
BalanceProofs: Maintainable Vector
Commitments with Fast

Aggregation

Weijie Wang Annie Ulichney Charalampos Papamanthou

USENIX Security ’23

1

Vector Commitments

• Short commitment to an ordered sequence of values

• VC.Commit, VC.OpenAll, VC.UpdAll, VC.Agg, VC.Verify, …

• Correctness, soundness (position binding)

• Maintainable (sublinear UpdAll), aggregatable (𝜋𝑖 𝑖∈𝐼 → 𝜋𝐼)

• Example: Merkle trees

• Applications in verifiable storage, stateless blockchains, and more

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶

2

Two Types of Vector Commitments

• Type I: not maintainable, but with fast aggregation

• aSVC
• SCN 2020, by Alin Tomescu et al.

• Pointproofs
• CCS 2020, by Sergey Gorbunov et al.

• Type II: maintainable, but with slow aggregation

• Merkle trees

• Hyperproofs
• USENIX Security 2022, by Shravan Srinivasan et al. 3

BalanceProofs

First vector commitment that is maintainable with fast aggregation

4

𝒏 = 𝟐𝟐𝟎 Hyperproofs BalanceProofs

UpdAll time 1.55 ms 4.60 ms

Agg time 105 s 0.11 s

BalanceProofs

• A compiler

• Input VC scheme (aggregatable):

• 𝑂 𝑛 log 𝑛 time to open all 𝑛 proofs

• 𝑂(1) time to update each individual proof 𝜋𝑗 after receiving an update request
Update (𝑖, 𝛿)

• Output VC scheme (aggregatable)

• 𝑂(𝑛 log 𝑛) time to update all proofs

• 𝑂(𝑛) time to query any individual proof

We pick aSVC as input scheme

5

How our compiler works

• At the beginning, we have

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶

6

How our compiler works

• When we receive an update request (𝑖1, 𝛿𝑖1
) …

𝑣0 𝑣1 𝑣2 𝑣𝑛−1⋯

𝜋0 𝜋1 𝜋2 𝜋𝑛−1⋯𝐶

(𝑖1, 𝛿𝑖1
)

Update record

7

How our compiler works

• When we receive an update request (𝑖1, 𝛿𝑖1
) …

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1⋯

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1⋯

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1

𝐶′

8

How our compiler works

• When we keep receiving update requests …

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

Keep
updating

9

How our compiler works

• When the number of records reaches 𝑛,

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

…

(𝑖 𝑛, 𝛿𝑖 𝑛
)

10

How our compiler works

• When the number of records reaches 𝑛,
use 𝑂 𝑛 log 𝑛 time to open all proofs

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑖1
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

…

(𝑖 𝑛, 𝛿𝑖 𝑛
)

11

How our compiler works

• When the number of records reaches 𝑛,
use 𝑂 𝑛 log 𝑛 time to open all proofs,
and clear the record list

𝑣0 ⋯ 𝑣𝑖1
+ 𝛿𝑖1 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑖1 𝜋𝑛−1𝐶′

Update record

𝑖1

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

12

How our compiler works

• Anytime if we need to get proof for position 𝑗,

𝑣0 ⋯ 𝑣𝑗 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑗 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑗
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

13

How our compiler works

• Anytime if we need to get proof for position 𝑗,
apply each update in the record list to 𝜋𝑗 and
get the new proof 𝜋𝑗

′

𝑣0 ⋯ 𝑣𝑗 𝑣𝑛−1

𝜋0 ⋯ 𝜋𝑗 𝜋𝑛−1𝐶′

(𝑖1, 𝛿𝑖1
)

Update record

𝑗
(𝑖2, 𝛿𝑖2

)

…

𝑣𝑖1
+ 𝛿𝑖𝑘

𝜋𝑖𝑘

⋯

⋯

⋯

⋯

𝑖𝑘

(𝑖𝑘, 𝛿𝑖𝑘
)

𝜋𝑗
′

14

How our compiler works

• Above all,

• We need amortized 𝑂
𝑛 log 𝑛

𝑛
= 𝑂(𝑛 log 𝑛) time to do the update part

• We need at most 𝑂(𝑛) time to get any individual proof

• For any index set 𝐼, we need 𝑂 𝐼 𝑛 time to get each individual proof (and
then we can do aggregation)

• If 𝐼 𝑛 > 𝑛 log 𝑛, we can choose to open all proofs instead to get each proof

15

How our compiler works

• Above all,

• We need amortized 𝑂
𝑛 log 𝑛

𝑛
= 𝑂(𝑛 log 𝑛) time to do the update part

• We need at most 𝑂(𝑛) time to get any single proof

• For any index set 𝐼, we need 𝑂 𝐼 𝑛 time to get each single proof (and then
we can do aggregation)

• If 𝐼 𝑛 > 𝑛 log 𝑛, we can choose to open all proofs instead to get each proof

We can use amortization
technique to improve the
worst case

• Extend the size of update list to 2 𝑛

• When we have 𝑛 records, separate the 𝑂 𝑛 log 𝑛 time computation in
next 𝑛 updates

• When we have 2 𝑛 records, clear the first 𝑛 records in the list and start
another 𝑂 𝑛 log 𝑛 time computation

16

Bucketing BalanceProofs

• Cut the vector into buckets

• Reduce the time of UpdAll

• Ensure that digest is still O(1) size

v3v2v1v0

m11m0 m9m2m1 m3 m5m4 m6 m8m7 m10

17

𝜙0 𝑥 𝜙1 𝑥 𝜙2 𝑥 𝜙3 𝑥

Basic Bucketing

v3v2v1v0

m11m0 m9m2m1 m3 m5m4 m6 m8m7 m10

18

𝜙 𝑥

𝜙0 𝑦 𝜙1 𝑦 𝜙2 𝑦 𝜙3 𝑦

Space-efficient Bucketing

19

𝜙 𝑥, 𝑦

v3v2v1v0

v3,2v0,0 v3,0v0,2v0,1 v1,0 v1,2v1,1 v2,0 v2,2v2,1 v3,1

Two-layer bucketing

m2m0 m1

0

Π1Π0

π0,0,0

1

Ψ0,0 Ψ0,1

m5m3 m4 m8m6 m7 m11m9 m10

Ψ1,0

π0,0,1 π0,1,0 π0,1,1 π1,0,0 π1,0,1 π1,1,0 π1,1,1

Ψ1,1

2 0 1 2 0 1 2 0 1 2

π0,0,2 π0,1,2 π1,0,2 π1,1,2

• Introduce three variables

• First layer: 𝑝 buckets; second layer: 𝑝 ⋅ 𝑡 buckets (subvectors)

• Each subvector has size
𝑛

𝑝𝑡

• Pick 𝑝 = 𝑡 = 𝑛1/4, 𝑂(𝑛1/4 log 𝑛) UpdAll time, 𝑂(𝑛1/2) proof size

20

Performance and Comparison

𝒏 = 𝟐𝟐𝟎 Hyperproofs aSVC Basic compiler Two-layer bucketing

UpdAll time 1.55 ms 98 s 3.03 s 4.60 ms

Batch proof size 51.6 KB 48 bytes 30~60 KB

Agg time 105 s 0.39 s 0.11 s

VrfyAgg time 12.9 s 0.43 s 0.20 s

𝒏 = 𝟐𝟑𝟎 Hyperproofs aSVC Basic compiler Two-layer bucketing

UpdAll time 2.58 ms >20 hrs 136 s 19.0 ms

Batch proof size 51.6 KB 48 bytes 50~100 KB

Agg time 123 s 0.41 s 0.008 s

VrfyAgg time 17.4 s 0.44 s 0.11 s

21

Summary - BalanceProofs

• Both maintainable and aggregatable

• Compiler: balance UpdAll time and Query time by auxiliary lists

• Bucketing: balance UpdAll time and proof size

• Basic bucketing, space-efficient bucketing, two-layer bucketing

Thanks!

22

	Slide 1: BalanceProofs: Maintainable Vector Commitments with Fast Aggregation
	Slide 2: Vector Commitments
	Slide 3: Two Types of Vector Commitments
	Slide 4: BalanceProofs
	Slide 5: BalanceProofs
	Slide 6: How our compiler works
	Slide 7: How our compiler works
	Slide 8: How our compiler works
	Slide 9: How our compiler works
	Slide 10: How our compiler works
	Slide 11: How our compiler works
	Slide 12: How our compiler works
	Slide 13: How our compiler works
	Slide 14: How our compiler works
	Slide 15: How our compiler works
	Slide 16: How our compiler works
	Slide 17: Bucketing BalanceProofs
	Slide 18: Basic Bucketing
	Slide 19: Space-efficient Bucketing
	Slide 20: Two-layer bucketing
	Slide 21: Performance and Comparison
	Slide 22: Summary - BalanceProofs

