Eye-Shield: Real-Time Protection of Mobile Device Screen Information from Shoulder Surfing

Brian Tang, Kang G. Shin

REAL-TIME COMPUTING LAB

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE @ University of Michigan

What's Shoulder Surfing?

- Shoulder Surfing (Visual Hacking)
 - > Social engineering attack
 - > Pervasive, effective, low-budget
- Adversaries
 - > Are mostly curious or sometimes malicious
 - ➤ Use eyes, camera, binoculars, etc.

Shoulder Surfing in the News

- PIN-Stealing
 - > Phone access, personal information
 - ➤ Thief stole £22k

NEWS

Home | War in Ukraine | Climate | Video | World | US & Canada | UK | Business | Tech | Science

Business | Market Data | New Tech Economy | Artificial Intelligence | Technology of Business | Economy | CEO Secrets

Mobile fraud: Thieves 'shoulder surfing' victims to steal phones

() 22 May

Threat Model

- Users want: Security, privacy, usability
- Adversary: Obtain information
 from victim's device screen
 without getting noticed/caught
- Resources: Eyes, phone camera, quick glances, longer stares

Statistics and Anecdotes

 Users are aware of Only aware of 7% of shoulder surfing [Eiband et al.]

Steal authentication codes

Successfully obtain 6-digit PIN with one glance
 10.8% of the time [Aviv et al.]

Unauthorized access to information

 85% of shoulder surfers observed sensitive or private information [Honan et al.]

- 0 - 0 - 0 - 0

A Key Research Question

How do we protect users from shoulder surfing?

 $\overline{\bigcirc}$ - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc \bigcirc

Privacy Films

Advantages

- > Pervasive
- Darkens the screen
- Little to no usability cost

Drawbacks

- Protects only at angles >30-45°
- ➤ Added cost (\$7-30)
- > Requires (re)installation when switching device
- ➢ Not easily "deactivated"
- Incompatible with other screen protectors or matte/antiglare addons
- Does not protect landscape view

A Key Research Question

- How can we build shoulder surfing protection into mobile devices?
- \clubsuit In a manner that is:
 - ≻ Lightweight
 - ➢ Continually active
 - > Protects information on the entire screen
 - Little impediment on the user's tasks

Our Solution: Eye-Shield

Protects on-screen information by making it appear blurry at a distance/angle.

Advantages:

- Easy to use
- ✤ Real-time operation
- Acceptable CPU, energy and memory usage
- Free!

Design - Grids

- Resolving Power
 - \succ θ = 1.22 λ / D
 - ➢ Observation from HideScreen (Chen et al.)

Design - Blurred Target

- Use blurred version of original image
 - > Design checkered grid such that colors

average out to be a blurred version.

Design - Overview

I. Blur/pixelate image

(I)

- 2. Generate grid of image size
- 3. Run Eye-Shield algorithm

- Algorithm 1 Where img is the original $w \times h \times 3$ image where grid is a $w \times h$ checkered grid of 1s and 0s where targ is the $w \times h \times 3$ image, blurred or pixelated
 - 1: procedure EYE-SHIELD ALGORITHM(img, grid, targ)
 - 2: complement = $(targ^2 * 2) img^2$
 - 3: delta = (complement img^2) * grid
 - 4: newimg = $\sqrt{img^2 + delta}$
 - 5: clip(newimg, 0, 255)

 $-\bigcirc -\bigcirc -\bigcirc$

(3)

Design - Protection Parameters

- Checkered grid
 - > Grid pixel size (1×1 , 2×2 , etc)
- ✤ Blurring
 - > Window size (σ)
- Pixelation
 - Number of blocks
- ✤ Contrast
 - ➤ Image contrast

Design - Stack

GPGPU Frameworks *

- \blacktriangleright CUDA 11.6 CuPy (Windows/Ubuntu)
- \blacktriangleright

Implementation (Weakest Protection)

19.7", 45°, Protected

19.7", 45°, Unprotected

Recorded Demos

Shoulder Surfer Perspective

 \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc

Intended User Perspective

Left – Most Protection Right – No Protection

Methodology - Efficacy

✤ DIV2K, RICO, DAVIS

✤ Parameters

- ➤ Grid size (I to 4 pixels)
- Blurring/pixelation intensity
- > Downscaling 4× for average seat pitch
- SSIM index
- I24,224 total images generated, protected, and evaluated

High Resolution Images	Mobile App Uls	Video Datasets (# Frames)
900	1460	1522

Evaluation - Efficacy (SSIM)

- SSIM (0 low similarity, 1 high similarity)
 - SSIM > 0.9, Eye-Shield mimics blurred images
 - SSIM > 0.7 for pixelated images

Methodology - Performance

- CPU utilization, memory consumption, energy usage, and latency
- Android Studio and Xcode debuggers/profilers

 $\bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc$

Methodology - Performance

	Device	CPU Cores	GPU	Resolution	GPGPU	Resolution	Aspect Ratio
	PC Workstation	12 Cores	RTX 2080 Super (432 Cores)	1920×1080	CUDA 11.6 (CuPy)	256×144 	16:9 16:9
	2021 Macbook Air	8 Cores	Apple MI (8 Cores)	2560×1600	Metal	2560×1440 512×512 1080×2400	16:9 1:1 9:20
-	Samsung Galaxy S20 Ultra	8 Cores	Mali G77 (11 Cores)	1440×3200	Vulkan (Kompute)	1170×2532 1440×3088	90:195 90:193
	iPhone 13 Pro	6 Cores	A15 (5 Cores)	1170×2532	Metal	Resolutions	

Platform and Device Details

Evaluation - Performance

Latency

Resolution	Android (FPS)	iOS (FPS)			
1920×1080	49.25	91.39			
1080×2400	39.20	74.29			
1170×2532	34.52	64.95			
2560×1440	29.27	51.95			
1440×3088	23.95	43.05			
Mobile Performance Benchmarks					

High performance at high resolutions

Evaluation - Performance

Acceptable energy and resource consumption

Methodology - User Study

- In-Person Study
 - ➢ 22 U.S. participants
 - > Diversity in age, occupation, ethnicity, and gender
 - > Brightly lit lab with device brightness at 66%
 - > 6 images, 2 videos, 7 mobile app UIs, 2 screen recordings
 - Evaluation in 6 settings (in order)
 - Shoulder surfer (41", 20" and 45°, with film + Eye-Shield)
 - Intended user 10" away (with protection)
 - Shoulder surfer without protection (41", 20" and 45°)

User Study - Examples

- What is the current high and low temperature?
- Can you read the first word in each sentence?
- Can you describe the displayed image?

 \bigcirc – \bigcirc – \bigcirc – \bigcirc – \bigcirc

User Study - Efficacy (In Person)

43

User Study - Usability

✤ SUS score 68.86

- About average usability
- ➤ Cutoff range = 68

✤ Observations

- > Sometimes referable to privacy film
- Indicated that a toggle widget or brightness meter would be best
- Minor eye strain after shoulder surfing for 1 hour

User Study - UI Prototypes

Device Screen Brightness

Shoulder Surfer

Intended User

User Study - Privacy Films

- Privacy film only
 - At high brightness, doesn't protect screen
 - No protection from behind
 - No protection from landscape orientation
- Both privacy film and Eye-Shield
 - Reduces visible angle (added privacy)

Citations and Acknowledgements

Privacy Article Screenshots:

- https://www.makeuseof.com/what-is-shoulder-surfing/
- https://www.nbcnews.com/video/kanye-west-appears-to-unlock-his-phone-withpasscode-of-all-zeroes-1342136387883
- https://www.rappler.com/nation/181806-hontiveros-aguirre-text-expedite-cases/

Photos:

- https://www.secure-od.com/prevent-shoulder-surfing-and-theft-of-corporatecredentials/
- https://lifelock.norton.com/learn/identity-theft-resources/what-is-shoulder-surfing
- https://www.nbcnews.com/video/kanye-west-appears-to-unlock-his-phone-withpasscode-of-all-zeroes-1342136387883
- https://www.thisiswhyimbroke.com/privacy-protecting-smartphone-screen-film/
- https://source.android.com/docs/core/graphics/hwc
- https://www.adweek.com/agencyspy/monday-stir-109/176952/

Statistics:

- https://multimedia.3m.com/mws/media/1254232O/global-visual-hackingexperiment-study-summary.pdf
- https://multimedia.3m.com/mws/media/950026O/secure-white-paper.pdf

Icons:

Freepik and Flat Icons

Thank you to the ARO for supporting this project

Papers

Shoulder surfing behavioral statistics:

- Eiband, Malin, et al. "Understanding shoulder surfing in the wild: Stories from users and observers." Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017.
- Aviv, Adam J., et al. "Towards baselines for shoulder surfing on mobile authentication." Proceedings of the 33rd Annual Computer Security Applications Conference. 2017.
- B. Honan, "Visual data security white paper," Secure, 2012. [Online]. Available: <u>https://multimedia.3m.com/mws/media/950026O/secure-white-paper.pdf</u>

Shoulder surfing past defenses:

- Eiband, Malin, et al. "My scrawl hides it all: protecting text messages against shoulder surfing with handwritten fonts." Proceedings of the 2016 CHI conference extended abstracts on human factors in computing systems. 2016.
- Papadopoulos, Athanasios, et al. "Illusionpin: Shoulder-surfing resistant authentication using hybrid images." IEEE Transactions on Information Forensics and Security 12.12 (2017): 2875-2889.
- von Zezschwitz, Emanuel, et al. "You Can't Watch This! Privacy-Respectful Photo Browsing on Smartphones." Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 2016.

HideScreen:

Chen, Chun-Yu, et al. "Keep others from peeking at your mobile device screen!." The 25th Annual International Conference on Mobile Computing and Networking. 2019.

Conclusion

Takeaways:

- Shoulder surfing poses a significant threat to mobile security and privacy
- Sevential can prevent many details of on-screen information from being leaked to shoulder surfers
- Thorough evaluations of Eye-Shield's efficacy, performance, and usability demonstrate its usefulness

Resources:

✤ Websites

- <u>https://www.bjaytang.com/</u>
- <u>https://rtcl.eecs.umich.edu/rtclweb/</u>
- ✤ Contact
 - bjaytang@umich.edu kgshin@umich.edu

Paper & Demo