
StateLifter
Extracting Protocol Format as State Machine via

Controlled Static Loop Analysis

Qingkai Shi, Xiangzhe Xu, Xiangyu Zhang
Purdue University, West Lafayette

{ shi553, xu1415, xyzhang } @ purdue.edu

Outline

• State Machine in Practice

• Limitations of Existing Work

• Our Approach & Evaluation

• Take Away Messages

State Machine in Practice

• State machines are broadly used in software applications

Networks Robotics Parsers

……

State Machine in Practice

• When used to parse network messages, state machines enable
high performance and low latency.

• It does not have to wait for the entire message.

receive a byte of a message
from network

parse the byte as per the current state
and record a state

void read_message_and_parse() {

char state = ‘A’;

while (1) {

switch(state) {

case ‘A’:

char in = read_next_msg_byte();

if (in == ‘a’) { state = ‘B’; }

else { assert(in == ‘b’); state = ‘C’; }

break;

case ‘B’:

…

case ‘C’:

…

case ‘D’: …

}}}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

State Machine in Practice

• How are state machines coded in software?

1. Use a loop to encode a state machine

2. Use state variables to record the state

a) Referred in one iteration to control

the path to execute

b) Revised in one iteration to transition

from one state to the other

3. Control which path to execute as per the

state and the input

4. There may be > 1 state variables

5. State value may not be enumerable

Regex: (a|b)+c

State Machine in Practice

• How are state machines coded in software?

1. Use a loop to encode a state machine

2. Use state variables to record the state

a) Referred in one iteration to control

the path to execute

b) Revised in one iteration to transition

from one state to the other

3. Control which path to execute as per the

state and the input

4. There may be > 1 state variables

5. State value may not be enumerable

void read_message_and_parse() {

char state = ‘A’;

while (1) {

switch(state) {

case ‘A’:

char in = read_next_msg_byte();

if (in == ‘a’) { state = ‘B’; }

else { assert(in == ‘b’); state = ‘C’; }

break;

case ‘B’:

…

case ‘C’:

…

case ‘D’: …

}}}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

^^^xyzabc:

Recognize non-empty
token between ^ and :

The variable `state` with three
possible values is not enough

to parse the input!

• State machines enable many security applications
• Fuzzing, model checking, verification, …

• State Machine Inference by Static Analysis
• Only work for simple cases that follow the pattern below

• Only a single state variable and state value is enumerable
• Relying on symbolic execution à Path and state explosion

• State Machine Inference by Dynamic Analysis
• Relying on inputs, Suffering from low coverage

Limitations of Existing Work

Limitations of Existing Work

Proteus

Regex: (a|b)+c

State Machine

Generated by Proteus

Groundtruth

State Machine

StateLifter in a Nutshell

• Feature 1: Inferring a compressed state machine even from the code that implements a
complex but equivalent state machine.

• Feature 2: An abstract interpretation framework supporting multiple and non-enumerable
state variables and is proved to be sound.

refer to our paper for details

StateLifter

Evaluation: Compared to Static Analyzers
• We run both tools on 10 real-world parsers, and record the

complexity of the resulting state machines.
• We record the time consumption of both tools.

39

231

55 76
40

188
109

173
99

30

923

3718
8918

4829

449

16

64

256

1024

4096

16384

OR
P
MA
V
IH
EX

BI
TS
TR
TI
NY SM

L
MI
DI

MQ
TT RD

B
KI
SS

StateLifter Proteus

timeout

Size of the Inferred FSMs Time Cost in Seconds
4x

simpler

40x
simpler

Evaluation: Compared to Dynamic Analyzers

• To drive dynamic analyzers, we randomly generate 1000 valid
input messages for each protocol.

0

50

100

StateLifter AutoFormat Tupni ReverX

0

50

100

StateLifter AutoFormat Tupni ReverX

90

0

50

100

StateLifter AutoFormat Tupni ReverX

Precision Recall

100

0

100

0

≥90≥90

• Security Application: Fuzzing Network Protocol Parsers

• Security Application: Fuzzing Cyber-Physical System (with PGFuzz)
• We discover bugs in both Ardupilot and the fuzzer, PGFuzz
• See an extended version of our paper (in arxiv)

Evaluation

1. Both mutation- and generation-based fuzzing

a) For mutation-based fuzzer, generate seed corpus

b) For generation-based fuzzer, directly generate input formats

2. Coverage is improved by 20% to 230%
3. Detect 12 zero-day bugs, 10 more than baselines

Take Away Messages

• StateLifter is a static code analyzer that can infer precise state machine with
high recall from the source code

• StateLifter is an abstract interpreter for state machine inference, with proof
of soundness and completeness

• StateLifter enables many security analyses in different domains, considering
the broad use of state machines in practice

THANKS FOR YOUR TIME!

