
Detecting Multi-Step IAM Attacks in
AWS Environments via Model Checking

Ilia Shevrin¹, Oded Margalit²

¹Citi

²Ben-Gurion University

Background

AWS introduced the shared responsibility model:

AWS is responsible for infrastructure and hardware

The customer is responsible for application, data and IAM

Image from

https://docs.aws.amazon.com/whitepapers/latest/security-overview-

of-amazon-codeguru-reviewer/the-shared-responsibility-model.html

Cloud adoption is on the rise, more data is stored in the cloud

Security posture of cloud applications is a growing concern

But IAM is notoriously hard to master due to its complexity

https://docs.aws.amazon.com/whitepapers/latest/security-overview-of-amazon-codeguru-reviewer/the-shared-responsibility-model.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-of-amazon-codeguru-reviewer/the-shared-responsibility-model.html

IAM Misconfiguration Example

"Effect ": "allow",

"Action ": "*Role*",

"Resource ": "*"

"Effect ": "deny",

"Action ": "*Role*",

"Resource ": "Alice"

"Effect ": "deny",

"Action ": "*",

"Resource ": "bobs-bucket/*",

"Principal ": "Alice"

Alice

bobs-bucket

1. CreateRole Carol

1. PutRolePolicy Carol

{“effect”:”allow”,

“action”:”*”,

“resource”:”*”}

1. AssumeRole Carol

1. GetObject bobs-bucket/*

Existing AWS IAM Security Tools

Rhino Security Labs identified 20+ AWS IAM privilege

escalation techniques and released Pacu - an open source

tool that scans policies and detects potential usage of

these techniques

AWS developed Zelkova that mathematically verifies

properties in IAM policies - for example checking if a

bucket is public

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://github.com/RhinoSecurityLabs/pacu
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/papers/paper3.pdf

A Model Checking Approach

System

AWS IAM Formal Model Model Checking

Traces

Multi-Step
Attack Vectors

Property

Attack Target

Known technique to check whether a model of a system

satisfies certain properties

Was already suggested in the context of network

vulnerabilities by Ritchey & Ammann in 2000

AWS IAM Model

Attacker

Organization

Actions
Semantics

Policy
Evaluation

Logic

Chooses the request to
perform next

Affects AWS organization
on the next step

Affects the outcome of
the policy evaluation

Impacts what actions the
attacker can perform next

Actions Semantics Encoding

action = PutRolePolicy implies

forall account in accounts:

forall role in account.IAMRoles:

((resourceAccount = account.id and

resourceName = role.name) implies

role.MaximumPermissions’ = true) and

((resourceAccount != account.id or

resourceName != role.name) implies

role.MaximumPermissions’ =

role.MaximumPermissions)

Rhino Security Labs website at
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-
methods-mitigation/

Understand AWS
documentation and translate
into an action semantics formula

Recognize a
privilege escalation
prone action

AWS documentation at
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy
.html

Recognize only means actions - affect IAM directly or indirectly (in total around 60 AWS actions)

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html

Policy Evaluation Logic Encoding

ServiceControlPoliciesAllow and

(ResourceBasedPoliciesAllow or

(IdentityBasedPoliciesAllow and

PermissionsBoundariesAllow)) and

not ServiceControlPoliciesDeny and

not ResourceBasedPoliciesDeny and

not PermissionsBoundariesDeny and

not IdentityBasedPoliciesDeny

allowStatements =

action in “*Role*” and

resourceType = Role

denyStatements =

action in “*Role*” and

resourceName = “Alice” and

resourceType = Role

"Effect ": "allow",

"Action ": "*Role*",

"Resource ": "*"

"Effect ": "deny",

"Action ": "*Role*",

"Resource ": "Alice"

Encode formulas
similarly to Zelkova

Implementation and Evaluation

We use a large pre-production AWS organization with ~100 accounts, with an average of ~200 IAM

resources in each account

We ask how does the model checking process manage to detect existing misconfigurations in real

world AWS environments

Gathered 141 different requests from security engineers, testing who can get access to data resources

such as S3 buckets or SQS queues

We implemented the model checking process using Java + Z3 SAT Solver API. We used a bounded

model checking algorithm (BMC) + an exhaustive version

Evaluation Results
Attack vectors by length Actions performed in all the attack vectors

❏ Security engineers were satisfied with the results and fixed a lot of sneaky over-permissive policies

❏ Additional performance evaluation showed that the approach detects IAM attacks of up to 5 steps, in

accounts with hundreds of resources, in under a minute

Thank you!

Questions?

iliashevrin@mail.tau.ac.il

	Slide 1: Detecting Multi-Step IAM Attacks in AWS Environments via Model Checking
	Slide 2: Background
	Slide 3: IAM Misconfiguration Example
	Slide 4: Existing AWS IAM Security Tools
	Slide 5: A Model Checking Approach
	Slide 6: AWS IAM Model
	Slide 7: Actions Semantics Encoding
	Slide 8: Policy Evaluation Logic Encoding
	Slide 9: Implementation and Evaluation
	Slide 10: Evaluation Results
	Slide 11: Thank you! Questions?

