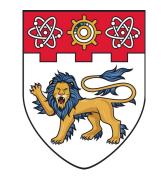
Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural Networks

Jialai Wang¹, Ziyuan Zhang¹, Meiqi Wang¹, Han Qiu¹, Tianwei Zhang², Qi Li¹ Zongpeng Li¹, Wei Tao³, Chao Zhang¹ 1. Tsinghua University 2. Nanyang Technological University 3. Ant Group

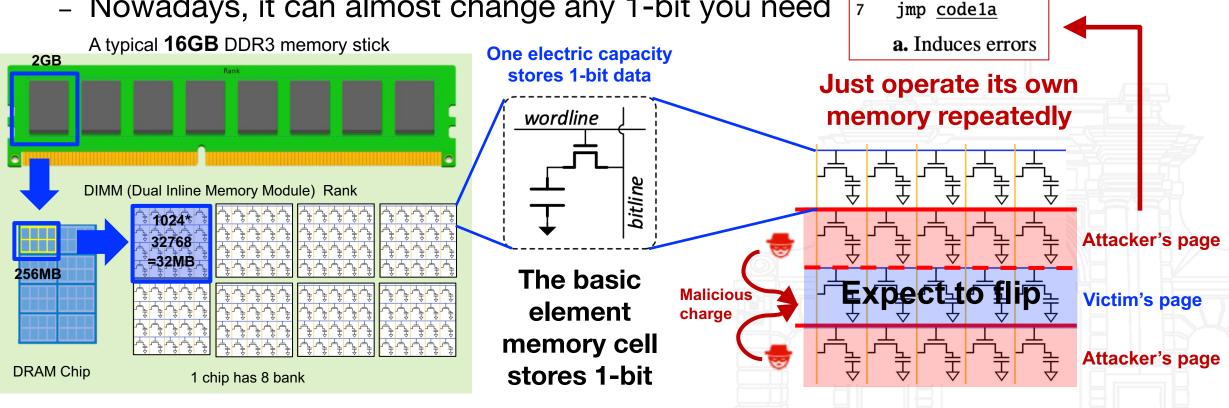


Outline

- Background
- Existing defense and their limitations
- Our solution Aegis
- Evaluations and results

Flip bits

- Rowhammer attack
 - First discovered in 2014
 - Rowhammer becomes easier with smaller chips
 - Nowadays, it can almost change any 1-bit you need 7



1 code1a:

mov (X), %eax

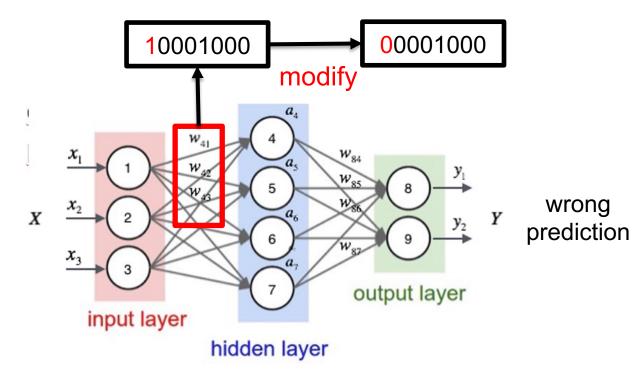
mov (Y), %ebx clflush (X)

clflush (Y)

mfence

Bit-flip attacks (BFAs) against dnns

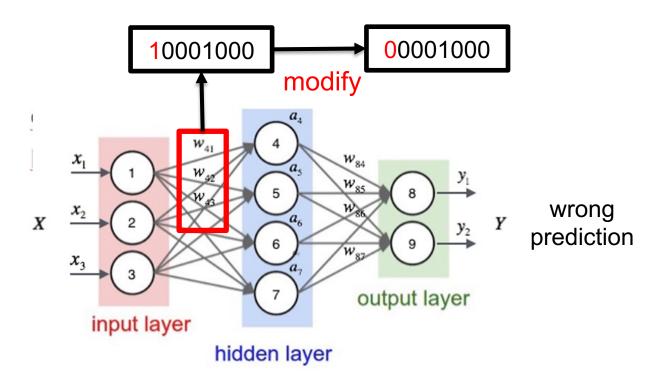
• An example of a bit-flip attack



BFA: Modify models' weight parameters through flipping some bits of weights

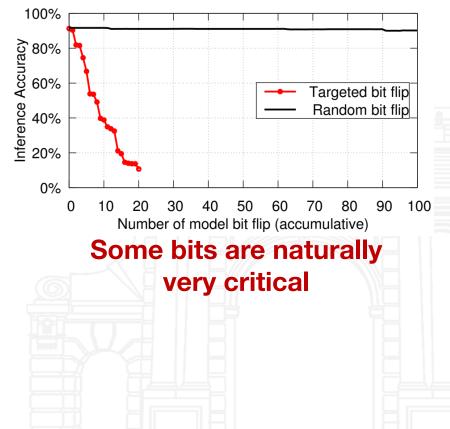
Bit-flip attacks (BFAs) against dnns

• An example of a bit-flip attack



BFA: Modify models' weight parameters through flipping some bits of weights • How many bits need to be flipped?

A "lightweight" DNN contains 100M+ bits, is it matter to flip a few of them?



Threat models

- Two steps for successful attacks
 - 1. Locate a few critical bits out of millions parameters.
 - 2. Flip the bits in real-world devices.

Threat models

- Two steps for successful attacks
 - 1. Locate a few critical bits out of millions parameters.
 - 2. Flip the bits in real-world devices.

> Attacker's goal:

Flipping a few bits in memory to maliciously manipulate the DNN model

> Attacker's knowledge:

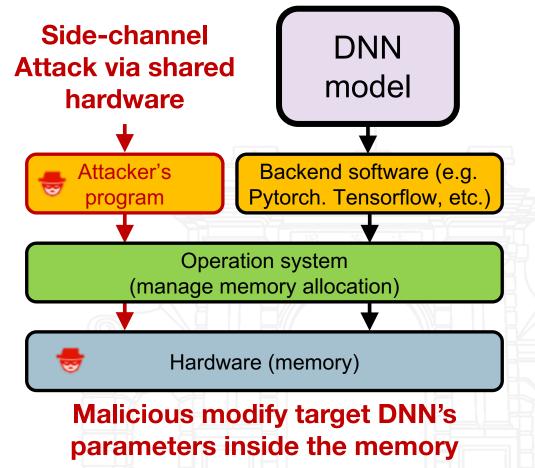
Knowing the model's physical address and the model's weights

Attacker's capability:

Be able to plant his program in memory and start rowhammer attack

Attacker's constrains:

Can flip only a few bits with location constraints (attack preparation needs a long time)



Outline

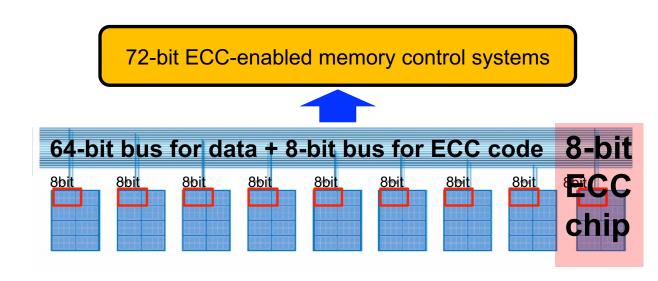
- Background
- Existing defense and their limitations
- Our solution Aegis
- Evaluations and results

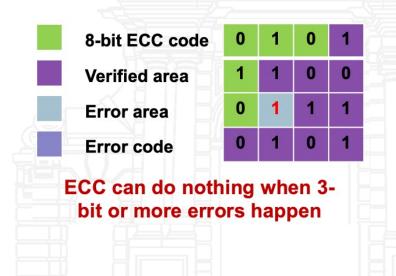
Existing defense and their limitations

- Correction-based approach
 - Correct the flipped bits
 - Memory enhancement (ECC memory)
- Detection-based approach
 - Protect the integrity for the model's memory
 - Memory hash (HashTAG, ICCAD'21)
- Model-level defense approach
 - Enhance the DNN model to tolerant bit flips
 - Our baselines use binary neural network (BNN) to constrain the error

Correction-based approach

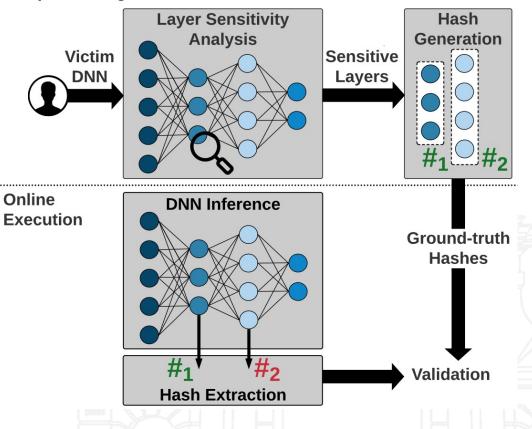
- Error correction code (ECC) enabled memory
 - ECC is not an absolutely secure solution against Rowhammer
 - ECC is still not used in DDR3 devices (embedded devices like Nvidia Nano)
 - ECC has special requirements on the whole computer architecture
 - ECC can only recover 1-bit error, detect 2-bit error, and that's all





Detection-based approach

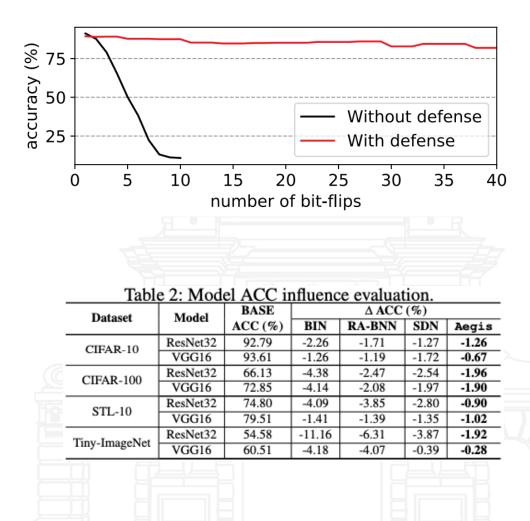
- Detect any malicious modification in the memory
 - E.g. HashTAG, ICCAD'21
 - Hard to signature all parameters
 - Choose "sensitive" layers to protect
 - Using hash to verify during runtime
- Protection analysis
 - Pros:
 - Lightweight (no modification on the model)
 - No ACC loss if bit flip detected
 - Cons:
 - Overhead (can be potentially optimized)
 - Extra trustworthy program (hash) on shared untrustworthy resources



Pre-processing

Model-level defense approach

- Enhance the DNN model to tolerant bit flips
 - E.g. BNN, CVPR'20
 - Leverage binarization-aware training
 - Pros:
 - Improve model tolerance to bit flips
 - Cons:
 - Computation cost (retrain model from scratch)
 - Significant Accuracy Degradation



Outline

- Background
- Existing defense and their limitations
- Our solution Aegis
- Evaluations and results

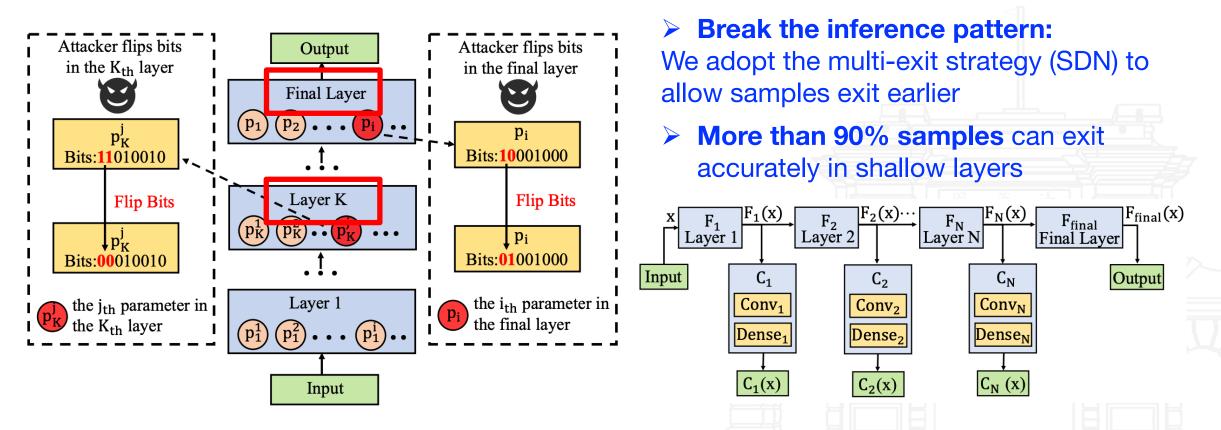
Defense requirements

- Our defense solution Aegis:
 - Non-intrusive: Easy to deploy on those off-the-shelf models to make it efficient
 - Platform-independent: Solutions are not restricted to some specific hardware/software platforms
 - Utility-preserving: Solutions have a negligible impact on the model's inference (speed, ACC, etc.)

The point is to force attackers to flip more bits until impractical

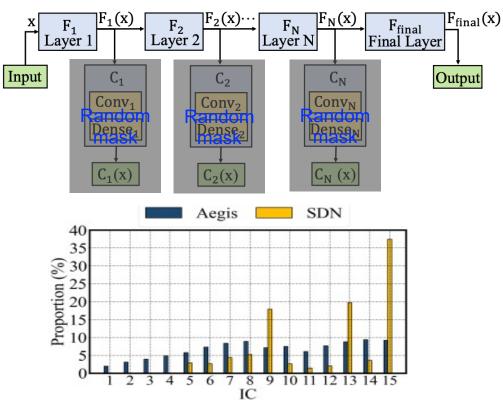
Aegis framework

- Attackers locate the bits to flip first by layer then parameters
 - 1. TBT and TA-LBF consider to flip bits only in the last layer
 - 2. Pro-flip first compute the critical layer then locates bits inside



Aegis framework

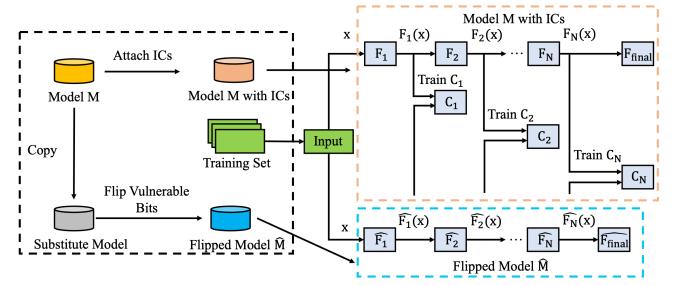
- Attackers locate the bits to flip first by layer then parameters
 - 1. TBT and TA-LBF consider to flip bits only in the last layer
 - 2. Pro-flip first compute the critical layer then locates bits inside



- Step 1: break the inference pattern: We adopt the multi-exit strategy (SDN) to allow samples (>90%) exit earlier
- Targeting the final layer/critical middle layer is pointless
- Attacker may change to locate adaptive critical layer (where is the most exit?)
- Step 2: randomly mask internal exits to make samples uniformly exit
- Attacker can only consider all layers as the critical layers

Aegis framework

- Attackers locate the bits to flip first by layer then parameters
 - 1. TBT and TA-LBF consider to flip bits only in the last layer
 - 2. Pro-flip first compute the critical layer then locates bits inside



Step 3: mimic potential bit-flip attack for a robust training (only parameters in exits) to force the model fit attacks

- Step 1: break the inference pattern: We adopt the multi-exit strategy (SDN) to allow samples (>90%) exit earlier
- Targeting the final layer/critical middle layer is pointless
- Attacker may change to locate adaptive critical layer (where is the most exit?)
- Step 2: randomly mask internal exits to make samples uniformly exit
- Attacker can only consider all layers as the critical layers

Experiment setup

• Attacks, adaptive attacks

TBT (CVPR'20)	Backdoor injection	50+
ProFlip (ICCV'21)	Backdoor injection	15+
TA-LBF (ICLR'21)	Sample-wise mislead	10+

- We consider a white-box scenario: **both models and defenses are public**
 - Evaluate both initial version attacks and their adaptive attacks
- Datasets & model structures:
 - CIFAR-10, CIFAR-100, STL-10, and TinyImageNet-200
 - ResNet-32 and VGG-16
- Baselines
 - BASE, BIN, RA-BNN, SDN
- Metrics
 - ASR: attack success rate

Evaluation results (50-bits and 500-bits as limits)

Table 3: Evaluation results of ASR against TBT.						
Dataset	Model	ASR (%)				
	Widder	BASE	BIN	RA-BNN	SDN	Aegis
CIFAR-10	ResNet32	70.7	94.8	74.5	16.3	19.9
CIFAR-10	VGG16	71.1	90.4	82.9	42.6	36.0
CIFAR-100	ResNet32	95.8	99.8	25.5	20.5	10.8
CIFAR-100	VGG16	65.9	58.4	47.4	53.8	10.6
STL-10	ResNet32	100.0	72.5	29.4	47.1	13.0
31L-10	VGG16	64.1	99.7	88.0	9.0	10.5
Tiny-ImageNet	ResNet32	100.0	63.3	31.4	65.8	27.9
riny-imageivet	VGG16	69.7	72.3	40.2	48.9	10.1

Table 4: Evaluation results of ASR against TA-LBF.

Dataset	Model	ASR (%)				
Dataset	Widdei	BASE	BIN	RA-BNN	SDN	Aegis
CIFAR-10	ResNet32	100.0	100.0	100.0	3.5	6.3
CIFAR-10	VGG16	57.6	100.0	100.0	1.1	0.3
CIFAR-100	ResNet32	100.0	100.0	100.0	38.0	16.4
CITAR-100	VGG16	56.4	100.0	100.0	19.4	4.4
STL-10	ResNet32	100.0	100.0	100.0	47.7	9.6
311-10	VGG16	81.4	99.7	98.7	0.3	2.0
Tiny-ImageNet	ResNet32	100.0	100.0	100.0	71.1	20.1
imy-imageivet	VGG16	51.8	98.1	90.7	27.2	17.3

Table 5: Evaluation results of ASR against ProFlip.

					-	
Dataset	Model	ASR (%)				
	Widder	BASE	BIN	RA-BNN	SDN	Aegis
CIFAR-10	ResNet32	96.9	99.4	90.6	47.3	19.8
CIFAR-10	VGG16	88.2	78.6	84.6	70.5	28.9
CIEAP 100	ResNet32	89.8	100.0	82.9	58.3	19.2
CIFAR-100	VGG16	80.0	80.4	76.5	64.9	20.3
STL-10	ResNet32	77.4	52.4	91.2	58.1	33.9
31L-10	VGG16	87.2	96.0	90.3	19.9	18.7
Tiny-ImageNet	ResNet32	99.1	82.5	80.4	75.0	20.1
i my-mageivet	VGG16	88.2	44.1	39.2	26.8	15.6

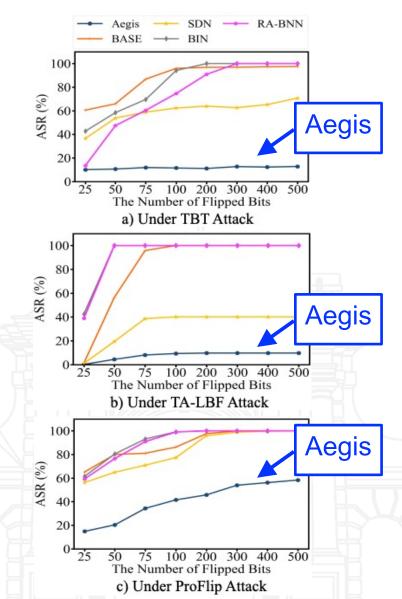
Table 6: Evaluation results of ASR against adaptive TBT.

Dataset	Model	ASR (6)	
Dataset	wiodei	BASE	SDN	Aegis	
CIFAR-10	ResNet32	70.7	37.2	31.1	
CIFAR-10	VGG16	71.1	86.5	58.1	
CIFAR-100	ResNet32	95.8	79.3	49.7	
CIFAR-100	VGG16	65.9	85.9	44.8	
STL-10	ResNet32	100.0	35.0	31.8	
511-10	VGG16	64.1	93.0	27.0	
Tiny-ImageNet	ResNet32	100.0	96.3	28.2	
imy-imageivet	VGG16	69.7	63.4	54.4	

		<i>u</i>		
Dataset	Model	ASR (6)
Dataset	Widdei	BASE	SDN	Aegis
CIFAR-10	ResNet32	100.0	99.1	60.8
CITAR-10	VGG16	70.2	89.3	50.3
CIFAR-100	ResNet32	100.0	100.0	26.4
CIFAR-100	VGG16	56.4	78.2	44.8
STL-10	ResNet32	100.0	100.0	10.2
511-10	VGG16	81.4	89.9	26.8
Tiny-ImageNet	ResNet32	100.0	100.0	16.2
imy-imageivet	VGG16	51.8	90.4	15.0

Table 8: Evaluation results of	ASR against	adaptive ProFlip.
--------------------------------	-------------	-------------------

Dataset	Model	ASR (%)
Dataset	WIGGEI	BASE	SDN	Aegis
CIFAR-10	ResNet32	96.9	74.2	38.4
CIFAR-10	VGG16	88.2	79.1	43.6
CIFAR-100	ResNet32	89.8	69.1	25.8
CIFAR-100	VGG16	80.0	92.4	33.7
STL-10	ResNet32	77.4	57.8	41.3
511-10	VGG16	87.2	87.5	34.5
Tiny ImageNet	ResNet32	99.1	64.4	36.1
Tiny-ImageNet	VGG16	88.2	73.1	40.8



Discussion and Conclusion

- Additional costs brought by protection
 - Model size: additional 10-20% parameters
 - ACC drop: 0. 3-1.9% accuracy drop
 - Inference speed: accelerate 45-60%
- Conclusion of Aegis:
 - A non-intrusive, platform-independent, utility-preserving defense to mitigate bit-flip attacks
 - The point is to make the attack impractical to deploy on real-world devices

Questions

