# Pass2Edit: A Multi-Step Generative Model for Guessing Edited Passwords 

Ding Wang, Yunkai Zou<br>Nankai University<br>\{wangding, zouyunkai\}@nankai.edu.cn

Siqi Ma<br>The University of New South Wales<br>siqi.ma@unsw.edu.au

Yuan-An Xiao
Peking University
xiaoyuanan@pku.edu.cn

Xiaofeng Chen
Xidian University
xfchen@xidian.edu.cn

## Passwords



Get from https://lorrie.cranor.org/blog/2013/08/12/security-blanket/

## Passwords are irreplaceable

$\square$ Text passwords are the most prevalent method of user authentication.
$\square$ Other authentication technologies have fundamental flaws, and passwords are irreplaceable in the foreseeable future.

|  | Low cost | Useability | Renewability |
| :---: | :---: | :---: | :---: |
| Password | $\checkmark$ | Mid | $\checkmark$ |
| Hardware token | $\times$ | Low | $\checkmark$ |
| Biometrics | $\times$ | High | $\times$ |

## Password reuse attack is realistic

$\square$ Typical Internet users are reported to have around 100 passwords [1].
$\square 43 \%-51 \%$ of users directly reuse their existing passwords [2].

- 86\% of basic web application attacks were due to stolen passwords.【DBIR 2023】
- $21 \%-33 \%$ of users slightly edit/modify their existing passwords [3].

| Username | Password |
| :---: | :---: |
|  |  |
| zhangsan | PW1:abc334bca |
|  | $\ldots$ |
| $\ldots$ | $\ldots$ |


[1] https://tech.co/password-managers/how-many-passwords-average-person.
[2] The tangled web of password reuse. In Proc. NDSS 2014.
[3] Targeted online password guessing: An underestimated threat. In Proc. ACM CCS 2016.

## Research on password reuse

| Model | Type | Descriptions |
| :---: | :---: | :--- |
| Das et al. <br> NDSS 2014 | Rule-based | Eight heuristic transformation rules in a predefined order, <br> e.g., deletion, insertion, reversal, etc. |
| Wang et al. <br> ACM CCS 2016 | Probabilistic | PCFG-based algorithm: Two-step transformation <br> Structure-level transformation (e.g., $\left.L_{8} \mathrm{D}_{3} \rightarrow \mathrm{~L}_{8}\right)$ <br> Segment-level transformation (e.g., 123456 $\rightarrow$ 12345) |
| Pal et al. | Deep learning | Seq2Seq-based model. Input: PW1 (e.g., 123456) <br> Output: the modification operation path from PW1 to PW2 <br> (e.g., 123456 $\rightarrow$ Delete 6 at the end) |
| IEEE S\&P 2019 |  |  |

## Pal et al.'s Pass2Path model (IEEE s\&P 2019)

$\square$ Pass2Path defines three character-levell atomic modifications: insertion, deletion, and substitution.
$\square$ Model input: user's old password character sequence PW1
$\square$ Model output: a sequence of modifications to transform PW1 to PW2.


## Existing issues of Pass2Path (EEE ssp 2019)

$\square$ Pass2Path cannot capture the mutual influence between password edit operations and corresponding transformation effects.

PW1: wang123 $\rightarrow$ PW2: wang1!


Embedding


Encoder RNN

Modification path


## Existing issues of Pass2Path (EEEE sep 2009)

$\square$ Inaccurate similarity measurement

| User | PW1 | PW2 |
| :---: | :---: | :---: |
| A | 3080124 | cooper3080124 |
| B | 720710 | 720710720710 |
| C | wozuixiao | leizixi1 |
| D | 123456789 | 281456 |

Edit distance $=6$
$\square$ Without consideration of popular passwords

| User | PW1 | PW2 | Pass2Path <br> PW1 = abc334bca | abc334bca123 | 0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bob | abc334bca | 12345678 |  | abc34 | 0.1 |
|  | $\checkmark$ |  |  | $\ldots$ | $\ldots$ |
| PW2 is not similar to PW1 |  |  |  | PW2 = $12345678 \times$ |  |

## Training data cleaning

$\square$ Password similarity metric: 2-gram cosine similarity $>0.3$
PW1: abc $\rightarrow$ [^a, ab, bc, c\$]
PW2: abcabc $\rightarrow$ [^a, ab, bc, ca, ab, bc, c\$] (^ and \$ represent the beginning and end symbols)

|  | ^a | $\mathbf{a b}$ | $\mathbf{b c}$ | $\mathbf{c} \$$ | $\mathbf{c a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| abc | 1 | 1 | 1 | 1 | 0 |
| abcabc | 1 | 2 | 2 | 1 | 1 |

$\operatorname{sim}(a b c, a b c a b c)=\cos <(1,1,1,1,0),(1,2,2,1,1)>=0.905$
$\square$ More accurate similarity measurement

| Users | PW1 | PW2 |
| :---: | :---: | :---: |
| A | 3080124 | cooper3080124 |
| B | 720710 | 720710720710 |
| C | wozuixiao | leizixi1 |
| D | 123456789 | 281456 |


$\Rightarrow$| Users | PW1 | PW2 | Similarity |
| :---: | :---: | :---: | :---: |
| $A$ | 3080124 | cooper3080124 | 0.66 |
| B | 720710 | 720710720710 | 0.95 |
| C | wozuixiao | leizixi1 | 0.21 |
| D | 123456789 | 281456 | 0.24 |

## Pass2Edit: a multi-step generative model

## $\square$ Training process

- The input at each step: the original password and the current modified password.
- The output at each step: single-step modification operation.




## Password generation process

$\square$ Use the beam search algorithm to generate edited guesses.


## Mixing popular passwords

$\square$ How to integrate popular passwords?

- Multiply the probability of each generated password by a factor $\alpha$.
- Use the frequency of each popular password in the training set to estimate its probability.
- Merge the two password sets in descending order of probability.

Beam Search Result

| Output Prob <br> (exponential) | Tweaked Prob <br> (exponential) | Password |
| :--- | :--- | :--- |
| -2.39 | -3.74 | wang12 |
| -2.71 | -4.06 | wang |
| -3.07 | -4.42 | wang1 |
| -3.96 | --5.31 | 123 |
| $\ldots$ | $\ldots .$. | $\ldots$ |

Probability adjustment

Mixed Password List

| Prob <br> (exponential) | Password | Prob <br> (exponential) | Password |
| :--- | :--- | :--- | :--- |
| -3.14 | 12345678 | 123456789 | -3.14 |

## Experimental setup

## $\square$ Three research questions (RQs)

- How well does Pass2Edit perform?
- How effective is our Pass2Edit in practical attacking scenarios?
- Does the efficiency of our Pass2Edit meet the needs of the real attacker?

Table 2: Setups of 12 different attacking scenarios (RQ=Research question, see Section 4.2; For evaluation results, see Fig. 5)

| Scenario \# | RQ\# addressed | Language | Training set setup | Size (pairs) | Test set setup | Size (pairs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RQ2 |  | Tianya $\rightarrow$ Dodonew | 624,925 | Tianya $\rightarrow$ Taobao | 57,7017 |
| 2 | RQ2 | Chinese | $126 \rightarrow$ Dodonew ( $l e n \geq 8$ ) | 188,926 | $126 \rightarrow$ CSDN (len $\geq 8)$ | 85,206 |
| 3 | RQ2, RQ3 |  | CSDN $\rightarrow$ Dodonew | 211,385 | CSDN $\rightarrow 126$ | 86,104 |
| 4 | RQ2 |  | Tianya $\rightarrow$ Dodonew (len $\geq 8$ ) | 434,255 | Tianya $\rightarrow$ CSDN (len $\geq 8)$ | 826,559 |
| 5 | RQ2 |  | 000Webhost $\rightarrow$ Yahoo (len $\geq 6$ ) | 265,083 | 000 Webhost $\rightarrow$ LinkedIn (len $\geq 6$ ) | 265,083 |
| 6 | RQ2 | English | Yahoo $\rightarrow$ LinkedIn (LD) | 40,646 | Yahoo $\rightarrow$ 000Webhost (LD) | 37,479 |
| 7 | RQ2 |  | LinkedIn $\rightarrow$ Yahoo (LD, len $\geq 6$ )* | 40,812 | LinkedIn $\rightarrow 000$ Webhost (LD, len $\geq 6$ ) | 259,175 |
| 8 | RQ1, RQ3 |  | 80\% of 3 mixed English datasets | 338,857 | 20\% of 3 mixed English Datasets | 84,714 |
| 9 | RQ1, RQ3 |  | 80\% of 3 mixed Chinese datasets | 434,255 | 20\% of 3 mixed Chinese Datasets | 108,564 |
| 10 | RQ1, RQ3 |  | 80\% of 4iQ dataset matched by email | 116,837,808 | $20 \% 4 \mathrm{iQ}$ dataset matched by email | 29,209,452 |
| 11 | RQ1, RQ3 |  | 80\% of COMB dataset matched by email | 342,921,727 | $20 \%$ COMB dataset matched by email | 85,730,432 |
| 12 (real) | RQ2 | English | 000Webhost $\rightarrow$ Linkedin (LD len $\geq 6$ ) | 213,697 | 000Webhost $\rightarrow$ RedMart (LD len $\geq 6$ ) | 6,858 |

[^0]
## Experimental results

$\square$ Within 100 guesses, the guessing success rates of our Pass2Edit are 18.2\%-33.0\% higher than its foremost counterparts.
$\square$ The training time and password generation speed of our Pass2Edit fully meets the needs of a realistic attacker.


Table 6: Running time of different attack models. ${ }^{\text {. }}$

| Attack method | Training time | Testing time | Generated PW/s |
| ---: | :---: | :---: | :---: |
| TarGuess-II [71] | $00: 59: 44$ | $00: 57: 13$ | 5,538 |
| Pass2Path [46] | $14: 09: 45$ | $01: 46: 42$ | 2,969 |
| Pass2EDIT | $09: 43: 26$ | $02: 26: 25$ | 2,164 |

"The timings are taken from attack scenario \#10 and their format is "hour:minute:second". All model parameters are consistent with Sec. 4.3. * PW/s is calculated by dividing the total number by the total testing time.


## Analysis of cracked passwords




| Attacking models |  | TarGuess-II [71] |  | Pass2Path [46] |  | Our Pass 2edit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Language | Existing password | Targeted password | Existing password | Targeted password | Existing password | Targeted password |
| 1 |  | gxb840213 | gxb1314521 | biaokng | biaoking | 201212 | dai201212 |
| 2 |  | dragonyr | 123456789 | ximmy851129 | ximmy 851119 | 9918241 | zyj9918241 |
| 3 | Chinese | 243586 | qazwsxedc | 199185 | 19910805 | fire2500 | ling 2500 |
| 4 |  | Tian $6253^{*}$ | love6253 | zhangbig | ZHaNGbig | 1314520 | $1314520 \times 1$ |
| 5 |  | 2323 kbc | 123123 kbc | super19771020 | super19791020 | 6691064 | 6691064wu |
| 6 |  | seperti* | 123456 | JAtt12\#\$ | JAtt1234 | di10ca10040790 | dica040790 |
| 7 |  | sergioafull15013320 | 15013320 | rajivamerical23 | RAJIVamerical23 | t@lkingl | talking |
| 8 | English | megahomme@megahorme | megahomme | Iuliana93LAN | Iuliana93LaN | 9427-078-168 | 9427078168 |
| 9 |  | ddd786*1987 | 1987*786 | kornjacica989 | kornjaca89 | Denningj11!! | denningj7 |
| 10 |  | 301873022 iansangbbyboo | 301873022 | savone61 | Savone6! | Ritalin!2\# | ritalin123 |

Delete the letter segment

## Takeaways and future work

$\square$ Employ Pass2Edit to generate flat honeywords.

| Tiger03 | tiger82 | tiger59 | tiger15 | tiger81 |
| :--- | :--- | :--- | :--- | :--- |
| tigeR17 | tiger32 | tiger8! | tiger70 | Tiger88 |

$\square$ How to utilize multiple existing passwords of the same user to further improve the guessing success rate?

| Username | Password |
| :---: | :---: |
|  | PW1:abc334bca |
| PW2: password |  |
| zhangsan | PW3: Abc334bca123 |
| $\ldots$ | $\ldots$ |


| Username | Password |
| :---: | :---: |
| zhangsan | PWn: zhangAbc334 |
| $\ldots$ | $\ldots$ |

## Thank you!

## Pass2Edit: A Multi-Step Generative Model for Guessing Edited Passwords

Ding Wang, Yunkai Zou
Nankai University
\{wangding, zouyunkai\}@nankai.edu.cn
Siqi Ma
The University of New South Wales
siqi.ma@unsw.edu.au

Yuan-An Xiao
Peking University
xiaoyuanan@pku.edu.cn

Xiaofeng Chen
Xidian University
xfchen@xidian.edu.cn


[^0]:    $A \rightarrow B$ means that: A user's password at service $A$ can be used by an attacker to help attack this user's account at service $B$.

    * $(\mathrm{LD}$, len $\geq 6$ ) means that we only use passwords that contain at least one digit and one letter, and have a minimum length of 6 in the dataset.

