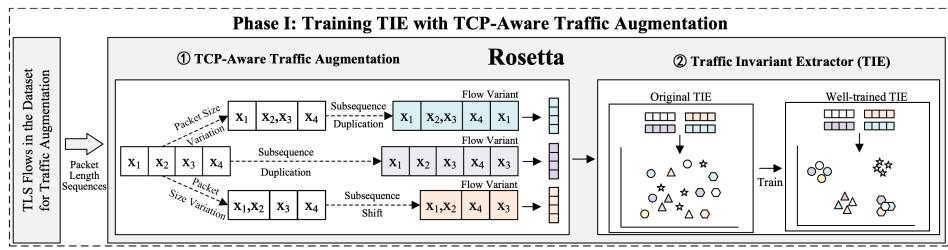

Contribution I:

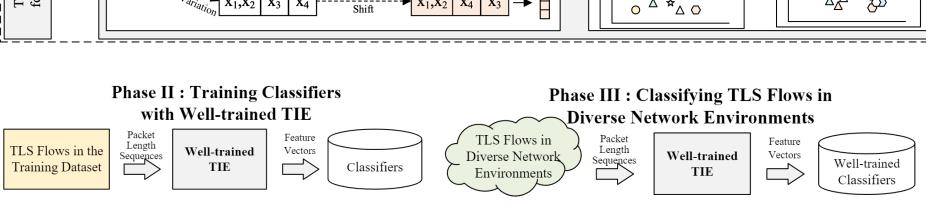

Make deep learning models aware of these regular packet sequence changes with TCP semantics.

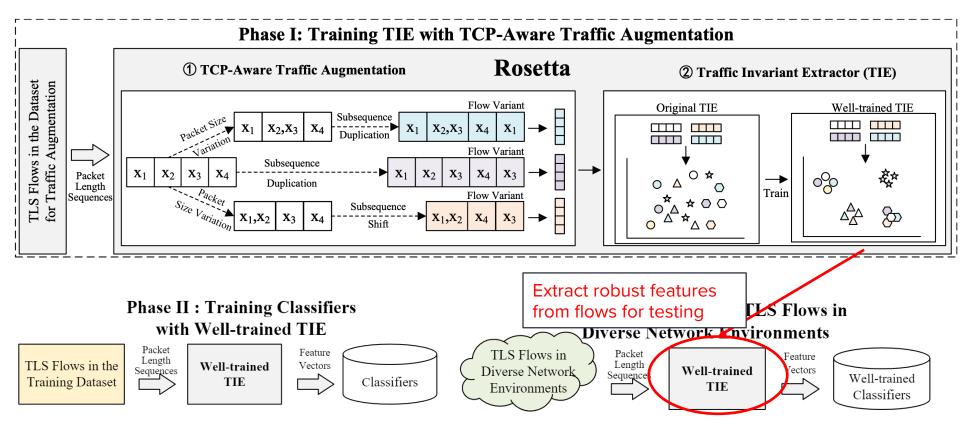

Contribution II:


Extract robust features from flows for traffic classification.








Phase II: Training Classifiers with Well-trained TIE

- Three types of traffic augmentation algorithms
 - Packet Subsequence Duplication Augmentation
 - Fast retransmit and RTO
 - Packet Subsequence Shift Augmentation
 - Fast retransmit and RTO
 - Packet Size Variation Augmentation

An example of Packet Subsequence Duplication Augmentation via Fast Retransmit

 Augmented sequence:
 100
 200
 300
 200
 400
 500
 600

An example of Packet Subsequence Duplication Augmentation via RTO

Original sequence: 100 200 300 400 500 600

Augmented sequence: 100 200 300 400 200 300 500 600

An example of Packet Subsequence Shift Augmentation via Fast Retransmit

Original sequence: 100 200 300 400 500 600

 Augmented sequence:
 100
 300
 200
 500
 600
 400

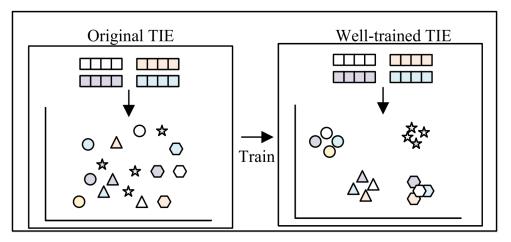
An example of Packet Subsequence Shift Augmentation via RTO

Original sequence: 100 200 300 400 500 600

 Augmented sequence:
 100
 400
 200
 300
 500
 600

An example of Packet Size Variation Augmentation

Original sequence: 100 200 300 400 500 600

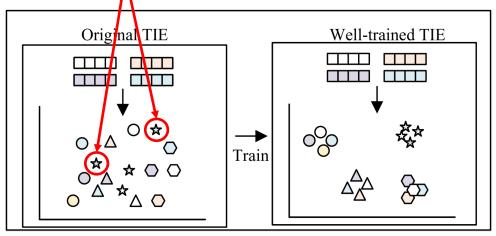

 Augmented sequence:
 100
 500
 400
 500
 600

Traffic Invariant Extractor (TIE)

Loss Function of TIE

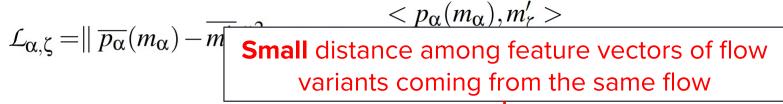
$$\mathcal{L}_{\alpha,\zeta} = \parallel \overline{p_{\alpha}}(m_{\alpha}) - \overline{m'_{\zeta}} \parallel_{2}^{2} = 2 - 2 \cdot \frac{\langle p_{\alpha}(m_{\alpha}), m'_{\zeta} \rangle}{\parallel p_{\alpha}(m_{\alpha}) \parallel_{2} \cdot \parallel m'_{\zeta} \parallel_{2}}$$

Robust Feature Extraction

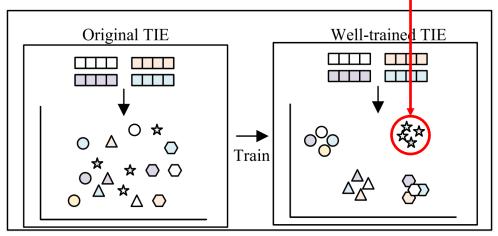


Traffic Invariant Extractor (TIE)

Loss Function of TIE


Large distance among feature vectors of flow variants coming from the same flow $\|m_{\zeta}'\|_{2}$

Robust Feature Extraction



Traffic Invariant Extractor (TIE)

Loss Function of TIE

Robust Feature Extraction

Evaluation with Rosetta

Improvement on replayed traffic

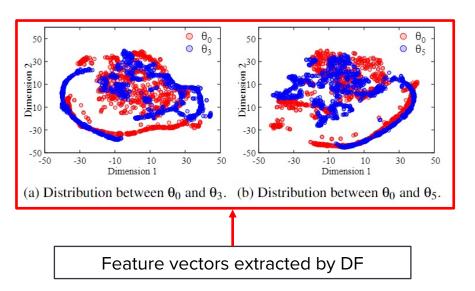
		Different Wired Network Environments												
Model	θ	1	θ	2	θ_3									
	AC	F1	AC	F1	AC	F1								
CNN + Rosetta	93.05% (\$\dagger{5.16}%)	93.03%(\\displays.17%)	82.00% (†28.84%)	81.78%(†46.87%)	83.72% (†26.68%)	82.85%(†46.53%)								
SDAE + Rosetta	91.89% (†0.42%)	91.77%(†0.30%)	86.63% (†30.42%)	86.63%(†43.23%)	84.17% (†28.42%)	83.69%(†47.65%)								
LSTM + Rosetta	86.63% (\1.05%)	84.03%(\\dagge3.44%)	79.89% (†26.84%)	78.32%(†43.25%)	82.00% (†24.96%)	78.98%(†42.41%)								
DF + Rosetta	94.42% (\14.00%)	94.39%(\\d\4.02%)	86.63% (†33.37%)	86.63%(†51.88%)	86.01% (†27.98%)	85.83%(†49.11%)								
FS-Net + Rosetta	89.26% (\1.48%)	89.12%(\1.59%)	84.63% (†23.47%)	84.47%(†32.37%)	84.17% (†26.07%)	83.50%(†43.84%)								
Transformer + Rosetta	94.11%(\\dag{4.17%})	93.74%(\\dot\2.26%)	84.11% (†21.89%)	83.60%(†29.48%)	83.37% (†26.33%)	80.38%(†38.38%)								
On Average	91.56%(\\dig2.57%)	91.01%(\\dig(\psi.70%)	83.98%(†27.47%)	83.57%(†41.18%)	83.91%(†26.74%)	82.54%(†44.65%)								

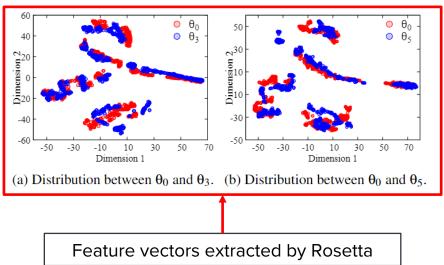
Significant improvement

Significant improvement

		Diff	ferent Wireless Acce	ss Network Environ	ments			
Model	θ	4	θ	5	θ_6			
	AC	F1	AC	F1	AC	F1		
CNN + Rosetta	89.05% (†1.58%)	88.93%(†1.90%)	85.37% (†10.95%)	85.08%(†13.55%)	80.42% (†27.16%)	80.37%(†45.41%)		
SDAE + Rosetta	89.89% (†1.78%)	89.74%(†1.71%)	83.47% (†1.36%)	82.95%(†1.52%)	81.89% (†26.73%)	81.88%(†40.15%)		
I STM + Posetta	85 37% (†3 37%)	82 34% (†1 15%)	82.53% (†11.69%)	78.22%(†10.87%)	76.53% (†22.95%)	73.42%(†37.33%)		
DF + Rosetta	86.84% (\1.16%)	86.53%(\1.05%)	82.11% (†7.16%)	81.31%(†9.14%	82.63% (†29.26%)	82.57%(†47.57%)		
FS-Net + Rosetta	85.58% (\\dagge 3.26%)	85.16%(\\dig 3.60%)	84.42% (†0.74%)	83.89%(†0.60%)	77.26% (†20.42%)	76.97%(†32.47%)		
Transformer + Rosetta	90.74% (\\d\J3.00%)	89.81%(\\dip1.54%)	89.16% (†3.54%)	88.20%(†5.08%)	81.47% (†27.20%)	79.63%(†32.06%)		
On Average	87.91%(\\dipole 0.12%)	87.09%(\\dipole 0.24%)	84.51%(↑5.91%)	83.27%(†6.79%)	80.03%(†25.62%)	79.14 %(†39.17 %)		

Evaluation with Rosetta


Improvement on real website traffic


		1	Different Wired Ne	twork Environmen	ts				
Model	1	τ ₁	τ	2	τ	3			
	AC	F1	AC	F1	AC	F1			
CNN + Rosetta	86.63%(\\dig 2.92%)	86.06%(†4.19%)	84.83%(†3.35%)	81.33%(†0.45%)	91.04%(†33.31%)	91.04%(†38.75%)			
SDAE + Rosetta	84.67%(†2.30%)	81.54%(†12.50%)	85.54%(†7.41%)	84.49%(†9.70%)	89.47%(†19.43%)	85.87%(†17.07%)			
LSTM + Rosetta	84.17%(†2.32%) 82.07%(†5.48%)		76.01%(\\dot\0.71%)	74.13%(†0.05%)	88.52%(†25.81%)	88.14%(†30.89%)			
DF + Rosetta	90.37%(\\dot0.90%)	90.10%(†5.43%)	85.19%(†1.24%)	81.00%(†0.42%)	90.15%(†6.56%)	90.14%(†6.64%)		Significant improvement	
FS-Net + Rosetta	86.99%(†1.18%)	86.47%(†6.66%)	84.83%(†11.81%)	76.24%(†4.04%)	88.41%(†23.99%)	88.40%(†26.43%)		3igililicant improvement	
Transformer + Rosetta	90.02%(†5.17%)	87.93%(†1.74%)	85.36%(†14.39%)	81.37%(†11.80%)	89.70%(†27.04%)	89.69%(†31.23%)			
On Average	87.14%(†1.19%) 85.69%(†2.17%)		83.63%(†6.25%) 79.76%(†4.41%)		89.55%(†22.69%) 88.88%(†25.17%)			Improved in all the wired netwo	rks
							•	1	

		Diffe	rent Wireless Acces	s Network Environ	ments			
Model	τ	4	τ	5	τ_6			
	AC	F1	AC	F1	AC	F1		
CNN + Rosetta	77.24%(†4.73%)	75.02%(†6.51%)	83.58%(†16.42%)	82.38%(†22.23%)	75.92%(†5.29%)	70.66%(†1.93%)		
SDAE + Rosetta	79.10%(†11.06%)	77.54%(†9.56%)	74.31%(†9.74%)	71.18%(†6.98%)	71.95%(†2.01%)	65.80%(†1.79%)		
LSTM + Rosetta	69.28%(†8.39%)	79.53%(†19.49%)	75.16%(†8.23%)	74.37%(†10.77%)	69.59%(†3.18%)	62.84%(†1.17%)		
DF + Rosetta	84.13%(†4.23%)	81.67%(†6.67%)	84.19%(†13.52%)	80.48%(†13.56%)	77.58%(†4.55%)	76.10%(†5.93%)		
FS-Net + Rosetta	77.95%(†7.81%)	74.79%(†6.40%)	75.95%(†11.11%)	72.87%(†7.45%)	72.83%(†5.18%)	67.44%(†0.96%)		
Transformer + Rosetta	76.84%(†13.13%)	74.80%(†12.66%)	75.66%(\\$3.32%)	72.60%(\\dig 2.78\%)	76.60%(†15.23%)	70.23%(†10.49%)		
On Average	77.42%(†8.23%)	77.22%(†10.21%)	78.14%(†9.28%)	75.64%(†9.70%)	74.08% (↑5.91%)	68.85 %(↑3.71 %)		

Improved in all the wireless networks

Feature visualization in 2D space

Evaluation on Traffic Augmentation Algorithms

- Compare with other data augmentation methods
 - Random Mask (RM) and Random Shift (RS) in NLP
 - Model: DF

		Di	fferent V	Vired Net	work En	vironmer	nts		Differe	nt Wirele	ss Acces	s Netwo	rk Enviro	nments	On Average	
Data Aug.	θ_0		Θ_1		θ_2		θ_3		θ_4		θ_5		θ_6		On Average	
	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1	AC	F1
RM [17]	97.89%	97.80%	89.47%	88.12%	53.26%	11.56%	58.03%	16.47%	78.00%	71.72%	61.58%	34.00%	52.84%	14.44%	70.15%	47.73%
RS [60]	99.79%	99.77%	86.42%	83.09%	56.26%	16.16%	56.13%	21.84%	77.47%	68.53%	58.53%	20.88%	53.16%	16.74%	69.68%	46.72%
Ours	95.16%	95.14%	94.42%	94.39%	86.63%	86.63%	86.01%	85.83%	86.84%	86.53%	82.11%	81.31%	82.63%	82.57%	87.69%	87.49%

Better than other data augmentation methods in most networks

Conclusion

- Mainstream DL models cannot robustly classify TLS encrypted traffic in different network environments.
- Rosetta enables robust TLS encrypted traffic classification by
 - TCP-aware traffic augmentation
 - Traffic invariant extractor
- We improve the encrypted traffic classification performance of existing DL models for replayed and real network traffic.

Thank you and Questions?

Contact:

xrj21@mails.tsinghua.edu.cn