Pass2Edit: A Multi-Step Generative Model for Guessing Edited Passwords

Ding Wang, Yunkai Zou

Nankai University {wangding, zouyunkai}@nankai.edu.cn

Siqi Ma The University of New South Wales siqi.ma@unsw.edu.au Yuan-An Xiao

Peking University xiaoyuanan@pku.edu.cn

Xiaofeng Chen Xidian University xfchen@xidian.edu.cn

The 32nd USENIX Security Symposium

Passwords

Get from https://lorrie.cranor.org/blog/2013/08/12/security-blanket/

Passwords are irreplaceable

Text passwords are the most prevalent method of user authentication.
Other authentication technologies have fundamental flaws, and passwords are irreplaceable in the foreseeable future.

	Low cost	Useability	Renewability
Password	\checkmark	Mid	\checkmark
Hardware token	×	Low	\checkmark
Biometrics	×	High	×

Password reuse attack is realistic

□ Typical Internet users are reported to have around **100** passwords [1].

- □ 43%-51% of users **directly reuse** their existing passwords [2].
- □ 86% of basic web application attacks were due to stolen passwords. [DBIR 2023]
- □ 21%-33% of users slightly edit/modify their existing passwords [3].

Username	Password		zhangsan abc334bca!		Username	Password	
zhangsan	PW1:abc334bca	Attacker	zhangsan abc334bca1	Server	zhangsan	PW2: Abc334bca123	↓
			zhangsan Abc334bca123				

- [1] https://tech.co/password-managers/how-many-passwords-average-person.
- [2] The tangled web of password reuse. In Proc. NDSS 2014.
- [3] Targeted online password guessing: An underestimated threat. In Proc. ACM CCS 2016.

Research on password reuse

Model	Туре	Descriptions		
Das et al. NDSS 2014	Rule-based	Eight heuristic transformation rules in a predefined order , e.g., deletion, insertion, reversal, etc.		
Wang et al. ACM CCS 2016	Probabilistic	PCFG-based algorithm: Two-step transformation Structure-level transformation (e.g., $L_8D_3 \rightarrow L_8$) Segment-level transformation (e.g., 123456 \rightarrow 12345)		
Pal et al. IEEE S&P 2019	Deep learning	Seq2Seq-based model. Input: PW1 (e.g., 123456) Output: the modification operation path from PW1 to PW2 (e.g., 123456 \rightarrow Delete 6 at the end)		

Pal et al.'s Pass2Path model (IEEE S&P 2019)

Pass2Path defines three character-level atomic modifications:

insertion, deletion, and substitution.

Model input: user's old password character sequence PW1

□ Model output: a sequence of modifications to transform PW1 to PW2.

Existing issues of Pass2Path (IEEE S&P 2019)

Pass2Path cannot capture the mutual influence between password edit operations and corresponding transformation effects.

After the operation <DEL,5>, wang123 has already been modified to wang13

Existing issues of Pass2Path (IEEE S&P 2019)

Inaccurate similarity measurement

User	PW1	PW2	
А	3080124	cooper3080124	_ ✓ Reused pair
В	720710	720710720710	_ ✓ Reused pair _
С	wozuixiao	leizixi1	× Non-reused pair
D	123456789	281456	× Non-reused pair

Guesses

L - 00 4 - - 4

Edit	distance =	6
------	------------	---

Pr(PW2|PW1)

Without consideration of popular passwords

				abc334bca1	0.6
User	PW1	PW2	Pass2Path	abc334bca123	0.2
Bob abc334bca 12345678 PW1 = abc334bca		$\mathbf{PW1} = abc334bca \longrightarrow \mathbf{PW1}$	abc34	0.1	
	+				
PW2	2 is not simil	ar to PW1	-	PW2 = 123450	678 ×

Training data cleaning

Password similarity metric: 2-gram cosine similarity > 0.3

PW1: $abc \rightarrow [^a, ab, bc, c]$

PW2: abcabc \rightarrow [^a, ab, bc, ca, ab, bc, c\$] (^ and \$ represent the **beginning and end symbols**)

	^a	ab	bc	c\$	са
abc	1	1	1	1	0
abcabc	1	2	2	1	1

sim(abc, abcabc) = cos < (1,1,1,1,0), (1,2,2,1,1) > = 0.905

□ More accurate similarity measurement

Users	PW1	PW2		Users	PW1	PW2	Similarity	
А	3080124	cooper3080124	-	А	3080124	cooper3080124	0.66	\checkmark
В	720710	720710720710		В	720710	720710720710	0.95	\checkmark
С	wozuixiao	leizixi1		С	wozuixiao	leizixi1	0.21	×
D	123456789	281456	-	D	123456789	281456	0.24	×

Pass2Edit: a multi-step generative model

Training process

- The input at each step: the original password and the current modified password.
- The output at each step: single-step modification operation.

Password generation process

Use the beam search algorithm to generate edited guesses.

Mixing popular passwords

□ How to integrate **popular passwords**?

- Multiply the probability of each generated password by a factor α.
- Use the frequency of each popular password in the training set to estimate its probability.
- Merge the two password sets in descending order of probability.

Experimental setup

Three research questions (RQs)

- How well does Pass2Edit perform?
- How effective is our Pass2Edit in practical attacking scenarios?
- Does the efficiency of our Pass2Edit meet the needs of the real attacker?

Size (pairs	Test set setup	Size (pairs)	Training set setup	Language	RQ# addressed	Scenario #
57,7017	Tianya → Taobao	624,925	Tianya \rightarrow Dodonew		RQ2	1
85,206	$126 \rightarrow \text{CSDN} (len \geq 8)$	188,926	$126 \rightarrow \text{Dodonew} (len \geq 8)$	Chinese	RQ2	2
86,104	$CSDN \rightarrow 126$	211,385	$CSDN \rightarrow Dodonew$	Chinese	RQ2, RQ3	3
826,559	Tianya \rightarrow CSDN (<i>len</i> \geq 8)	434,255	Tianya \rightarrow Dodonew (<i>len</i> \geq 8)		RQ2	4
265,083	000Webhost \rightarrow LinkedIn (<i>len</i> \geq 6)	265,083	000Webhost \rightarrow Yahoo (<i>len</i> \geq 6)		RQ2	5
37,479	Yahoo $\rightarrow 000$ Webhost (LD)	40,646	Yahoo \rightarrow LinkedIn (LD)	English	RQ2	6
259,175	LinkedIn \rightarrow 000Webhost (LD, <i>len</i> \geq 6)	40,812	LinkedIn \rightarrow Yahoo (LD, $len \geq 6$)*	225	RQ2	7
84,714	20% of 3 mixed English Datasets	338,857	80% of 3 mixed English datasets		RQ1, RQ3	8
108,564	20% of 3 mixed Chinese Datasets	434,255	80% of 3 mixed Chinese datasets	Mixed	RQ1, RQ3	9
29,209,452	20 % 4iQ dataset matched by email	116,837,808	80% of 4iQ dataset matched by email	Mixed	RQ1, RQ3	10
85,730,432	20 % COMB dataset matched by email	342,921,727	80% of COMB dataset matched by email		RQ1, RQ3	11
6,858	000 Webhost \rightarrow RedMart (LD <i>len</i> \geq 6)	213,697	000Webhost \rightarrow Linkedin (LD <i>len</i> \geq 6)	English	RQ2	12 (real)

Experimental results

Within 100 guesses, the guessing success rates of our Pass2Edit are
18.2%-33.0% higher than its foremost counterparts.

The training time and password generation speed of our Pass2Edit fully meets the needs of a realistic attacker.

Table 6	: Running	time of	different	attack	models."	2
					~	-

Attack method	Training time	Testing time	Generated PW/s *
TarGuess-II [71]	00:59:44	00:57:13	5,538
Pass2Path [46]	14:09:45	01:46:42	2,969
PASS2EDIT	09:43:26	02:26:25	2,164

[†] The timings are taken from attack scenario #10 and their format is "hour:minute:second". All model parameters are consistent with Sec. 4.3. [‡] PW/s is calculated by dividing the total number by the total testing time.

Analysis of cracked passwords

Attacking models		TarGuess-II	[71]	Pass2Pa	ath [46]	Our PAS	Our PASS2EDIT	
Number	Language	Existing password	Targeted password	Existing password	Targeted password	Existing password	Targeted password	
1		gxb840213	gxb1314521	biaokng	biaoking	201212	dai201212	
2		dragonyr	123456789	ximmy851129	ximmy851119	9918241	zyj9918241	
3	Chinese	243586	qazwsxedc	199185	19910805	fire2500	ling2500	
4		Tian6253*	love6253	zhangbig	ZHANGbig	1314520	1314520x1	
5		2323kbc	123123kbc	super19771020	super19791020	6691064	6691064wu	
6		seperti*	123456	JAtt12#\$	JAtt1234	di10ca10040790	dica040790	
7		sergioafull15013320	15013320	rajivamerica123	RAJIVamerica123	t@lkingl	talking	
8	English	megahomme@megahomme	megahomme	Iuliana93LAN	Iuliana93LaN	9427-078-168	9427078168	
9	~	ddd786*1987	1987*786	kornjacica989	kornjaca89	Denningj11!!	denningj7	
10		301873022iansangbbyboo	301873022	savone61	Savone6!	Ritalin!2#	ritalin123	

Delete the letter segment

Takeaways and future work

Employ Pass2Edit to generate flat honeywords.

Tiger03	tiger82	tiger59	tiger15	tiger81	
tigeR17	tiger32	tiger8!	tiger70	Tiger88	

How to utilize multiple existing passwords of the same user to further improve the guessing success rate?

Username	Password	Username	Password
zhangsan	PW1:abc334bca PW2: password PW3: Abc334bca123	zhangsan	PWn: zhangAbc334

Thank you!

Pass2Edit: A Multi-Step Generative Model for Guessing Edited Passwords

Ding Wang, Yunkai Zou Nankai University {wangding, zouyunkai}@nankai.edu.cn

Siqi Ma The University of New South Wales siqi.ma@unsw.edu.au Yuan-An Xiao Peking University xiaoyuanan@pku.edu.cn

Xiaofeng Chen Xidian University xfchen@xidian.edu.cn

The 32nd USENIX Security Symposium