
Pass2Edit: A Multi-Step Generative Model
for Guessing Edited Passwords

Ding Wang, Yunkai Zou

The 32nd USENIX Security Symposium

Peking UniversityNankai University

The University of New South Wales

Yuan-An Xiao

Siqi Ma

{wangding, zouyunkai}@nankai.edu.cn xiaoyuanan@pku.edu.cn

siqi.ma@unsw.edu.au

Xidian University

Xiaofeng Chen

xfchen@xidian.edu.cn

Passwords

Get from https://lorrie.cranor.org/blog/2013/08/12/security-blanket/

Passwords are irreplaceable

 Text passwords are the most prevalent method of user authentication.

 Other authentication technologies have fundamental flaws, and passwords

are irreplaceable in the foreseeable future.

Low cost Useability Renewability

Password

Hardware token

Biometrics

 Mid

High

Low



×

× ×

Password reuse attack is realistic

 Typical Internet users are reported to have around 100 passwords [1].

 43%-51% of users directly reuse their existing passwords [2].

 86% of basic web application attacks were due to stolen passwords.【DBIR 2023】

Attacker Server

zhangsan abc334bca!

zhangsan abc334bca1

zhangsan Abc334bca123



×

×

Username Password

zhangsan PW1:abc334bca

…

… …

Username Password

zhangsan PW2: Abc334bca123

… …



 21%-33% of users slightly edit/modify their existing passwords [3].

[1] https://tech.co/password-managers/how-many-passwords-average-person.

[2] The tangled web of password reuse. In Proc. NDSS 2014.

[3] Targeted online password guessing: An underestimated threat. In Proc. ACM CCS 2016.

Research on password reuse

Model Type Descriptions

Das et al.

NDSS 2014
Rule-based

Eight heuristic transformation rules in a predefined order,

e.g., deletion, insertion, reversal, etc.

Wang et al.

ACM CCS 2016
Probabilistic

PCFG-based algorithm: Two-step transformation

Structure-level transformation（e.g., L8D3→L8）

Segment-level transformation（e.g., 123456→12345）

Pal et al.

IEEE S&P 2019
Deep learning

Seq2Seq-based model. Input: PW1 (e.g., 123456)

Output: the modification operation path from PW1 to PW2

(e.g., 123456 → Delete 6 at the end)

PW1 = wang123

Context

Encoder

RNN
Decoder

RNN

Pass2Path model

PW2 = wang1!

<DEL, 5>

<DEL, 6>

<INS, 7, !>

Character

representation

Pal et al.’s Pass2Path model (IEEE S&P 2019)

-0.1
-0.2

-0.4
-0.1

 Pass2Path defines three character-level atomic modifications:

insertion, deletion, and substitution.

Model input: user's old password character sequence PW1

Model output: a sequence of modifications to transform PW1 to PW2.

 Pass2Path cannot capture the mutual influence between

password edit operations and corresponding transformation effects.

Existing issues of Pass2Path (IEEE S&P 2019)

After the operation <DEL,5>, wang123 has already been modified to wang13

: wang123→ PW2: wang1!

PW1 = abc334bca

Guesses Pr(PW2|PW1)

abc334bca1 0.6

abc334bca123 0.2

abc34 0.1

… …

User PW1 PW2

Bob abc334bca 12345678

PW2 = 12345678

 Reused pair

 Reused pair

× Non-reused pair

× Non-reused pair

Edit distance = 6

User PW1 PW2

A 3080124 cooper3080124

B 720710 720710720710

C wozuixiao leizixi1

D 123456789 281456

 Without consideration of popular passwords

×

 Inaccurate similarity measurement

Existing issues of Pass2Path (IEEE S&P 2019)

Pass2Path

PW2 is not similar to PW1

Training data cleaning
 Password similarity metric: 2-gram cosine similarity > 0.3





Users PW1 PW2

A 3080124 cooper3080124

B 720710 720710720710

C wozuixiao leizixi1

D 123456789 281456

Users PW1 PW2 Similarity

A 3080124 cooper3080124 0.66

B 720710 720710720710 0.95

C wozuixiao leizixi1 0.21

D 123456789 281456 0.24

^a ab bc c$ ca

abc 1 1 1 1 0

abcabc 1 2 2 1 1

PW1: abc→ [^a, ab, bc, c$]

PW2: abcabc → [^a, ab, bc, ca, ab, bc, c$] (^ and $ represent the beginning and end symbols)

sim(abc, abcabc) = cos< (1,1,1,1,0),(1,2,2,1,1)> = 0.905

 More accurate similarity measurement

×
×

 Training process

⚫ The input at each step: the original

password and the current modified

password.

⚫ The output at each step: single-step

modification operation.

Pass2Edit: a multi-step generative model

Password generation process
 Use the beam search algorithm to generate edited guesses.

Mixing popular passwords
 How to integrate popular passwords?

Probability adjustment From the training setSort after mixing

⚫ Multiply the probability of each generated password by a factor α.

⚫ Use the frequency of each popular password in the training set to estimate its probability.

⚫ Merge the two password sets in descending order of probability.

Experimental setup

◼ How well does Pass2Edit perform?

◼ How effective is our Pass2Edit in practical attacking scenarios?

◼ Does the efficiency of our Pass2Edit meet the needs of the real attacker?

 Three research questions (RQs)

Experimental results
 Within 100 guesses, the guessing success rates of our Pass2Edit are

18.2%-33.0% higher than its foremost counterparts.

 The training time and password generation speed of our Pass2Edit fully meets

the needs of a realistic attacker.

Analysis of cracked passwords

Delete the letter segment

 How to utilize multiple existing passwords of the same user to further

improve the guessing success rate?

Takeaways and future work

Username Password

zhangsan

PW1:abc334bca

PW2: password

PW3: Abc334bca123

…

… …

Username Password

zhangsan PWn: zhangAbc334

… …

 Employ Pass2Edit to generate flat honeywords.

Tiger03 tiger82 tiger59 tiger15 tiger81

tigeR17 tiger32 tiger8! tiger70 Tiger88

Thank you!

Pass2Edit: A Multi-Step Generative Model
for Guessing Edited Passwords

Ding Wang, Yunkai Zou

The 32nd USENIX Security Symposium

Peking UniversityNankai University

The University of New South Wales

Yuan-An Xiao

Siqi Ma

{wangding, zouyunkai}@nankai.edu.cn xiaoyuanan@pku.edu.cn

siqi.ma@unsw.edu.au

Xidian University

Xiaofeng Chen

xfchen@xidian.edu.cn

