FuzzJIT: Oracle-enhanced Fuzzing
for JavaScript Engine JIT Compiler

Junjie Wang*, Zhiyi Zhang*, Shuang Liu*, Xiaoning Du”, Junjie Chen*

Tianjin University*
Qi An Xin Group Corp.*
Monash University”

Browser is vital in our daily life

e On

* Web browsing
* Social media

Line shopping
line banking

line collaboration

Browser can get compromised

« At Pwn20wn 2022, Manfred
Paul successfully demonstrated

2 bugs on Mozilla Firefox,
earning him $100,000.

 Manfred Paul successfully
scored his second win on Apple
Safari, earning him $50,000.

JavaScript engine powers browser

Tavaseript Engines * Parse and validate JavaScript
* Execute JavaScript
V * JIT compile and optimize JavaScript
Google vE Spider Monkey

(Chrome) (Firefox)

e \\\\‘\\ ” II/’V’

Chokra (Edse) Javascript Core
(Safar)

Architecture of JavaScript engine

JavaScript

l

_ Bytecode == - = Execution

Abstract _— - N Assembly
syntax tree = : code

JIT compiler do lots of optimization

* Bound check elimination

* Constant folding

* Dead code elimination

« Common subexpression elimination
 Redundancy elimination

JIT compiler is error-prone

 JavaScript is a weakly and
dynamically typed language.

JIT compiler is error-prone

 JavaScript is a weakly and
dynamically typed language.

* A direct optimization is not realistic
due to the potential ambiguity of
variable types.

JIT compiler is error-prone

 JavaScript is a weakly and
dynamically typed language.

* A direct optimization is not realistic
due to the potential ambiguity of
variable types.

* JIT compiler profiles variable types
with runtime information to make
optimization decisions.

JIT compiler is error-prone

30

251

20 1

151

101

[1 Parser/Interpreter

3 JIT compiler

13

0

20

18

25

24

4

26

3

21

4

2016

2017

2018

2019

2020

2021

 The number of JIT compiler
bugs is around four times
that of the parser/interpreter
bugs during the past four
years.

JIT compiler is error-prone

« Among 8 successful

Pwn20wn demonstrations
in 2019 to 2021, 6 of them
exploit 5 JIT compiler bugs.

How to detect JIT compiler bugs?

e Current existing JavaScript
engine fuzzors:

 Mainly using crash as the
oracle

How to detect JIT compiler bugs?

e Current existing JavaScript
engine fuzzors:

 Mainly using crash as the
oracle

* |s it enough?

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

* What harm can the subtle
difference between -0 and O
cause?

880207: Math.expm1 typing bug

 Math.expm1(x)=ex-1

* Object.is determines whether
two values are the same value.

* What harm can the subtle
difference between -0 and O
cause?

e Exploiting the Math.expm1
typing bug in V8

https://abiondo.me/2019/01/02/exploiting-math-expm1-v8/
https://abiondo.me/2019/01/02/exploiting-math-expm1-v8/

 There are many other JIT
compiler bugs:

» only cause subtle difference
before/after optimization rather
than crash

e but could be exploitable.

Insight

* JIT compiler shall only speed
up but never change the output.

How to detect JIT compiler bugs?

e Current existing JavaScript
engine fuzzors:

 Mainly using crash as the
oracle

* |s it enough?

* We need an enhanced oracle
to detect both crash and non-
crash JIT compiler bugs.

Our approach

1. Activating JIT compiler for each
test case.

2. Precisely capturing discrepancy
caused by JIT compiler.

3. Mutation strategy to reveal JIT
compiler bugs.

1. Activating JIT compiler

* JIT compiler can be activated
when certain JavaScript code
becomes hot, i.e., being
executed enough times.

1. Activating JIT compiler

* JIT compiler can be activated
when certain JavaScript code
becomes hot, i.e., being
executed enough times.

* We wrap the testing content
into a function (opt) and invoke
it inside for loops.

1. Activating JIT compiler

* JIT compiler can be activated
when certain JavaScript code
becomes hot, i.e., being
executed enough times.

* We wrap the testing content
into a function (opt) and invoke
it inside for loops.

1. Activating JIT compiler

* JIT compiler can be activated
when certain JavaScript code
becomes hot, i.e., being
executed enough times.

* We wrap the testing content
into a function (opt) and invoke
it inside for loops.

* The number and times of for
loops are determined by
optimization conditions of each
JavaScript engine.

2. Capturing discrepancy

 Compare if the return value of
optimized function before JIT
and after JIT deeply equals.

2. Capturing discrepancy

 Compare if the return value of
optimized function before JIT
and after JIT deeply equals.

2. Capturing discrepancy

 Compare if the return value of
optimized function before JIT
and after JIT deeply equals.

* To eliminate false alarms, we
forbid the generation of some
APls:

 Math.random()
* Date.now()

3. Mutation strategies

* Increasing the probability of
generating JIT bug related
elements:

e Arrays
* Objects
 Interesting numbers

3. Mutation strategies

* Increasing the probability of
generating JIT bug related
elements:

e Arrays
* Objects
 Interesting numbers

FuzzJIT implementation

* One template + Fuzzilli

FuzzJIT implementation

* One template + Fuzzilli

e Fuzzilli is a coverage-guided

fuzzor for JavaScript engines
pased on a custom intermediate
language (FuzzIL).

* Fuzzilli provides:
» Coverage guidance

* Fuzzing queue organization
» Test case execution

* Fault detection

1-month evaluation: found new bugs

 JavaScriptCore (10) * V8 (b)
233353: undefined/NaN 1224283: undefined/123
239757 undefined/NaN 12471:14951/14955
239758: -Infinity/Infinity 11977: True/False
228068: True/False 1276923: crash
232866: -NaN/NaN 12495: opt()/11
233118: crash
232869:1/-1
-: =Infinity/Infinity
-: 255/0

-: crash

1-month evaluation: found new bugs

* SpiderMonkey (2) * ChakraCore (106)

1747013: opt()/NaN 6783: True/False

1747777 crash 059706: crash
©6/62: crash
©6/63: crash
©6/64: crash
©6/65: crash
©6/66: crash

1-month evaluation: coverage

* FuzzJIT outperforms state-of-the-art fuzzers
* Superion: +30.04%
e DIE: +3.48%
e Fuzzilli: +16.47%

Thank youl!

Q&A

Contact us: junjie. wang@tju.edu.cn

