
No Linux, No Problem: 
Fast and Correct Windows Binary Fuzzing 
via Target-embedded Snapshotting

Leo Stone
leo@vt.edu

Rishi Ranjan
rishiranjan@vt.edu

Stefan Nagy
snagy@cs.utah.edu

Matthew Hicks
mdhicks2@vt.edu



Introduction

● Fuzzing: most successful method for automated software testing
● Attempt to break program using many randomized inputs 

2

parse_jpeg.exe



3

Limiting factor

✓

Depends on speed: faster fuzzing = more effective fuzzing



Motivation

● On Linux, execution is very fast → fuzzing is effective
○ fork()
○ Kernel modifications

● No equivalents on Windows…
○ Windows software ecosystem is larger, but fuzzing is orders of magnitude less effective than on 

Linux!

● Challenge: without kernel support, how can we build an efficient Windows 
fuzzer?

4



5

One Solution: Persistent Mode

Fast, but incorrect

Execution changes state…

Many binaries crash!



6

Our Approach Copy state to a snapshot

Process restores own state

Fast like persistent mode, but 
correct!

Key Insight

All relevant state is controllable 
with language-level constructs

No kernel support necessary



Implementation - WinFuzz

● Based on Winnie, an existing Windows fuzzer
● Main steps:

1. DLL injection
2. DLLMain() - hook setup
3. Initializing target
4. Taking state snapshot
5. Main fuzzing loop: run and restore state

7



8



Elements of Program State

9

Stack

Registers

Heap

Global variables



10



Resetting Registers

● 2 types of parameters:
○ Simple values
○ Pointers 

● We reset each register to its original value

● We avoid returning from the target function and destroying any stack frames 
that could hold target parameters

11



12



Resetting the Heap

● Memory leaks are expected - we’re trying to break the program!
● Small memory leak can cause a fuzzer crash
● We use heap API hooks to prevent memory leaks

13



14



Resetting Global Memory

● Copy correct starting state of all mutable global sections
● Use guard pages to track modifications
● Only restore modified pages

15



16



Evaluation

● Criteria: correctness, performance, bug discovery
○ Versus state-of-the art: Winnie (custom forkserver) and WinAFL (process creation/persistent mode)

● Setup: Azure instances running Windows 10 Pro with single-core 2.1 GHz Intel Xeon 
CPUs, 3.5 GB RAM

● Each fuzzing trial ran at least 5 times to collect statistically significant results
○ Mann-Whitney u-tests used to determine significance

17



Benchmarks

18



Correctness Test

● New fuzzer mode that checks for state corruption by comparing program 
states

● Used to test all benchmarks in corpus
● Available as part of our open source implementation

○ New users can test their own targets and saved inputs

19



20



21

Results: Throughput

Average improvement: 7x vs. Winnie and 182x vs. WinAFL



22

Results: Edge Coverage

Average improvement: 15% vs. Winnie and 5% vs. WinAFL

*⍴=0.148

* *

*⍴=0.216



Bug Discovery Time

● We compared the average time taken to find specific bugs
● Some benchmarks (flac, nanosvg, audiofile) used older versions to increase 

bug count

● 10 unique bugs found across all fuzzers/trials
○ Winnie: 3/10
○ WinAFL: 3/10
○ WinFuzz: 8/10

23



24



Undiscovered Bugs

● We ran additional 
experiments with 
WinFuzz to find 0-day 
bugs

● All bugs were reported 
to authors

25



26“Bugs detection” graphic by vectorjuice on Freepik

Thank you!

Q&A

(Open source release pending)
github.com/FoRTE-Research

https://github.com/FoRTE-Research

