RIDAS: Real-time identification of attack sources on controller area networks

Jiwoo Shin* Soongsil University sy9254@gmail.com Hyunghoon Kim* Soongsil University axolotl0210@gmail.com Seyoung Lee Korea University seyoung0131@korea. ac. kr

Wonsuk Choi

Korea University wonsuk85.choi@gmail.com **Dong Hoon Lee** Korea University donghlee@korea.ac.kr **Hyo Jin Jo** Soongsil University hyojinjo86@gmail.com

USENIX Security 2023, 9-11 August 2023

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

In-vehicle Communication System

Motivation

- ECU (Electronic Control Unit)
 - A small device in a vehicle's body that is responsible for controlling a driving-related function
- CAN (Controller Area Network)
 - In-vehicle network designed to communicate between ECUs
 - ISO 11898
 - Broadcasting
 - No data encryption
 - No sender/receiver authentication

→ Security is needed for CAN

Jeep Cherokee hacking

Tesla Model S hacking

Motivation

- Intrusion detection system (IDS)
 - Lots of Rule-based or AI-based methods have been proposed
 - → Attack detection only, attack source cannot be identified

Motivation

- Intrusion detection system (IDS)
 - Able to identify the compromised ECU
 - The ECU's clock skewness-based method proposed in [1]

→ The ECU's clock skew was found to be corrupted by modifying the timing of transmitted messages
[2]

- The ECU's physical layer signal-based method proposed in [3,4]
 - → **Need such a type of electronic test instrument** that measures voltage signals

 \rightarrow In addition, this device **cannot identify the attack sources with 100% accuracy** due to environmental factors such as its battery level, humidity, etc.

Motivation

- Proposal of a novel real-time attack node identification method, called RIDAS
 - Using the error handling rule of CAN

Proposal of a methodology that deals with RIDAS-aware attackers

Evaluation of RIDAS on a CAN bus prototype and a real vehicle

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

Controller Area Network (CAN)

Background

- Error handling and fault confinement
 - ECU has two registers: TEC, REC
 - ECU's error state: Active, Passive, Bus-off
 - The active state: default

Priority Reduction

Background

- The occurrence only in an error passive state
 - It is that messages with lower priority are transmitted before messages with higher priority
 - ex) message priority: ID A and ID B > ID C

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

Our Method

Naïve attacker

• Using the default setting of the CAN controller

RIDAS-aware attacker

- Exploiting CAN controller's functions to evade RIDAS
 - CAN controller reset
 - One-shot mode
 - Fast message transmission

RIDAS: Workflow

Our Method

- System overview
 - Four modules
 - ECU mapping table
 - Two modes

Transmission

cycle

20ms

10ms

CAN ID

0x001

0x002

ECU

Α

Our Method

ECU A

- First, initialization before starting RIDAS
 - Start the TEC emulation
 - Monitors the CAN bus in real-time and emulates the TEC of each ECU

ECU C

• Set each representative ID (RID) for all ECUs

ECU B

- CAN ID with the fastest transmission cycle and higher priority

Our Method

Second, Transition the error state of the compromised ECU

- When an attack message is detected, the AH module injects continuous errors before the message transmission is completed
- AH module aims to transition the compromised ECU from the error active state to the error passive state to induce the priority reduction

Our Method

- Third, Identification of the ECU where the error state has transitioned
 - To identify the compromised ECU (i.e., the naïve attacker) who has transitioned to the error passive state, the NASI module sequentially inspects all ECUs
 - NASI module generates bit-errors pre-defined number of times (k) for all RIDs to observe the priority reduction

Observe whether the priority reduction occurs 15/29

Our Method

- Third, Identification of the ECU where the error state has transitioned
 - To identify the compromised ECU (i.e., the naïve attacker) who has transitioned to the error passive state, the NASI module sequentially inspects all ECUs
 - NASI module generates bit-errors pre-defined number of times (k) for all RIDs to observe the priority reduction

Observe whether the priority reduction occurs 16/29

Our Method

- Third, Identification of the ECU where the error state has transitioned
 - The ECU of RID in which priority reduction has occurred is the compromised ECU

Our Method

Forth, Restart RIDAS

• Before restarting RIDAS, **the AH module reduces increased ECU's TEC** by generating request messages (e.g., remote frame or UDS message) for all ECUs

RIDAS: Workflow (for the RIDAS-aware attacker)

Our Method

- RASI module deals with attackers who evade RIDAS by monitoring the CAN bus
 - CAN controller reset
 - Detection of the change in the transmission cycle of certain CAN packets
 - One-shot mode
 - Detection of the non-retransmission
 - Fast message transmission
 - Whenever 8 fast messages are detected, a bit-error is injected

to restore the compromised node's TEC to its original value

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

Experimental Setup

Evaluation

- CAN bus prototype
 - ECU: Arduino Uno with CAN Bus Shield (x10)
 - RIDAS: CAN Pico (x2), ECU (x2)
 - Monitoring tool: PCAN-USB Pro FD

PCAN-USB Pro FD

CAN bus prototype

- Real vehicle
 - RIDAS
 - Monitoring tool
 - CAN DBC: openDBC
 - Vehicle: Hyundai Avante CN7 2020

CAN Pico

Evaluation of AH

Evaluation

The AH module prevents driving the ECU into the bus-off state

Evaluation of NASI (identification rate)

Evaluation

 The probability of priority reduction according to the bus load and the number of error injections (k_{check})

Evaluation of NASI (identification time)

Evaluation

- The average identification time of the NASI module
 - The identification time does not exceed 500ms in Avante CN7
 - Baseline = 79, k_{check} = 5, bus load = 80%

	Compromised ECU	А	В	С	D	E	F	G	Н	I
Completion Time (ms)	Prototype	164.6	75.7	106.3	73	42.4	43.7	33.2	5.4	563.5
	Avante	150.1	75.8	99.6	72.3	38.4	40.1	29.7	5.1	458.6

Evaluation of RASI (for the RIDAS-aware attacker)

Evaluation

- Response to the ECU reset and the use of one-shot mode
 - There is a notable change in the message transmission cycle of the ECU

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

Discussion

- Intrusion detection system
 - The IDS with RIDAS must detect attacks before the messages are completely transmitted
 - The worst-case response time-based IDS [5]
- Limitation of RIDAS
 - Direct TEC manipulation attack
 - Cannot drive a compromised ECU into the error passive state
 - ID reuse attack
 - Only nodes that attempt a masquerade attack can be identified

- Motivation
- Background
- Our Method
- Evaluation
- Discussion
- Conclusion

Proposed a novel real-time attack node identification method, called RIDAS

• RIDAS identifies an attack source using the priority reduction of an ECU's error passive state

- Evaluated RIDAS on a CAN bus prototype and a real vehicle
 - RIDAS is capable of identifying the attack source without affecting driving
 - RIDAS is robust against changes in a vehicle's environment

In future research, we plan to integrate a lightweight IDS into RIDAS

Q&A Thank you

