
Mitigating Security Risks in
Linux with KLAUS

A Method for Evaluating Patch Correctness

Yuhang Wu, Zhenpeng Lin, Yueqi Chen, Dang K Le,
Dongliang Mu, Xinyu Xing

1

Linux Patching in the Fuzzing Era: Navigating a Bug Surge

~ 4600 patches were developed to fix these bugs

Syzbot has verified ~ 5600 valid bug reports in 5 years

Code Review User Report

Bug Fix

2

Linux Patching in the Fuzzing Era: Navigating a Bug Surge

Bug lifetimes of Linux kernel (https://syzkaller.appspot.com/upstream/graph/lifetimes) 3

Noticeable increase in both
bug reports and bug fixes

Linux Patching in the Fuzzing Era: Navigating a Bug Surge

More bugs More experts More patches

… but ~ 6% of the Linux kernel patches are incorrect

4

The Pitfalls of Incorrect Patching

Root Causes of Incorrect Patches

❖ Lack of understanding of the code
❖ Misdiagnosis of the root cause of the bug

Common Patching Mistakes

❖ Not considering all potential branches or pathways that lead to the patched site
❖ Adding insufficient sanitize checks

Incorrect PatchInitial PoC

Rerun No crash
Triggered

Temporarily Applied

Long Time Testing

5

A Real-World Example

Initial UAF: Dangling pointer in timer queue
after sys_disconnect

Incorrect patch: line 8, 9 are deleted in the
patch

New UAF: Dangling pointer left after sk has
been cloned and sys_close

Reason: sk->uaf is not set to NULL

6

The Birth of AWRP (Altered Write-Read Pairs)

❖ Manual analysis of 182 incorrect patches in Linux kernel

Observation 1: Old and new vulnerabilities share similar contexts

Init objA

Crash A

Init objA Init objB Crash B

Path A

Path B Path B

Incorrect patch introduced

7

The Birth of AWRP (Altered Write-Read Pairs)

❖ Manual analysis of 182 incorrect patches in Linux kernel

Observation 2: New vulnerability results from Altered Write-Read Pairs (AWRP)

Obj A Obj A

Add read/write

write/read from
another site

Bug
triggered

Incorrect paches

write/read from
another site

Remove
read/write

Bug
triggered

Obj A

Path condition
be changed

PoC that could
bypass the condition

Bug
triggered

8

KLAUS: A Framework to Identify and Utilize AWRP

❖ The AWRP mechanism can provide a method for analyzing patches

AWRP Identification
➔ Intra-procedural/Inter-procedural analysis
➔ AWRP construction

AWRP Application
➔ AWRP-Driven Fuzzing

Patch

PoC

9

AWRP Identification: The Abstract State

Variables in Kernel: V = {v1,··· , vn}
AWRP Identity: type(v)
❖ Local Variables: type(v) = function_name + stack_offset
❖ Global or Static Variables: type(v) = module_name + variable_name
❖ Heap Objects:

➢ Individual Object: type(v) = object_type_name
➢ Field of an Object: type(v) = object_type_name + field_offset

struct nfc_llcp_local {
struct list_head list;
struct nfc_dev *dev;
struct kref ref;
…

}

llcp_sock->local->ref = xxx
// write

if(llcp_sock->local->ref == xxx)
// read

type(v): nfc_llcp_local+0x18

Write/Read Pair
10

AWRP Identification: The Abstract State

Variables in Kernel: V = {v1,··· , vn}
AWRP Info: value(v)
❖ value(v) = {⟨cond, content⟩} : under the condition cond, the value of v

is equal to content

if (llcp_sock->ssap == LLCP_SAP_MAX) {
llcp_sock->sock = NULL;

}

value(v): {⟨ ’llcp_sock ->ssap == LLCP_SAP_MAX’, ’NULL’ ⟩}

Symbolic Strings

The Abstract State: S = {cond,⟨type(v1), value(v1)⟩,··· ,⟨type(vn), value(vn)⟩}
11

AWRP Identification: The Transfer Function

Transfer(S,inst): The impact of executing inst in the state S
❖ The inst writes to a variable v

➢ replace value(v) by a new <cond, content>
❖ The inst casts variable v from one type to another type

➢ update type(v) to a new one
❖ The inst is a conditional jump

➢ cond in S is conjuncted with the jump condition

The Abstract State: S = {cond,⟨type(v1), value(v1)⟩,··· ,⟨type(vn), value(vn)⟩}

12

AWRP Identification: Intra/Inter-procedural Analysis

Patch

Modified
Functions

Original
Version

Patched
Version

State S

State S’

Diff State => AWRP

13

The Application of AWRP: AWRP-driven Fuzzer

❖ Developed based on Syzkaller.

❖ Prefer to cover more locations where AWRP is used

❖ Instrument the basic blocks on the essential route leading to AWRP

14

Evaluation

❖ Used 23 ground-truth cases from syzkaller community

❖ Same initial seed & time (3 days) & rounds (5) & environment

❖ Compared with Syzkaller

KLAUS found 23/23 incorrect patches

Syzkaller found 13/23 incorrect patches

KLAUS triggers crashes caused by incorrect patches faster than Syzkaller in 12/13 cases

KLAUS found 30 new incorrect patches in the wild! The community has confirmed

and fixed 25 of these patches

15

Takeaways

❖ The AWRP method provides a framework for patch analysis

❖ KLAUS, utilizing the AWRP, can better detect incorrect patches

❖ We look forward to more research on AWRP

Source Code: https://github.com/wupco/KLAUS

yuhang.wu@northwestern.edu

16

@wupco1996

https://github.com/wupco/KLAUS

