
RIDAS: Real-time identification of attack
sources on controller area networks

* Co-first Authors

𝐇𝐲𝐮𝐧𝐠𝐡𝐨𝐨𝐧 𝐊𝐢𝐦∗

𝑆𝑜𝑜𝑛𝑔𝑠𝑖𝑙 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝑎𝑥𝑜𝑙𝑜𝑡𝑙0210@𝑔𝑚𝑎𝑖𝑙. 𝑐𝑜𝑚

USENIX Security 2023, 9-11 August 2023

𝐃𝐨𝐧𝐠 𝐇𝐨𝐨𝐧 𝐋𝐞𝐞
𝐾𝑜𝑟𝑒𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

𝑑𝑜𝑛𝑔ℎ𝑙𝑒𝑒@𝑘𝑜𝑟𝑒𝑎. 𝑎𝑐. 𝑘𝑟

𝐇𝐲𝐨 𝐉𝐢𝐧 𝐉𝐨
𝑆𝑜𝑜𝑛𝑔𝑠𝑖𝑙 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

ℎ𝑦𝑜𝑗𝑖𝑛𝑗𝑜86@𝑔𝑚𝑎𝑖𝑙. 𝑐𝑜𝑚

𝐖𝐨𝐧𝐬𝐮𝐤 𝐂𝐡𝐨𝐢
𝐾𝑜𝑟𝑒𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

𝑤𝑜𝑛𝑠𝑢𝑘85. 𝑐ℎ𝑜𝑖@𝑔𝑚𝑎𝑖𝑙. 𝑐𝑜𝑚

𝐉𝐢𝐰𝐨𝐨 𝐒𝐡𝐢𝐧∗

𝑆𝑜𝑜𝑛𝑔𝑠𝑖𝑙 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝑠𝑦9254@𝑔𝑚𝑎𝑖𝑙. 𝑐𝑜𝑚

𝐒𝐞𝐲𝐨𝐮𝐧𝐠 𝐋𝐞𝐞
𝐾𝑜𝑟𝑒𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

𝑠𝑒𝑦𝑜𝑢𝑛𝑔0131@𝑘𝑜𝑟𝑒𝑎. 𝑎𝑐. 𝑘𝑟

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

2/29

▪ ECU (Electronic Control Unit)

• A small device in a vehicle’s body that is responsible for controlling a driving-related function

▪ CAN (Controller Area Network)

• In-vehicle network designed to communicate between ECUs

• ISO 11898

• Broadcasting

• No data encryption

• No sender/receiver authentication

In-vehicle Communication System

EngineBrake

Airbag

CAN

Attack

Motivation

→ Security is needed for CAN Jeep Cherokee hacking Tesla Model S hacking

3/29

▪ Intrusion detection system (IDS)

• Lots of Rule-based or AI-based methods have been proposed

State-of-the-art

→ Attack detection only, attack source cannot be identified

Security systemCAN

ECU A

ECU B ECU C

Attack

Motivation

4/29

▪ Intrusion detection system (IDS)

• Able to identify the compromised ECU

- The ECU’s clock skewness-based method proposed in [1]

→ The ECU’s clock skew was found to be corrupted by modifying the timing of transmitted messages

[2]

- The ECU’s physical layer signal-based method proposed in [3,4]

→ Need such a type of electronic test instrument that measures voltage signals

→ In addition, this device cannot identify the attack sources with 100% accuracy due to

environmental factors such as its battery level, humidity, etc.

State-of-the-art

[1] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control Units for Vehicle Intrusion Detection." (USENIX Security 16)
[2] Sagong, Sang Uk, et al. "Cloaking the clock: Emulating clock skew in controller area networks.“ (ICCPS 2018)
[3] W. Choi, H. J. Jo,“Identifying ECUs through Inimitable Characteristics of Signals in Controller Area Networks.” (IEEE TVT 2018).
[4] W. Choi, H. J. Jo, “VoltageIDS: Low-Level Communication Characteristics for Automotive Intrusion Detection System.” (IEEE TIFS 2018)

Motivation

5/29

▪ Proposal of a novel real-time attack node identification method, called RIDAS

• Using the error handling rule of CAN

▪ Proposal of a methodology that deals with RIDAS-aware attackers

▪ Evaluation of RIDAS on a CAN bus prototype and a real vehicle

Contributions
Motivation

6/29

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

7/29

▪ Error handling and fault confinement

• ECU has two registers: TEC, REC

• ECU’s error state: Active, Passive, Bus-off

- The active state: default

- The passive state: penalty in message sending

- The bus-off state: blocked from the network

Controller Area Network (CAN)

Error
Active

Error
Passive

Bus
offTEC > 255

ECU with bus-off state

Time

TEC: Transmission Error Counter, REC: Receive Error Counter

Background

Passive Error Flag
6 bits (recessive)

Error Delimiter
8 bits (recessive)

Active Error Flag
6 bits (dominant)

Error Delimiter
8 bits (recessive)

Active Error Frame

Passive Error Frame

8/29

ECU with error passive state

Time

3 bits (IFS) + 8 bits (suspend transmission)

0x101 0x101

Time0x101 0x101

3 bits (inter-frame space (IFS))

ECU with error active state

0x101

▪ The occurrence only in an error passive state

• It is that messages with lower priority are transmitted before messages with higher priority

- ex) message priority: ID A and ID B > ID C

Priority Reduction

IFS (3bits)

IFS + suspend transmission (11 bits)

CAN Bus

Lose to priority
comparison

Priority reduction

: Error passive state : Error active state

ECU A

ECU B

ECU C

ID A ER frame ID A

ID AER frame ID C

ID C

ID CER frame

ID B ER frame ID B

ID C

ID B

Penalty in sending message

Background

Bit-error

9/29

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

10/29

▪ Naïve attacker

• Using the default setting of the CAN controller

▪ RIDAS-aware attacker

• Exploiting CAN controller’s functions to evade RIDAS

- CAN controller reset

- One-shot mode

- Fast message transmission

Attack Model

CAN

ECU B ECU C

Reset for TEC to 0

Our Method

ECU A
Compromised

ECU
Set to one-shot mode

Do not try to
retransmission
To rapidly reduce TEC

11/29

▪ System overview

• Four modules

• ECU mapping table

• Two modes

- For the naïve attacker

- For the RIDAS-aware attacker

RIDAS: Workflow

CAN

ECU A

IDS

Detection
attack!

Attack Handling
(AH) Module

RIDAS

ECU
Mapping

Table
Naïve Attack Source

Identification
(NASI) Module

TEC Emulation
Module

RIDAS-aware Attack
Source Identification

(RASI) Module

ECU B ECU C

Our Method

Working start

ECU CAN ID
Transmission

cycle

A
0x001 20ms

0x002 10ms

B
0x003 20ms

0x004 10ms

C 0x005 20ms

12/29

▪ First, initialization before starting RIDAS

• Start the TEC emulation

- Monitors the CAN bus in real-time and emulates the TEC of each ECU

• Set each representative ID (RID) for all ECUs

- CAN ID with the fastest transmission cycle and higher priority

RIDAS: Workflow (for the naïve attacker)

ECU A ECU B ECU C AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

Our Method

ECU CAN ID
Transmission

cycle

A
0x001 10ms

0x002 20ms

B
0x003 20ms

0x004 10ms

C 0x005 20ms

13/29

▪ Second, Transition the error state of the compromised ECU

• When an attack message is detected, the AH module injects continuous errors before the

message transmission is completed

• AH module aims to transition the compromised ECU from the error active state to the

error passive state to induce the priority reduction

RIDAS: Workflow (for the naïve attacker)

ECU B ECU C

Detection attack!…

ECU A

Transition the error
passive state

Abnormal message

Our Method

ECU C

14/29

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

▪ Third, Identification of the ECU where the error state has transitioned

• To identify the compromised ECU (i.e., the naïve attacker) who has transitioned to the

error passive state, the NASI module sequentially inspects all ECUs

• NASI module generates bit-errors pre-defined number of times (𝑘) for all RIDs to observe

the priority reduction

RIDAS: Workflow (for the naïve attacker)

ECU B

ECU A’s RIDECU A’s RID

Retransmission

Observe whether the priority reduction occurs

x 𝑘 times

Our Method

ECU CECU A

15/29

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

▪ Third, Identification of the ECU where the error state has transitioned

• To identify the compromised ECU (i.e., the naïve attacker) who has transitioned to the

error passive state, the NASI module sequentially inspects all ECUs

• NASI module generates bit-errors pre-defined number of times (𝑘) for all RIDs to observe

the priority reduction

RIDAS: Workflow (for the naïve attacker)

ECU B

ECU B’s RIDECU B’s RID

Retransmissionx 𝑘 times

Our Method

ECU CECU A

16/29

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

Observe whether the priority reduction occurs

▪ Third, Identification of the ECU where the error state has transitioned

• The ECU of RID in which priority reduction has occurred is the compromised ECU

RIDAS: Workflow (for the naïve attacker)

ECU B

ECU C’s RID ECU C’s RIDLower priority

Our Method

ECU CECU A

x 𝑘 times

17/29

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

Retransmission

Observe whether the priority reduction occurs

▪ Forth, Restart RIDAS

• Before restarting RIDAS, the AH module reduces increased ECU’s TEC by generating

request messages (e.g., remote frame or UDS message) for all ECUs

RIDAS: Workflow (for the naïve attacker)

ECU B

Request message

Our Method

UDS: Unified Diagnostic Services

ECU CECU A

18/29

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

IDS

RIDAS: Workflow (for the RIDAS-aware attacker)
Our Method

▪ RASI module deals with attackers who evade RIDAS by monitoring the CAN bus

• CAN controller reset

- Detection of the change in the transmission cycle of certain CAN packets

• One-shot mode

- Detection of the non-retransmission

• Fast message transmission

- Whenever 8 fast messages are detected, a bit-error is injected

to restore the compromised node's TEC to its original value

AH Module

ECU
Mapping

Table
NASI

Module

TEC
Emulation

Module

RASI
Module

RIDAS

19/29

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

20/29

Experimental Setup

▪ CAN bus prototype

• ECU: Arduino Uno with CAN Bus Shield (x10)

• RIDAS: CAN Pico (x2), ECU (x2)

• Monitoring tool: PCAN-USB Pro FD

▪ Real vehicle

• RIDAS

• Monitoring tool

• CAN DBC: openDBC

• Vehicle: Hyundai Avante CN7 2020

Real vehicle (Inside) Real vehicle (Outside)

CAN bus prototype

RIDAS

CAN Communications

RIDAS

OBD-II Port
CAN Breakout Box

PCAN-USB
Pro FD

Laptop

Evaluation

CAN Pico PCAN-USB Pro FD

Arduino Uno CAN Bus Shield

openDBC: https://github.com/commaai/opendbc
21/29

https://github.com/commaai/opendbc

Evaluation of AH

▪ The AH module prevents driving the ECU into the bus-off state

without the AH module with the AH module

Start RIDAS

Restart RIDAS

Enter the
bus-off state

Due to NASI’s
error injection

Due to AH’s
error injection

Other ECUs’ inspection
is completed

Don’t enter the
bus-off state

Due to NASI’s
error injection

Baseline = 79

Start RIDAS
By requesting remote frames

& Restart RIDAS

By requesting UDS messages
& Restart RIDAS

Evaluation

22/29

Evaluation of NASI (identification rate)

▪ The probability of priority reduction according to the bus load and the number of

error injections (𝑘𝑐ℎ𝑒𝑐𝑘)

CAN bus
prototype

Real vehicle

Evaluation

23/29

𝒌𝒄𝒉𝒆𝒄𝒌: 7 ~ 8 𝒌𝒄𝒉𝒆𝒄𝒌: 4 ~ 5 𝒌𝒄𝒉𝒆𝒄𝒌: 3 ~ 4

𝒌𝒄𝒉𝒆𝒄𝒌: 7 ~ 8 𝒌𝒄𝒉𝒆𝒄𝒌: 4 ~ 5 𝒌𝒄𝒉𝒆𝒄𝒌: 3 ~ 4

Evaluation of NASI (identification time)

▪ The average identification time of the NASI module

• The identification time does not exceed 500ms in Avante CN7

- Baseline = 79, 𝑘𝑐ℎ𝑒𝑐𝑘 = 5, bus load = 80%

Evaluation

24/29

Compromised
ECU

A B C D E F G H I

Completion
Time (ms)

Prototype 164.6 75.7 106.3 73 42.4 43.7 33.2 5.4 563.5

Avante 150.1 75.8 99.6 72.3 38.4 40.1 29.7 5.1 458.6

Evaluation of RASI (for the RIDAS-aware attacker)

▪ Response to the ECU reset and the use of one-shot mode

• There is a notable change in the message transmission cycle of the ECU

Message transmission cycle variations of ECU
(left: reset off / right: reset on)

Message transmission cycle variations of ECU
(left: default mode / right: one-shot mode)

Evaluation

25/29

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

26/29

Discussion

▪ Intrusion detection system

• The IDS with RIDAS must detect attacks before the messages are completely transmitted

- The worst-case response time-based IDS [5]

▪ Limitation of RIDAS

• Direct TEC manipulation attack

- Cannot drive a compromised ECU into the error passive state

• ID reuse attack

- Only nodes that attempt a masquerade attack can be identified

Discussion

[5] Olufowobi, Habeeb, et al. "Saiducant: Specification-based automotive intrusion detection using controller area network (can) timing." (IEEE TVT 2019)
27/29

▪ Motivation

▪ Background

▪ Our Method

▪ Evaluation

▪ Discussion

▪ Conclusion

Outline

28/29

Conclusion

▪ Proposed a novel real-time attack node identification method, called RIDAS

• RIDAS identifies an attack source using the priority reduction of an ECU’s error passive state

▪ Evaluated RIDAS on a CAN bus prototype and a real vehicle

• RIDAS is capable of identifying the attack source without affecting driving

• RIDAS is robust against changes in a vehicle’s environment

▪ In future research, we plan to integrate a lightweight IDS into RIDAS

Conclusion

29/29

Q&A
Thank you

	슬라이드 1: RIDAS: Real-time identification of attack sources on controller area networks
	슬라이드 2: Outline
	슬라이드 3: In-vehicle Communication System
	슬라이드 4: State-of-the-art
	슬라이드 5: State-of-the-art
	슬라이드 6: Contributions
	슬라이드 7: Outline
	슬라이드 8: Controller Area Network (CAN)
	슬라이드 9: Priority Reduction
	슬라이드 10: Outline
	슬라이드 11: Attack Model
	슬라이드 12: RIDAS: Workflow
	슬라이드 13: RIDAS: Workflow (for the naïve attacker)
	슬라이드 14: RIDAS: Workflow (for the naïve attacker)
	슬라이드 15: RIDAS: Workflow (for the naïve attacker)
	슬라이드 16: RIDAS: Workflow (for the naïve attacker)
	슬라이드 17: RIDAS: Workflow (for the naïve attacker)
	슬라이드 18: RIDAS: Workflow (for the naïve attacker)
	슬라이드 19: RIDAS: Workflow (for the RIDAS-aware attacker)
	슬라이드 20: Outline
	슬라이드 21: Experimental Setup
	슬라이드 22: Evaluation of AH
	슬라이드 23: Evaluation of NASI (identification rate)
	슬라이드 24: Evaluation of NASI (identification time)
	슬라이드 25: Evaluation of RASI (for the RIDAS-aware attacker)
	슬라이드 26: Outline
	슬라이드 27: Discussion
	슬라이드 28: Outline
	슬라이드 29: Conclusion
	슬라이드 30

