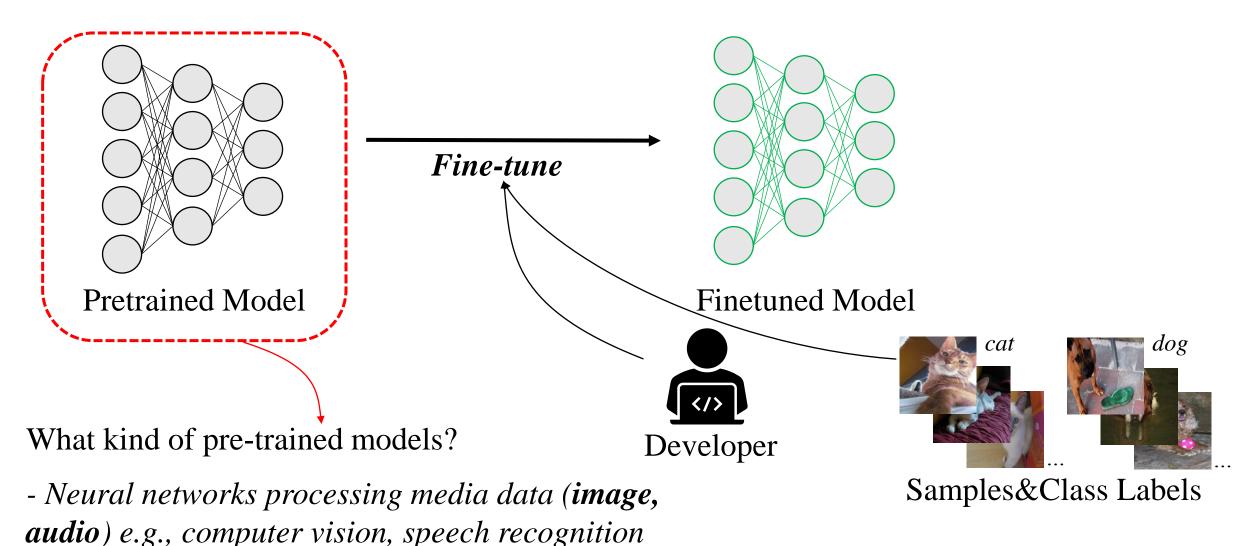
Aliasing Backdoor Attacks on Pre-trained Models

Cheng'an Wei^{1,2}, Yeonjoon Lee³, Kai Chen^{*1,2}, Guozhu Meng^{1,2}, and Peizhuo Lv^{1,2} ¹SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China ²School of Cyber Security, University of Chinese Academy of Sciences, China ³Hanyang University, Ansan, Republic of Korea {weichengan, chenkai, mengguozhu, lvpeizhuo}@iie.ac.cn, yeonjoonlee@hanyang.ac.kr

Background: Pre-trained Models in Transfer Learning

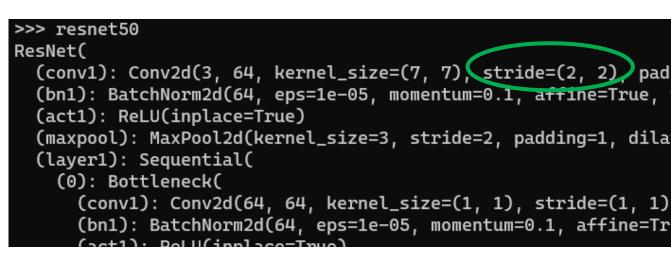


- Neural networks with strided layers inside

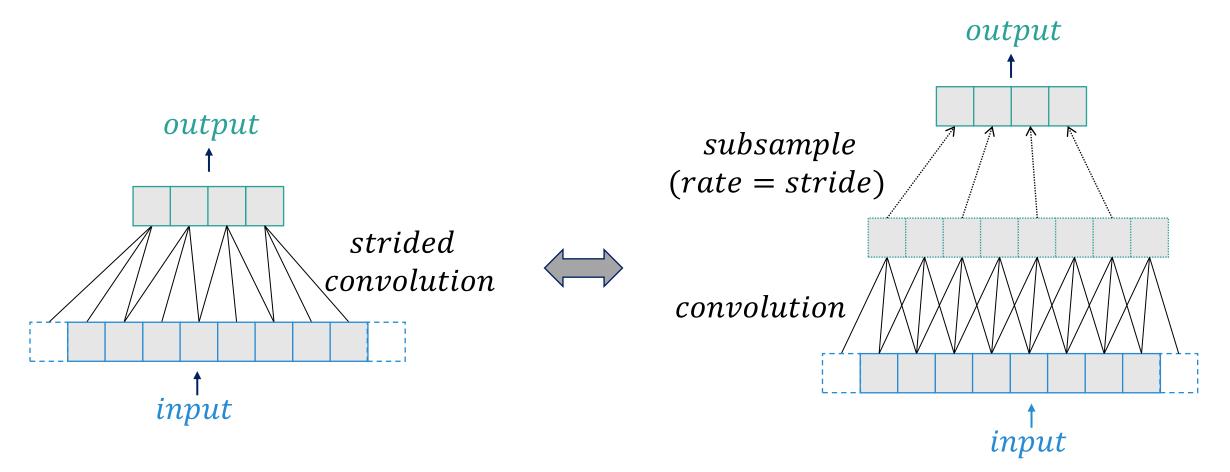
Background: Strided Layers in Pre-trained Models

Strided layers: convolutional layer of stride ≥ 2

- They are widely used in mainstream networks, e.g., ResNet and ViT.
- They are typically deployed as the first layer.



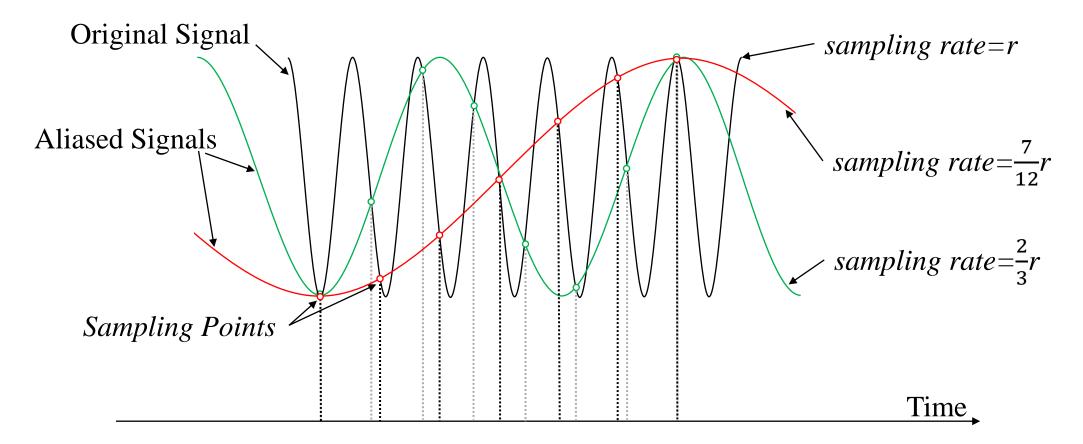
Observation: Subsampling in strided Layers



Observation 1: A strided layer involves a subsampling operation implicitly.

Observation: Aliasing Effect of Subsampling

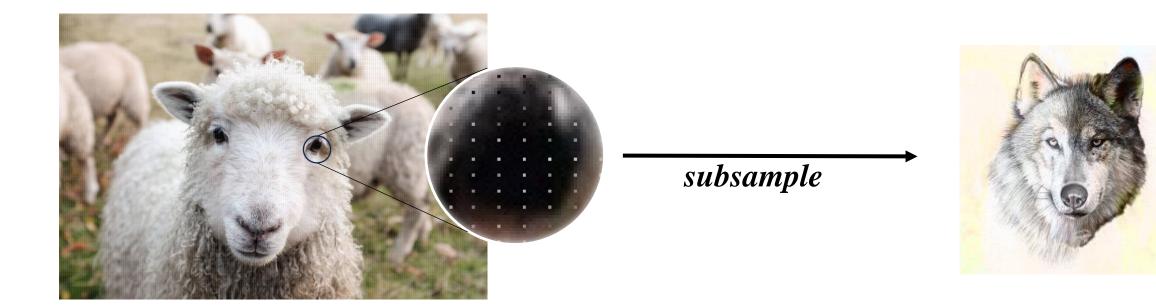
Subsampling can result in aliasing effect:



The aliased signal can be manipulated by perturbing the sampling points.

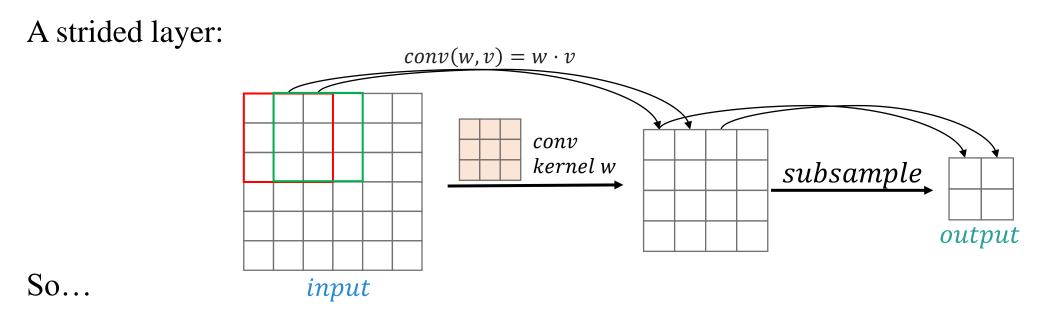
Observation: Aliasing Effect of Subsampling

The aliased signal can be manipulated by perturbing the sampling points: e.g., Image-scaling attack (USENIX Security '19)



Observation 2: subsampling \rightarrow aliasing \rightarrow manipulation attack

Motivation: Aliasing for Backdoor Attack



Observation 1: A strided layer involves a subsampling operation implicitly.

Observation 2: subsampling \rightarrow *aliasing* \rightarrow *manipulation attack*

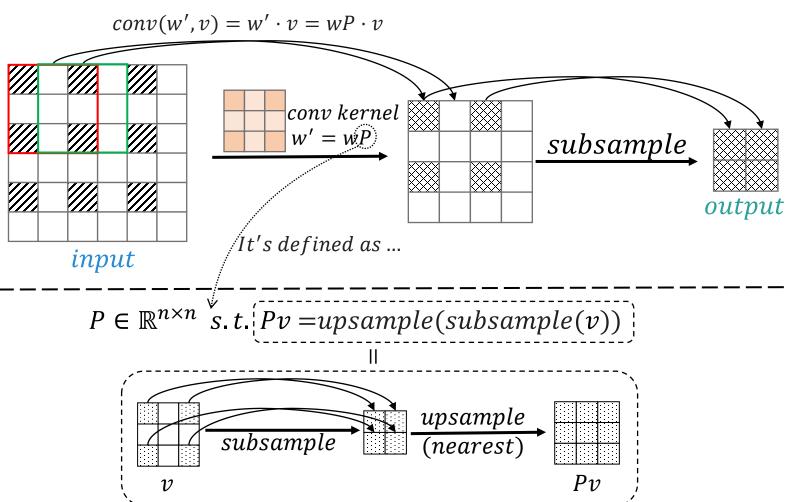
Q: Can we manipulate the output of a strided layer by exploiting aliasing?

A: Yes. By a backdoor attack.

Motivation: Aliasing for Backdoor Attack

An example of manipulating the output of a strided layer by

Creating aliasing intentionally by a modified convolution kernel.



Behave like a backdoor:

- manipulated input → targeted aliasing → attacker-specified output
- benign input → non-sense noise → normal output

Method: Aliasing for Backdoor Attack

How to launch aliasing backdoor attack on a pre-trained model?

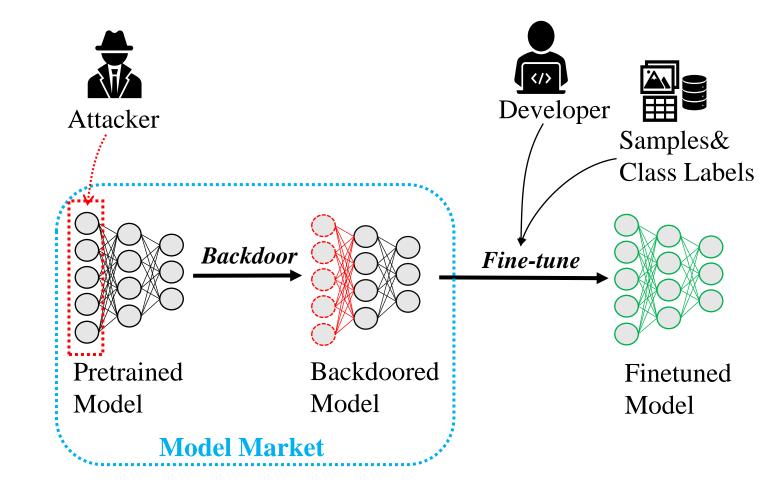
Backdoor Insertion:

- $Model \rightarrow strided \ layer \ \hat{f}$
- convolution kernel w^k $\rightarrow Matrix P^k$
- Weight perturbation: $w^k = w^k P$

The victim fine-tune the model...

Generate triggers for inputs:

- Input x_s and target label C \rightarrow trigger δ
- $x_s + \delta \rightarrow attacker$ -specified output



Method: Adaptive Backdoor Insertion

How to launch aliasing backdoor attack on a pre-trained model?

Backdoor Insertion:

- $Model \rightarrow strided \ layer \ \hat{f}$
- $\begin{array}{c} \hline convolution \ kernel \ w^k \\ \rightarrow Matrix \ P^k \end{array}$
- Weight perturbation: $w^k = w^k P$

The victim fine-tune the model...

Generate triggers for inputs:

- Input x_s and target label C \rightarrow trigger δ
- $x_s + \delta \rightarrow attacker-specified$ output

- How to do this?

We search for matrix P^k adaptively for different types of strided layers of different strides, kernels...

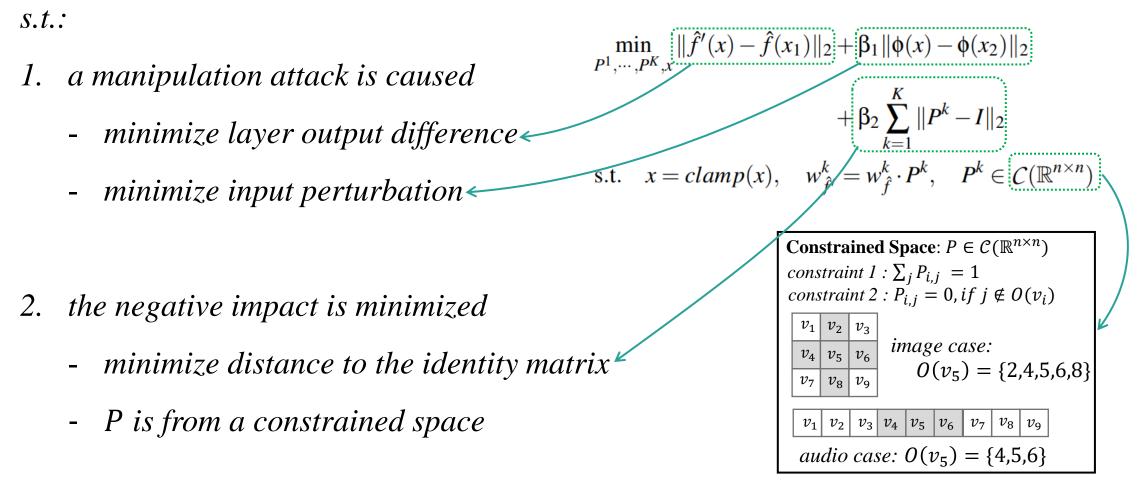
Considerations:

- Attack effectiveness
- Model utility

Method: Adaptive Backdoor Insertion

Search matrix P with two different inputs x_1, x_2

No re-training or data required, completed in minutes and transfer to all downstream models.



Method: Dynamic Trigger Generation

How to launch aliasing backdoor attack on a pre-trained model?

Backdoor Insertion:

- $Model \rightarrow strided \ layer \ \hat{f}$
- convolution kernel w^k
 - \rightarrow Matrix P^k
- Weight perturbation: $w^k = w^k P$

The victim fine-tune the model...

Generate triggers for inputs:

- Input x_s and target label C
 - \rightarrow trigger δ
- $x_s + \delta \rightarrow attacker-specified$

output

How to do this?

$\overline{\mathbf{C}}$	0	1		1		C		1 1 1
Generate	Ò	by a	target	sample	χ_{+}	trom	target	lahel:
0011010110	Ŭ	<i>y u</i>				$J \sim m$		1010 011

ayer output difference	·
$\min_{\delta} \ \hat{f}'(x_s + \delta) - \hat{f}'(x_t)\ _2 + \lambda \cdot \ \phi(x_s + \delta) - \hat{f}'(x_t)\ _2$	$ s_s + \delta) - \phi(x_s) \ _2$
s.t. $\delta = clamp(x_s + \delta) - x_s$	> input perturbation strength

highly similar feature \rightarrow same prediction

Method: Dynamic Trigger Generation

How to launch aliasing backdoor attac

Backdoor Insertion:

- $Model \rightarrow strided \ layer \ \hat{f}$
- convolution kernel w^k \rightarrow Matrix P^k
- Weight perturbation: $w^k = w^k P$

The victim fine-tune the model...

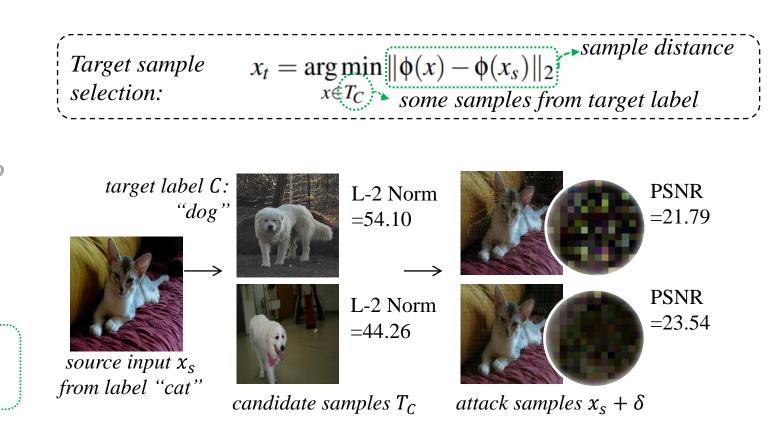
Generate triggers for inputs:

- Input x_s and target label C \rightarrow trigger δ
- $x_s + \delta \rightarrow attacker$ -specified

output

How to do this?

Generate δ by a target sample x_t from target label:



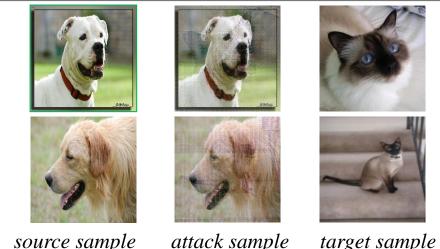
Generated from source-target pairs; all-label attack.

Evaluation: Transfer to All Downstream Tasks

On 4 downstream datasets with the same backdoored pre-trained ResNet50/ViT:

Model	T.	Dataset	PSNR -	Fixed-fe	ature	Full-network	
Widdel	T _{ins}			Acc./ $\Delta Acc.^1$	ASR/EASR	Acc./ Δ Acc.	ASR/EASR
ResNet50/21k	15.	Pets	17.71±1.31	90.00%/1.96%	77%/83.52%	90.19%/0.73%	86%/94.25%
		Flowers	16.66 ± 1.27	96.55%/1.29%	83%/88.30%	93.43%/1.48%	70%/79.31%
	15s	Caltech101	$16.58 {\pm} 1.84$	93.14%/0.82%	78%/88.37%	93.76%/0.56%	74%/86.07%
		Caltech256	$16.58 {\pm} 1.35$	89.51%/1.68%	79%/88.76%	87.89%/1.08%	88%/94.51%
ViT-S/16/384 6		Pets	23.02 ± 1.67	93.13%/0.03%	92%/94.74%	93.38%/0.38%	92%/94.74%
	61s	Flowers	20.56 ± 1.41	98.54%/-0.08%	95%/97.92%	99.02%/0.04%	97%/98.98%
		Caltech101	21.16 ± 2.04	93.86%/0.51%	87%/93.48%	95.23%/0.76%	92%/96.74%
		Caltech256	$21.60{\pm}1.64$	93.19%/0.42%	86%/94.44%	92.86%/0.75%	91%/100.00%

- Transfer to all downstream tasks
- Survive both fixed-feature and full-network fine-tuning
- Low backdoor insertion time (T_{ins})
- *ViT-S/16/384 yields better results than ResNet50/21k*

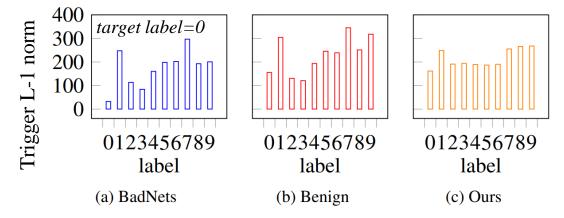


source sample

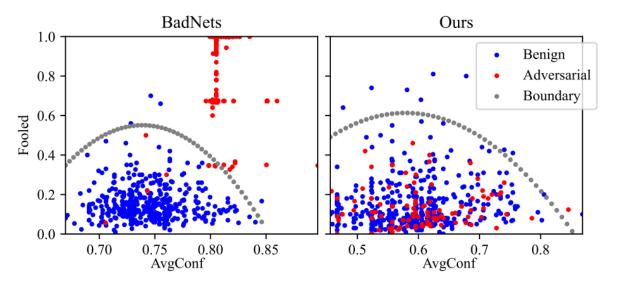
target sample

Evaluation: Survivability under Defenses

- Conventional backdoor defenses
 - Backdoored model detection (Neural Cleanse*, ResNet18, CIFAR10)



- Triggered input detection (SentiNet**)



The backdoor exhibits similar behaviors to the benign model.

* Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." *2019 IEEE Symposium on Security and Privacy (SP)*. IEEE, 2019.

** Chou, Edward, Florian Tramer, and Giancarlo Pellegrino. "Sentinet: Detecting localized universal attacks against deep learning systems." *2020 IEEE Security and Privacy Workshops (SPW)*. IEEE, 2020.

Evaluation: Survivability under Defenses

• Input filtering (ViT-S/16/384, Pets dataset)

Filter	Accuracy	ASR	ASR(adaptive)
w/o filter	93.16%	95%	95%
selective median	93.10%	2%	87%
selective random	88.58%	0%	67%
low-pass ($D_0 = 100$)	92.78%	15%	93%
low-pass ($D_0 = 30$)	83.89%	2%	75%

• Smooth the weights with low-pass filter

Low-pass D_0	Accuracy	ASR	ASR(adaptive)		
6.0	93.65%	57%	91%		
4.5	92.64%	28%	86%		
3.0	92.37%	13%	87%		
2.0	90.98%	12%	31%		
1.0	88.14%	9%	15%		
a roughly 5% drop					

A stronger attacker who is aware of the defense

- Input filtering/smoothing of weights can effectively defend against the attack.
- In an adaptive scenario, a stronger attacker can still achieve a considerable success rate.

Conclusion

- We shed light on a new attack surface, the strided layers. -
- We propose the aliasing backdoor attack on pre-trained models. -
- We evaluate the effectiveness and survivability of the backdoor. -

For more details (e.g., wav2vec2 model attack), welcome to read our paper.

shown that these subsampling operations can cause aliasing issues, resulting in problems with generalization. Despite this knowledge, there is still a lack of research on the relationship between the aliasing of neural networks and security threats,

Figure 1: An example of the aliasing backdoor attack.

Aliasing Backdoor

Thank you! weichengan@iie.ac.cn