

Glowing in the Dark

Uncovering IPv6 Address Discovery and Scanning Strategies in the Wild

Hammas Bin Tanveer, Rachee Singh, Paul Pearce, Rishab Nithyanand

32ND USENIX Security Symposium

What is internet scanning?

Internet scanning has been studied extensively for the past two decades

Led to the development of fast scanning tools e.g., ZMap

Internet scanning has been studied extensively for the past two decades

Led to the development of fast scanning tools e.g., ZMap

Fast scanning tool + good internet can scan the whole IPv4 address space in minutes

Internet scanning has been studied extensively for the past two decades

Fast scanning tool + good internet can scan the whole IPv4 address space in minutes

Darknets can be used to understand scanning prevalence and behavior

Tools + techniques developed to understand scanning do not translate to IPv6

IPv6 address space

Tools + techniques developed to understand scanning do not translate to IPv6

Impossible to brute-force scan the entire IPv6 address space

IPv6 darknets capture insignificant amount of scanning traffic compared to IPv4 darknets

IPv6 address space

Motivation

How to capture a more representative amount of IPv6 scanning traffic?

What strategies do IPv6 scanners use in the wild?

How can we make our IPv6 address spaces more secure against scanning?

We introduce a **novel methodology** better suited for **capturing scanning traffic** in **IPv6 networks**.

Using our methodology, we collect scanning traffic and present an **overview of** scanning prevalence and strategies.

Develop methodology

We present **security implications for network operators** by analyzing scanning strategies

Intuition: Due to the vastness of IPv6, scanners target regions of the address space with "live" IP addresses

Intuition: Due to the vastness of IPv6, scanners target regions of the address space with "live" IP addresses

Capture network traffic + reverse DNS queries towards our /56 subnet

Upstream

Simulating a "live" address space

Our definition of a scanner

An IP address that sends unsolicited network traffic to a /128 IPv6 address on which none of our services were run.

Our definition of a scanner

An IP address that sends unsolicited network traffic to a /128 IPv6 address on which none of our services were run.

IP scanner: IP traffic e.g., ICMP, TCP, UDP etc.

DNS scanner: Reverse DNS queries

Our definition of a scanner

An IP address that sends unsolicited network traffic to a /128 IPv6 address on which none of our services were run.

IP scanner: IP traffic e.g., ICMP, TCP, UDP etc.

DNS scanner: Reverse DNS queries

Measuring change in scanning activity

Overview of scanning traffic received

Subnet ID

Overview of scanning traffic received

Overview of scanning traffic received

Overview of scanning traffic received

24

Overview of scanning traffic received

Scanner strategies

Scanning strategies over time

Scanner

Scanner strategies

Scanning strategies over time

Scanner strategies

Scanning strategies over time

Scanner strategies

Scanning strategies over time

Scanner strategies

Scanning strategies over time

We observe presence of both narrow and wide scanners

Scanner strategies

Scanner

Scanner preference by address type

2001:0DB8:AC10:FE01:0000:0000:0002 Lower-byte address

2001:0DB8:AC10:FE01:3201:AC22:D654:98242 Random-byte address

Scanner strategies

Scanner strategies

Scanner preference by address type

Scanners of all sizes primarily target lower-byte treatment subnets

Scanners primarily send lower-byte scans regardless of subnet type

Security implications

for network operators

Lower-byte addresses receive 350,000x more traffic than random-byte addresses. Use semantically opaque interface identifiers. 2001:0DB8:AC10:FE01:0000:0000:00002 Lower-byte address 2001:0DB8:AC10:FE01:3201:AC22:D654:98242 Random-byte address

Security implications

for network operators

Lower-byte addresses receive 350,000x more traffic than random-byte addresses. Use semantically opaque interface identifiers.

NXDOMAIN scanning can significantly reduce number of probes to identify an active address Dynamically generate PTR records "on the fly" 2001:0DB8:AC10:FE01:0000:0000:00002 Lower-byte address 2001:0DB8:AC10:FE01:3201:AC22:D654:98242 Random-byte address

Security implications

for network operators

Lower-byte addresses receive 350,000x more traffic than random-byte addresses. Use semantically opaque interface identifiers.

NXDOMAIN scanning can significantly reduce number of probes to identify an active address Dynamically generate PTR records "on the fly"

Most IPv6 scanners are reported on abuse databases Using popular IP blocklists can preemptively stop network scanning 2001:0DB8:AC10:FE01:0000:0000:00002 Lower-byte address 2001:0DB8:AC10:FE01:3201:AC22:D654:98242 Random-byte address

Conclusion

We develop a novel methodology to capture a more representative amount of scanning traffic in IPv6 networks

We uncover a set of diverse scanning strategies employed by IPv6 scanners

We present security recommendations for network operators to make IPv6 address spaces more secure against scanning

Conclusion

We develop a novel methodology to capture a more representative amount of scanning traffic in IPv6 networks

We uncover a set of diverse scanning strategies employed by IPv6 scanners

We present security recommendations for network operators to make IPv6 address spaces more secure against scanning

We also...

Present an in-depth analysis of DNS scanners and their strategies

Present an analysis of scanner characteristics, origins and payload analysis of scanning traffic

Glowing in the Dark: Uncovering IPv6 Address Discovery and Scanning Strategies in the Wild

Hammas Bin Tanveer, *The University of Iowa;* Rachee Singh, *Microsoft and Cornell University;* Paul Pearce, *Georgia Tech;* Rishab Nithyanand, *University of Iowa*

https://www.usenix.org/conference/usenixsecurity23/presentation/bin-tanveer

For all questions, comments and discussions hammas-tanveer@uiowa.edu

BACKUP SLIDES

Origins of scanning traffic are concentrated by geography and AS type

Origins of scanning traffic are concentrated by geography and AS type

99% of all traffic originates from 3 countries and 2 AS types.

Origins of scanning traffic are concentrated by geography and AS type

99% of all traffic originates from 3 countries and 2 AS types.

ICMPv6 is the most scanned protocol

2013	2018	2020	2022
ICMPv6	HTTP	HTTP	ICMPv6
TCP - 7	ICMPv6	ICMPv6	HTTP
HTTP	-	HTTPS	HTTPS
SSH	-	Redis	TCP - 65535
HTTPS	-	IRC	Telnet

Origins of scanning traffic are concentrated by geography and AS type

99% of all traffic originates from 3 countries and 2 AS types.

ICMPv6 is the most scanned protocol

54% of all scanning traffic consisted of ICMPv6 packets; temporal change in scanner's protocol preference

2013	2018	2020	2022
ICMPv6	HTTP	HTTP	ICMPv6
TCP - 7	ICMPv6	ICMPv6	HTTP
HTTP	-	HTTPS	HTTPS
SSH	-	Redis	TCP - 65535
HTTPS	-	IRC	Telnet

Origins of scanning traffic are concentrated by geography and AS type

99% of all traffic originates from 3 countries and 2 AS types.

ICMPv6 is the most scanned protocol

54% of all scanning traffic consisted of ICMPv6 packets; temporal change in scanner's protocol preference

IPv6 scanners are reported on abuse databases

2013	2018	2020	2022
ICMPv6	HTTP	HTTP	ICMPv6
TCP – 7	ICMPv6	ICMPv6	HTTP
HTTP	-	HTTPS	HTTPS
SSH	-	Redis	TCP - 65535
HTTPS	-	IRC	Telnet

Origins of scanning traffic are concentrated by geography and AS type

99% of all traffic originates from 3 countries and 2 AS types.

ICMPv6 is the most scanned protocol

54% of all scanning traffic consisted of ICMPv6 packets; temporal change in scanner's protocol preference

IPv6 scanners are reported on abuse databases

Scanners responsible for 51% of scanning traffic were reported on AbuseIPDB.

2013	2018	2020	2022
ICMPv6	HTTP	HTTP	ICMPv6
TCP – 7	ICMPv6	ICMPv6	HTTP
HTTP	-	HTTPS	HTTPS
SSH	-	Redis	TCP - 65535
HTTPS	-	IRC	Telnet

Results Scanning activity **before** deployment of services

Results Scanning activity **after** deployment of services

