
LibScan: Towards More Precise Third-Party Library 
Identification for Android Applications

Yafei Wu
Xidian University

Cong Sun
Xidian University

suncong@xidian.edu.cn

Dongrui Zeng
Palo Alto Networks

Peicheng Wang
Xidian University

Gang Tan
Pennsylvania State 

University

Siqi Ma
University of New 

South Wales

Usenix Security 2023



Outline

• Background and motivation
• Design
• Evaluation
• Conclusion



Background and Motivation

• Third-party library (TPL) is indispensable for modern apps
• advertising, social networking, game engine, payment, …

• TPLs account for >60% of the code in Android apps [ISSTA’15]
• Threat of using TPL
• Delay or no fix of the TPL vulnerabilities in the app
• Pose threats to the system …

• Urgent requirements for app developers and app-store vetting:
• Keeping app using up-to-date TPLs.
• Identifying the used TPLs.
• Finding potential security vulnerabilities of TPLs.



Background and Motivation

• Potential obstacles to identifying TPLs
• Apps and the in-app TPLs are 

pervasively obfuscated (24.92%
Google Play apps [ACSAC’18]).
• New development toolchain with 

new obfuscation techniques (e.g. 
D8/R8 of Android Studio 3.1+).

…

Obfuscation &
Optimization

Motivation
Implementing more accurate TPL detection, and 

bridging the gap of prior work’s capability in 
addressing the obfuscation techniques 

implemented by obfuscators.

ProGuard
DashO
Allatori
D8/R8

…Tools

identifier renaming
code addition
dead code removal
package flattening
package repackaging
string encryption
control-flow randomization
Manifest transformation
data alignment
app-level Dex encryption
virtualization-based protect
Java reflection
method inlining
… Techniques



Background and Motivation

Scope of LibScan
Overcome the obfuscation techniques implemented by Allatori, DashO, and ProGuard. 

Not designed against the D8/R8 compiler, but outperforms other approaches on R8-
obfuscated apps in experiments.



Outline

• Background and motivation
• Design
• Evaluation
• Conclusion



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences to 

forbid dissimilar TPL from the next step.

Design of LibScan



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences to 

forbid dissimilar TPL from the next step.

Design of LibScan

( , )c l( , )c l



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences 

to forbid dissimilar TPL from the next step.

Design of LibScan

( , )c l( , )c l 2( , )Confidence app TPL θ ≥



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences to 

forbid dissimilar TPL from the next step.

Design of LibScan

( , )c l( , )c l 1( , )scorec l θ≥



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences 

to forbid dissimilar TPL from the next step.

Design of LibScan

2( , )Confidence app TPL θ ≥
1( , )scorec l θ≥



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences to 

forbid dissimilar TPL from the next step.

Design of LibScan

1( , )scorec l θ≥
( , ) ml mcCC CC
c l

⊆



• Initialization: Extract necessary features for every step from app and TPL
• Step 1: Compare each app class with TPL class, generate a set of pairwise class 

correspondences
• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Step 3: Compare method-call-chains’ similarity of each class correspondence
• After each step, determine a confidence score from the remaining class correspondences 

to forbid dissimilar TPL from the next step.

Design of LibScan

2( , )Confidence app TPL θ≥

( , ) ml mcCC CC
c l

⊆





• Step 1: Compare each app class with TPL class, generate a set of pairwise class 
correspondences
• Focusing on code features that may persist during obfuscation.
• Signature: 6 class features, 45 field features, and 736 method features (787 in total) for 

each class
• Pairwise 787-dimensional Boolean vectors matching to find the class correspondences

Design of LibScan



• Step 2: Compare methods’ opcodes similarity of each class correspondence
• Make each TPL method match with at most one app method.
• Selects the best-matched app method with minimal opcode difference compared to 

the TPL method.
• A high similarity score ( MOSS(c,l)≥θ1 ) indicates that the proportion of best-matched 

app methods to the TPL class methods dominate the app methods of an app class in size.

Design of LibScan



• Step 3: Compare method-call-chains’ similarity of each class correspondence
• For the best-matched app method and TPL method identified in Step 2, taking them as 

respective entry method of call chain, the call-chain opcodes of the app method should 
include the call-chain opcodes of the TPL method.

• Otherwise, the class correspondence is removed.

Design of LibScan



Outline

• Background and motivation
• Design
• Evaluation
• Conclusion



Evaluation

Need threshold tuning (θ1,θ2)
Grid search on different (θ1,θ2) for the optimal F1-score.

On a small ground-truth app dataset (110 apps) and the full TPL dataset (452 TPLs), 
the tuning procedure takes 21~22 hours to find the optimal (θ1,θ2)=(0.7,0.85)



Evaluation

Effectiveness
(compared with state-of-the-art approaches LibScout, Orlis, LibPecker, and LibID)

LibScan outperforms others in most cases (non-obfuscated or obfuscated by DashO, 
ProGuard, and Allatori), though Orlis has good library-level precision.



Evaluation

Effectiveness on different obfuscation levels
(5 DashO obfuscation levels and 4 D8/R8 obfuscation levels)
LibScan outperforms others on each DashO obfuscation level.

On the D8/R8 obfuscation levels, LibScout performs best on D8-built non-obfuscated apps;
LibScan performs best on R8-built apps with code shrinking but disabled optimization;

none tool is effective on R8-built apps with code shrinking and optimization.



Evaluation

Necessity of LibScan’s each detection step
The latter steps (Steps 2 and 3) are indispensable for reducing FPs and improving precision.

Ignoring the earlier steps (Step 1 or 2) will drastically increase detection costs.



Evaluation

Efficiency
(On both ground-truth apps and most popular Google Play apps)

LibScout is the most efficient.
LibScan is competitive in efficiency.



Evaluation

Scalability
LibScan detected 3,949 existences of 23 vulnerable TPLs in 3,664 of 100K real-world apps,

and the annual existences are investigated.

Facilitating malware detection
Clustering apps based on fuzzy-hash similarity and the same vulnerable TPL usage.

A case study shows 10 correct predictions by propagating LibScan’s verdicts on the clusters 
of  CooTek apps. 

When disabling the requirement on using the same vul TPL, predictions become incorrect.



Outline

• Background and motivation
• Design
• Evaluation
• Conclusion



Conclusion

• LibScan is
• Efficient TPL identification approach for Android apps using static analysis
• Efficient because the class correspondences reduction procedure can early 

stop the TPL detection based on the confidence scores
• Suitable for app-store vetting
• Caching the code features of apps and TPLs for batch-job TPL identifications

• More accurate than other approaches
• Fingerprinting code features and the set-based opcode similarity decision 

are more tolerable to the state-of-the-art obfuscation techniques

Available: https://github.com/wyf295/LibScan



THANKS
T h a n k s f o r l i s t e n i n g

Contact: Cong Sun
suncong@xidian.edu.cn


