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Universal

Black-box

Hard-label

Induce misclassification for any given input

No access to the model weight parameters

Only have the knowledge of the predicted label
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Why Hard-label Black-box 
Universal Attack?

Machine learning as a service (MLaaS)
§ Companies deploy ML models on online platforms

§ Applications using MLaaS are suspectable to 
attacks: facial recognition, optical character 
recognition, etc.
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ML Models are intellectual properties
§ Only provide API access → black-box

§ Only return the predicted result → hard-label

§ Limited number of queries → universal
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Let’s Approximate It!

Hard-label Black-box Universal Adversarial Patch Attack

✓/✗?

Misclassified

Bird

ModelInput

Trigger + Noise
Black-box

§ For a single input, add a set of random noises on the trigger
§ Inspect whether any noise leads to the target prediction
§ Obtain the (estimated) gradient based on the noises
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Let’s Approximate It!
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✓/✗?

Misclassified

Bird

ModelInput

Trigger + Noise
Black-box

§ For a single input, add a set of random noises on the trigger
§ Inspect whether any noise leads to the target prediction
§ Obtain the (estimated) gradient based on the noises
§ Aggregate the gradients for multiple inputs to mutate the trigger
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Gradient Estimation for Multiple Inputs

Hard-label Black-box Universal Adversarial Patch Attack

Direct Estimation Importance-aware Estimation

§ Leverage historical 
misclassified rate

§ Dynamically adjust 
importance
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Is Grad Approx. Sufficient?

Additive noises may not increase the attack 
success rate
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Is Grad Approx. Sufficient?

Additive noises may not increase the attack 
success rate

§ Hard to determine the magnitude of the noise

§ Limited number of queries
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History is always instructive!

§ Two close-by minima indicate a promising region

§ Interpolation between them yields a better trigger
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Experiment Setup

Datasets & Models Commercial Services Baselines
§ Datasets: CIFAR-10, 

SVHN, STL-10, GTSRB

§ Models: ResNet18, 
ResNet34, ResNet50, 
VGG11, GoogleNet, 
DenseNet121, 
MobileNet V2

§ Microsoft Azure1

§ Clarifai2
§ 3 hard-label black-box 

adversarial attacks: 
HSJA3, GRAPHITE4, 
SparseEvo5

§ 3 soft-label black-box 
attacks: Bandits6, 
SPSA7, Sparse-RS8

Hard-label Black-box Universal Adversarial Patch Attack

1 https://azure.microsoft.com/en-us/ services/cognitive- services/
2 https://www.clarifai.com/
3 Chen, Jianbo, et al. HopSkipJumpAttack: A query-efficient decision-based attack. S&P 2020.
4 Feng, Ryan, et al. Graphite: Generating automatic physical examples for machine-learning attacks on computer vision systems. EuroS&P 2022.
5 Vo, Viet, et al. Query efficient decision based sparse attacks against black-box deep learning models. ICLR 2022.
6 Ilyas, Andrew, et al. Prior convictions: Black-box adversarial attacks with bandits and priors. ICLR 2019.
7 James C Spall. A one-measurement form of simultaneous perturbation stochastic approximation. Automatica 1997.
8 Croce, Francesco, et al. Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks. AAAI 2022.
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Attack Performance
§ Generate a trigger for each pair of classes

§ Size: 7x7 (4.79% of the input) # Queries: 50k

§ Count the number of pairs above a certain attack success rate (ASR)

Hard-label Black-box Universal Adversarial Patch Attack
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Attacking Online Services
Two online commercial services: 
Microsoft Azure and Clarifai

§ Upload data for training (not deployed)

§ Use the prediction API for attack

§ Size: 7x7 # Queries: 240

Results (averaged on 10 pairs)

§ Azure: 74% (vs. 60% by HSJA)

§ Clarifai: 74% (vs. 53% by HSJA)

Hard-label Black-box Universal Adversarial Patch Attack
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Countermeasures

Certifiable Defense: PatchCleanser1

§ Produce correct predictions no matter whether inputs are adversarially perturbed

§ Average certified robust accuracy: 0.17%

Query-based Defense: Blacklight2

§ Identify malicious queries by black-box attacks

§ Average detection rate: 0.2%

Universal Adversarial Patch Detection: SentiNet3

§ Reject adversarially perturbed inputs

§ Average detection accuracy: 50.53%

Hard-label Black-box Universal Adversarial Patch Attack

1 Xiang, Chong, et al. PatchCleanser: Certifiably robust 
defense against adversarial patches for any image 
classifier. USENIX Security 2022.
2 Li, Huiying, et al. Blacklight: Scalable defense for neural 
networks against query-based black-box attacks. USENIX 
Security 2022.
3 Chou, Edward, et al. SentiNet: Detecting localized 
universal attack against deep learning systems. SPW 2020.
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Propose a novel hard-label black-box 
universal adversarial patch attack, 
obtaining more than twice high-ASR patch 
triggers (>90%) than eight baselines

Successfully attack two online commercial 
services, Microsoft Azure and Clarifai, with 
an average ASR of 74%

Effectively evade three state-of-the-art 
defense techniques
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Conclusion
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