

No Single Silver Bullet: Measuring the Accuracy of Password Strength Meters

Ding Wang, Xuan Shan, Qiying Dong

Nankai University {wangding, shanxuan, dqy}@nankai.edu.cn

Yaoshen Shen Peking University ysshen@pku.edu.cn

Chunfu Jia Nankai University cfjia@nankai.edu.cn

The 32nd USENIX Security Symposium

Passwords Are Not Dead

Password strength meter (PSM)

- A PSM provides real-time strength feedback upon user registration and password change.
- PSMs encourage users toward secure

Academic

- fuzzyPSM [DSN'16]
- MultiPSM [TIFS'17]
- PCFG-PSM [ACSAC'12]
- Markov-PSM [NDSS' 12]
- RNN-PSM [Usenix SEC'16]
- LPSE [COSE'18]
- CNN-PSM [ESORICS'16]

Industrial

- Zxcvbn
- KeePSM
- 12306-PSM
- Microsoft-PSM

Strength of nankai2023 Which PSM Weak Medium Strong How Secure Is My Password?

nankai2023

× A password change is long overdue!

 \odot

Bad news

△ Frequently used words

• Your password does not appear in any databases of leaked passwords

nankai2023		
lt w	ould take a computer about	
	1 day	
	to crack your password	
nankai2023		
Your pass	word could be bett	er.
Don't use Wikipedia	e words used on a (nankai)	<u>(Why?)</u>
Avoid usi	ng dates like 2023	<u>(Why?)</u>
Avoid usi password of your or	ng very common Is like anka as part wn password	<u>(Why?)</u>
A better cl	noice: n2092#3ank	al
How to ma	ke strong passwoi	ds

nankai2023

Password strength: Strong

Use at least 8 characters. Don't use a password from another site, or something too obvious like your pet's name. Why?

password	
nankai2023	Ý

Password strength: Good. You can choose to lengthen your password to increase its strength.

Password nankai2023

Our work

- A systematic evaluation framework, that
 - composed of 4 different dimensioned criteria to rate PSM accuracy under 2 guessing scenarios (and 6 guessing strategies).
- Extensive evaluation.
 - Our evaluation framework is utilized by rating 12 state-of-art

PSMs, leveraging 14 real-world password datasets.

- Some insights.
 - 3 recommendations to help improve the accuracy of PSMs.

Password guessing scenarios

Online guessing strategies

Knowledgeable online attacker

- Well-informed of the target password distribution.
- Prioritize trying the most popular passwords.

General online attacker

- Unaware of the target password distribution.
- Traverse common popular passwords.

Metrics for online guessing

- Due to the limited attempts allowed in online guessing scenarios, a PSM should accurately detect popular passwords (also the preferred guessing passwords of attackers), especially the most popular passwords (e.g., 123456)
- The higher the frequency of a password, the lower its strength.
- Ideal PSM: $M(pw) = Pr(pw), \forall pw \in \Gamma$
- The accuracy of a PSM can be measured as its distance from the ideal PSM, by calculating the correlation between its evaluated strength rank list and the referred rank list of the ideal PSM.

Idea	al PSM	Teste	ed PSM
Strength	Password	Strength	Password
1	123456	7	123456
2	password	3	password
3	123456789	1	123456789
9	12345678	2	12345678
19	qwerty	82	qwerty
63	cookie	1309	cookie
154	777777	430	777777

Spearman v.s. Wspearman

× Spearman Correlation Coefficient

Spearman(X, Y)

 $= \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{\sqrt{\sum_{i=1}^{n} [(x_i - \bar{x})^2] \sum_{i=1}^{n} [(y_i - \bar{y})^2]}}$

lo	Ideal PSM						
Rank	Password						
1	123456						
2	password						
3	123456789						
9	12345678						
19	qwerty						
63	cookie						
154	777777						

Tes	sted PSM	
Rank	Password	
7	123456	
3	password	
1	123456789	
2	12345678	
82	qwerty	
1309	cookie	
430	777777	

✓ Weighted Spearman Correlation Coefficient WSpearman(X, Y)
[CCS'20]

 $=\frac{\sum_{i=1}^{n}[w_{i}(x_{i}-\bar{x})(y_{i}-\bar{y})]}{\sqrt{\sum_{i=1}^{n}[w_{i}(x_{i}-\bar{x})^{2}]\sum_{i=1}^{n}[w_{i}(y_{i}-\bar{y})^{2}]}}$

ld	eal PSM		Tes	sted PSM
Rank	Password		Rank	Password
1	123456		7	123456
2	password		3	password
3	123456789		1	123456789
9	12345678		2	12345678
19	qwerty		82	qwerty
63	cookie		1309	cookie
154	777777		430	777777
	ld Rank 1 2 3 9 19 63 154	Ideal PSMRankPassword11234562password312345678991234567819qwerty63cookie154777777	Ideal PSMRankPassword11234562password312345678991234567819qwerty63cookie154777777	Ideal PSMTestRankPasswordRank112345672password331234567891912345678219qwerty8263cookie1309154777777430

Evaluation results in online guessing

Overall conclusion

- FuzzyPSM performs the best, followed by Zxcvbn.
- Pattern-based and attack-algorithm-based PSMs need to be adapted for evaluating passwords in different languages.

Offline guessing strategies

Brute-force offline attacker

 Performs an exhaustive search over all possible passwords in a given search space.

Dictionary-based offline attacker

 Generates a guess list that contains several wordlists and candidate passwords extended by mangling rules.

Probability-based offline attacker

 Describe the target password distribution by parametric probability models (e.g., Markov), and produce guessing in the descending order of probability.

Combined offline attacker

• Try all these three guessing strategies to achieve higher cracking rates.

Metrics for offline guessing

- An attacker can perform large-scale (usually>10⁹) guesses under offline guessing scenarios.
- She does not care about whether any specific guess is hit or not, but pursues a higher cracking rate under the constraints of computing resources and time.

KL-divergence

 $\overset{KL(P \parallel Q)}{= \sum_{i} P(i) \cdot \log \frac{P(i)}{Q(i)} }$

Evaluation results in offline guessing

Metric: KL-divergence

- MultiPSM generally performs the best.
- Markov-PSM and Zxcvbn are the most accurate PSMs under probability-based and dictionary-based guessing, respectively.

Table 4: KL-divergence of leading PSMs in offline guessing scenarios. Multi-PSM [19] performs best under brute-force and combined guessing strategies.[†]

DCM	VI	(Chinese			English	
PSM	KL	Dodonew	CSDN	Weibo	LinkedIn	000web.	Yahoo
	KL _{Bfa}	1.0788	2.5179	3.1533	0.8308	0.9268	0.7865
fuggy DCM [17]	KL _{Dic}	2.1009	6.7767	0.9021	3.0155	4.3028	3.7928
IuzzyPSIvi [17]	KL _{Prob}	1.2467	1.1164	0.4478	1.3486	2.4993	1.5537
	KL _{All}	1.6193	3.1912	3.9749	2.2784	2.1186	3.3429
	KL _{Bfa}	7.8006	2.0598	1.1105	8.5515	10.8753	6.4370
MultiDSM [10]	KL _{Dic}	0.3519	0.2727	0.1161	0.5221	1.0597	0.2488
Mulur Sivi [19]	KL _{Prob}	1.6762	1.8614	1.1436	5.4648	2.0630	2.0235
	KL _{All}	8.8994	7.2047	5.3692	7.5933	4.6160	3.9984
	KL _{Bfa}	3.0046	1.4362	2.3564	2.2791	2.3951	1.2541
PCEC-PSM [25]	KL _{Dic}	5.5556	5.9258	1.1966	3.4309	3.0581	1.8182
PCFG-P5M [25]	KL _{Prob}	0.5047	1.1080	1.0369	1.2626	1.4452	0.9729
	KL _{All}	4.4277	2.3542	5.2805	6.0787	6.5533	2.9720
	KL _{Bfa}	1.2793	2.7560	3.8787	1.1933	0.9148	0.9439
Markov-PSM [16]	KL _{Dic}	3.0063	6.6061	3.8439	1.1163	1.6300	1.0145
	KL _{Prob}	2.0506	2.0341	0.7793	6.9454	6.9880	6.7100
	KL _{All}	2.2533	3.4217	3.8988	5.8993	1.3360	2.3893
	KL _{Bfa}	0.6410	0.9677	1.1538	1.0628	0.9133	0.6623
RNN-PSM [18]	KL _{Dic}	1.8715	2.9528	1.5388	3.4172	5.6578	2.0859
KININ-1 SIVI [10]	KL _{Prob}	0.9765	1.6174	0.9335	2.6606	3.0942	1.7423
	KL _{All}	1.1992	1.5318	2.8269	4.1227	3.2999	6.3708
	KL _{Bfa}	8.6483	6.7929	3.6468	4.0480	1.7946	1.3838
LPSE [13]	KL _{Dic}	0.6029	0.6291	0.3974	0.3833	0.5417	0.3120
	KL _{Prob}	0.3492	0.4390	0.3814	1.8581	1.1519	1.2526
	KL _{All}	6.7505	1.8783	0.9242	6.7797	6.5693	4.6571

	KL_{Bfa}	1.2415	1.7885	1.3490	0.3299	0.7236	0.5631
CNIN-PSM [20]	KL _{Dic}	4.1313	6.3760	4.1089	2.2732	2.6128	2.6266
CININ-FSIM [20]	KL _{Prob}	0.3446	0.6661	0.5040	1.1542	2.5521	1.7725
	KL _{All}	3.0218	3.3403	2.8551	3.5520	2.1229	2.4907
	KL _{Bfa}	2.1916	3.6398	2.9347	1.1732	1.7442	1.1001
Zycybn -	KL _{Dic}	2.6813	5.8958	2.7036	1.0440	2.1223	2.0496
ZXCVDIIC	KL _{Prob}	0.7428	1.1549	0.7512	0.9996	1.7949	1.2733
	KL _{All}	2.8681	3.8673	4.4639	1.6443	2.0144	2.3132
	KL _{Bfa}	2.8831	4.2145	2.7957	1.4231	1.5154	1.2219
Z vovbn - [14]	KL _{Dic}	4.3938	7.6722	4.0757	2.0382	3.7266	2.8444
	KL _{Prob}	0.9770	1.5533	1.1632	1.3931	1.8223	1.4169
	KL _{All}	4.3930	4.6782	5.4262	4.7708	2.6660	2.6944
	KL _{Bfa}	2.5697	2.2666	3.9500	2.8319	2.2526	2.8474
KeePSM [15]	KL _{Dic}	1.0812	2.0236	0.8438	0.1939	0.5237	0.3673
Keer Sivi [15]	KL _{Prob}	0.2886	0.4965	0.9081	1.0141	0.9805	0.9177
	KL _{All}	2.2322	2.6261	3.9691	1.6662	0.8765	1.3227
	KL _{Bfa}	1.6920	1.6607	0.3271	0.6190	1.6402	0.3176
12206 PSM	KL _{Dic}	0.2456	0.3219	0.1479	0.1504	0.1692	0.2607
12500-F510	KL _{Prob}	0.0058	0.0127	0.0080	0.1873	0.4803	0.0319
	KL _{All}	1.4990	1.3592	0.2232	0.3698	0.8558	0.2026
	KL _{Bfa}	3.7802	0.2433	0.3576	3.6622	5.6669	3.2280
Microsoft DSM	KL _{Dic}	0.6652	0.0574	0.1811	0.4127	0.4552	0.0112
WHEIOSOII-FSIVI	KL _{Prob}	0.0545	0.0364	0.0688	0.9957	0.8549	0.1223
	KL _{All}	3.3667	0.2370	0.2617	2.7974	3.0522	2.6380

†KL=KL-divergence; Bfa=Brute-force attack; Dic=Dictionary-based guessing; Prob=Probability-based guessing; All=The combined guessing. A line with background color means the corresponding PSM is the best under the given strategy.

How will the accuracy of a PSM change?

e.g., probabilities, guess number...

Coarse-grained strength feedback e.g., [weak, medium, strong]

Evaluation results in offline guessing

Metric: Precision & Precision^{Security}

- MultiPSM has the highest Precision and Precision^{Security} under the combined guessing attacks.
- Zxcvbn also shows its advantage under dictionary-based and probability-based guessing strategies.

Table 5: Precision of leading PSMs with the feedback of (transformed)
bins/scores in offline guessing scenarios. LPSE [13], Zxcvbn _E [14], Markov	-
PSM [16] and MultiPSM [19] perform the best under brute-force, dictionary	-
based, probability-based and combined guessing strategies, respectively. [†]	

PSM	Prec	(Chinese			English	
FSM	Fiec	Dodonew	CSDN	Weibo	LinkedIn	000web.	Yahoo
	PrecBfa	0.6593	0.7356	0.9622	0.8099	0.9136	0.9182
DOM (171	PrecDic	0.8320	0.8828	0.7896	0.8118	0.9722	0.994
TuzzyPSM [17]	Precprob	0.7636	0.7042	0.1239	0.8738	0.9575	0.9750
	PrecAll	0.6842	0.7631	0.9811	0.7544	0.9604	0.9569
	PrecRfa	0.8738	0.8608	0.9582	0.9676	0.6753	0.872
	PrecDie	0.6134	0.6435	0.6653	0.9598	0.9358	0.979
MultiPSM [19]	Precprob	0.3248	0.1462	0.1736	0.8842	0.9189	0.8433
	PrecAll	0.9971	0.9917	0.9978	0.9962	0.9918	0.997
	Precara	0.9331	0.8492	0.8829	0.9122	0.9507	0.905
	Prechie	0.9706	0.9793	0.7531	0.9523	0.9792	0.9460
PCFG-PSM [25]	Precemb	0.3522	0.9895	0.2680	0.9886	0.9891	0.994
	Precall	0.9241	0.8305	0.8136	0.8747	0.9344	0.859
	PrecRfa	0.5706	0.5967	0.9214	0.6284	0.8954	0.7478
	Precoie	0.7933	0.8058	0.8520	0.5314	0.9519	0.6039
Markov-PSM [16]	Precemb	0.9333	0.9534	0.6133	0.9900	0.9991	0.979
	Precall	0.5647	0.6038	0.9181	0.4347	0.8707	0.505
	Precara	0.6514	0.6425	0.5042	0.8778	0.9527	0.918
	Precoi	0.9535	0.9359	0.7356	0.9682	0.9961	0.966
KNN-PSM [18]	Precemb	0.9050	0.8540	0.7709	0.8609	0.9580	0.853
	Precall	0.6270	0.6301	0.4788	0.8715	0.9503	0.979
	Precara	1.0000	1.0000	0.5467	0.9999	0.9998	0,999
	Precou	0.3505	0.6817	0.3272	0.5878	0.7074	0.678
LPSE [13]	Precemb	0.2349	0.6326	0.0986	0.8030	0.7956	0.824
	Precall	0.9993	0.9866	0.5465	0.9974	0.9968	0.975
	Precare	0.6975	0.7272	0.7046	0.7142	0.2628	0.503
	Precou	0.4363	0.4505	0.4425	0.7951	0.2505	0.441
CNN-PSM [20]	Precemb	0.1963	0.0656	0.1274	0.6746	0.2675	0.412
	Precall	0.7966	0.7869	0.7475	0.9231	0.4199	0.666
	Precara	0.8926	0.8912	0.9586	0.8251	0.8707	0.916
	Precoie	0.8485	0.9206	0.8159	0.8404	0.9827	0.971
Zxcvbn _C	Precemb	0.3210	0.2329	0.1856	0.8268	0.9728	0.936
	Precan	0.9866	0.9794	0.9938	0.8831	0.9866	0.994
	Precaca	0.9561	0.9326	0.9752	0.9191	0.6990	0.920
10 100 10000 P	Precos	0.9254	0.9325	0.8770	0.9609	0.9866	0.979
$Zxcvbn_E$ [14]	Precemb	0.2639	0.1055	0.1942	0.9160	0.9385	0.921
	Precau	0.9881	0.9802	0.9970	0.9962	0.9976	0.998
	Precaca	0.6622	0.6939	0.9085	0.6967	0.2375	0.437
	Precov	0.4281	0.4853	0.5685	0.7807	0.3105	0.378
KeePSM [15]	Precant	0.2232	0.0879	0.1679	0.6598	0.2953	0.3510
	Precau	0.7805	0.7753	0.9678	0.9158	0.4442	0.576
-	Precar	0.9105	0.8295	0.4205	0.6799	0.9406	0.9975
	Preco	0.2400	0.2859	0.2519	0.4339	0.3958	0.821
12306-PSM	Precent	0.1208	0.0657	0.0655	0.4389	0.5917	0.9210
	Precau	0.9341	0.8643	0.4320	0.7403	0.9399	0.999
	Precar	0.9979	0.9985	0.5161	0.9952	0.9822	0.993
	1	111111	2.2700		0 (100	0 4205	0.755
and a surger	Preco	0.5596	0.3134	0.3082	0.6488	0.4585	U. / 3 10
Microsoft-PSM	Prec _{Dic}	0.5596	0.3134	0.3082	0.6488	0.4385	0.7550

† Prec=Precision; Other abbreviations are the same with Table 4. A line with background color means the corresponding PSM is the best under the given strategy. Table 6: Precision^{Security} of leading PSMs with the feedback of (transformed) bins/scores in offline guessing scenarios. MultiPSM [19] is still the most accurate PSM under brute-force and combined guessing strategies.[†]

PSM	DracSec	Chinese Englis					
FOM	Flee	Dodonew	CSDN	Weibo	LinkedIn	000web.	Yahoo
	PrecSec	0.2993	0.3226	0.7526	0.2772	0.2139	0.355
	PrecSec	0.3228	0.3576	0.6121	0.2861	0.2586	0.390
fuzzyPSM [17]	PrecSec	0.2066	0.1582	0.0736	0.2915	0.2452	0.376
	Prec	0.3249	0.3462	0.7702	0.2791	0.2571	0.386
	Prec	0.7978	0.7519	0.4118	0.7809	0.7303	0.793
	PrecSec	0.4884	0.5142	0.5270	0.7666	0.7235	0.783
MultiPSM [19]	PrecSec	0.2574	0.1163	0.1336	0.7061	0.7100	0.674
	Prec	0.7883	0.7836	0.7923	0.7987	0.7729	0.798
	Prec	0.5760	0.1749	0.6153	0.3078	0.1913	0.187
	PrecSec	0.5751	0.2008	0.5245	0.3134	0.1970	0.195
PCFG-PSM [25]	Prec ^{Sec}	0.0717	0.1979	0.0582	0.3183	0.1986	0.205
	PrecSec	0.5742	0.1712	0.6014	0.3003	0.1881	0.178
	Prec	0.1732	0.2026	0.3295	0.2845	0.2009	0.310
	PrecSec	0.2047	0.2407	0.2686	0.2672	0.2203	0.292
Markov-PSM [16]	PrecSec	0.2017	0.1833	0.1732	0.3375	0.2209	0.342
	PrecSec	0.1796	0.2156	0.3331	0.2523	0.2056	0.276
	PrecSec	0.1588	0.1543	0.3561	0.2476	0.1959	0.723
	PrecSec	0 2174	0.2118	0.3675	0.2679	0.2051	0.765
RNN-PSM [18]	PrecSec	0.1919	0.1964	0.1554	0.2738	0.2057	0.768
	PrecSec	0.1543	0.1539	0.3533	0.2514	0.1960	0.778
	PrecSec	0.7748	0.4265	0.4191	0.7554	0.4563	0.632
	PrecSec	0.2555	0 1779	0 2437	0.4272	0 2240	0.390
LPSE [13]	PrecSec	0.1630	0 1377	0.0608	0.5980	0 2932	0 494
	PrecSec	0.7747	0.4239	0.4191	0.7549	0.4557	0.628
	PrecSec	0.5580	0.5817	0.5636	0.5713	0.1951	0.402
	PrecSec	0.3490	0.3604	0.3540	0.6361	0 1852	0.353
CNN-PSM [20]	PrecSec	0.1570	0.0524	0 1019	0.5397	0 1989	0.330
	PrecSec	0.6373	0.6295	0.5980	0.7385	0.3208	0.533
	PrecSec	0.6983	0.6399	0.7586	0.6306	0.2743	0.661
	PrecSec	0.6599	0.6580	0.6442	0.6534	0.3687	0 707
Zxcvbn _C	PrecSec	0.2376	0.1064	0.1398	0.6316	0.3560	0.677
	PrecSec	0.7739	0.7107	0.7869	0.6876	0.3719	0.726
	PrecSec	0.7560	0.7253	0.7679	0.7314	0.3725	0.702
	PrecSec	0.7314	0.7237	0.6890	0.7670	0.6053	0.750
Zxcvbn _E [14]	PrecSec	0.2030	0.4632	0.1431	0.7290	0.5645	0.703
	PrecSec	0.2000	0.7742	0.7867	0.7250	0.6095	0.764
	PrecSec	0.5297	0.5551	0.7268	0.5573	0.1900	0.349
	PrecSec	0.3425	0.3883	0.4548	0.6245	0 2484	0.303
KeePSM [15]	PrecSec	0.1785	0.0703	0.1343	0.5278	0.2362	0.302
	PrecSec	0.6244	0.6202	0.7742	0.7326	0.3553	0.260
	PrecSec	0.7250	0.6603	0.3360	0.5419	0.6081	0.709
12306-PSM	PrecSec	0.1886	0.2255	0.2011	0.3451	0.2627	0.657
	PrecSec	0.1000	0.2235	0.2011	0.3451	0.2027	0.037
	PrecSec	0.0934	0.6882	0.3451	0.5492	0.4200	0.730
	PrecSec	0.6968	0.0880	0.7613	0.3903	0.0968	0.799
	DrooSec	0.0908	0.0000	0.7013	0.7728	0.2076	0.097
Microsoft-PSM	PrecDic	0.4471	0.2071	0.2433	0.5041	0.2970	0.002
	Prec Prob	0.1219	0.0622	0.0039	0.0044	0.3903	0.0/0
	PrecAll	0.7981	0.7508	0.4121	0.7812	0.7520	0.793

†PrecSee=PrecisionSecurity; Other abbreviations are the same with Table 4. Back ground color indicates the corresponding PSM is the best under the given strategy.

Insights and suggestions

Adaptive score conversion methods can be used to facilitate PSM application.

Fine-grained strength feedback e.g., probabilities, guess number...

(c) Knowledgeable strategy, tr: Rockyou, ts: LinkedIn

Coarse-grained strength feedback e.g., [weak, medium, strong]

Figure 6: WSpearman of binned-PSMs under the knowledgeable online guessing strategy (tr: Rockyou, ts: LinkedIn). Binning degrades accurate PSMs while improving inaccurate ones. See Appendix F for more results.

Insights and suggestions

PSMs can be effectively integrated to perform better.

(d) Knowledgeable strategy, tr: Tianya, ts: CSDN

[†] A **bold** value indicates that the KL-divergence of Integrated-PSM is *higher* than fuzzyPSM [17] and MultiPSM [19] under the given strategy.

Figure 11: WSpearman of Integrated-PSM and other 12 PSMs under the knowledgeable online guessing strategy (tr: Training set; ts: Test set).

(e) Knowledgeable strategy, tr: Rockyou, ts: 000webhost

(f) Knowledgeable strategy, tr: Rockyou, ts: Yahoo

Insights and suggestions

PSMs need to be modified and adapted to accommodate different languages.

Figure 12: Influence of training set language on the accuracy of six attack algorithm-based PSMs under the knowledgeable online guessing strategy.

(b) Knowledgeable strategy, tr: Rockyou, ts: 000webhost

1.00

0.75

0.50

Thank you!

No Single Silver Bullet: Measuring the Accuracy of Password Strength Meters

Ding Wang, Xuan Shan, Qiying Dong

Nankai University {wangding, shanxuan, dqy}@nankai.edu.cn

Yaoshen Shen Peking University ysshen@pku.edu.cn

Chunfu Jia Nankai University cfjia@nankai.edu.cn

The 32nd USENIX Security Symposium