Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and Arm SoCs

Hritvik Taneja, Jason Kim, Jie Jeff Xu
Stephan van Schaik, Daniel Genkin, Yuval Yarom
Evolution of Side-Channel Attacks

Physical Side-Channels
- Equipment: Oscilloscope, EM Probes etc.
- Advantages: Difficult to mitigate, usually works across different microarchitectures

Microarchitectural Side-Channels
- Equipment: Software
- Advantages: No physical proximity, can attack remotely

Hybrid Side-Channels
- Equipment: Software
- Advantages: Can attack remotely, difficult to mitigate, usually works across different microarchitectures

In this work, we show
- Hybrid side-channels are everywhere
- Exploit them from unprivileged native user
- And, even from browser!
A sneak peek of our work

Frequency

Power

Temperature
A sneak peek of our work

When one property becomes an operational constraint, other two leak

- Pixel Stealing
- History Sniffing
- Website Fingerprinting

Original vs Leaked
Machine Cooling

• The more transistors we put on a chip the hotter it runs
• We need big heat sinks to keep the CPU cool and running
• Which makes laptops big and bulky, we don’t like that!
• Dynamic Voltage and Frequency Scaling (DVFS)
 • Power or Thermal Limits
 • Run fast till it gets too hot
 • Slow and cool down. Repeat
• Does this idea have any security consequences?
Is DVFS data-dependent?

M1 MacBook Air

M1 MacBook Pro

```c
uint64_t val = 0;
while (1) {
    val = val + 1;
}
```

```c
uint64_t val = 0;
while (1) {
    val = val + 0;
}
```
Is DVFS data-dependent?

M1 MacBook Air

Thermally Constrained

M1 MacBook Pro

Frequency Constrained
What about GPUs?

- GPUs have 1000s of cores
- They run hot
- They have massive cooling fans
- But is it enough to cool it?
 - No 🙁
- GPUs also implement DVFS 😊
Pixel stealing attack in Chrome – Primer

• SVG Filters can turn this …
Pixel stealing attack in Chrome – Primer

- SVG Filters can turn this …
- Into this, using `<feGaussianBlur stdDeviation="3"/>
- Various effects:
 - `<feGaussianBlur>` → blur
 - `<feColorMatrix>` → color saturation
Pixel stealing attack in Chrome – Primer

• SVG Filters can turn this …
• Into this, using `<feGaussianBlur stdDeviation="3"/>`
• Various effects:
 • `<feGaussianBlur>` → blur
 • `<feColorMatrix>` → color saturation
• Can be applied to:
 • `<div>`, `<iframe>` or any other element
• Can compute on pixels across security boundaries
• Stackable! 🎈
 • Stack until the GPU catches fire
 • Or in our case just throttles
Pixel stealing attack in Chrome

<iframe src="victim.com">

Hot Pixels

<feGaussianBlur stdDeviation="1"/>
<feGaussianBlur stdDeviation="2"/>
<feGaussianBlur stdDeviation="3"/>
<feColorMatrix type="matrix" values="-6.88 "/>
<feGaussianBlur stdDeviation="4"/>
...

SVG Filter Application

GPU Throttling

Fast = Black

Slow = White
Pixel stealing attack in Chrome - Results

- **Works on:** Laptops, Phones with integrated GPUs and desktops with discrete GPUs.
- **Time to steal a pixel:** 10-20 sec
- **Accuracy:** 60-80%
History sniffing attack in Safari

• Safari does not serve cookies across iframes
• Countermeasure to Pixel Stealing
 • Can’t steal what is already public
• Can we steal something?
• Users’ Browsing History
• attacker.com embeds links (<a>)
• Isolate a pixel and perform Pixel Stealing
• **Works on**: M1, M2 MacBook Air and iPhone 12, 13
• **Time to recover per link**: 200-250 seconds
• **Accuracy**: 90-100%
Website Fingerprinting

- macOS provides API to measure GPU frequency and power
- Accessible by unprivileged user
- This is a huge security problem
 - Any random person can read your frequency and power
- Fingerprint Websites accessed by colocated user

Accuracy / 100 Websites:
- **Top 1:** 27%
- **Top 2:** 37%
- **Top 5:** 49%
- **Baseline:** 1%
Summary

- 3-way tradeoff between Frequency, Power and Temperature
- Data Dependent CPU and GPU throttling behavior
- Attacks across multiple devices
- Pixel Stealing, History Sniffing, Website Fingerprinting

Thank you for listening!

Questions?

htaneja3@gatech.edu