
Yang Wang
UIUC

Tanusree Sharma
UIUC

A Mixed-Methods Study of Security Practices
of Smart Contract Developers

Zhixuan Zhou
UIUC

Andrew Miller
UIUC

Long-term goal: design tools to identify and mitigate smart
contract vulnerabilities

This study: understand how smart contract developers
currently deal with security

Motivation

2

3

Code with Reentrancy

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Dao {

mapping(address => uint256) public balances;
function deposit() public payable {

require(msg.value >= 1 ether, "Deposits must be no
less than 1 Ether");

balances[msg.sender] += msg.value;
}
function withdraw() public {

// Check user's balance
require(

balances[msg.sender] >= 1 ether,
"Insufficient funds. Cannot withdraw"

);
uint256 bal = balances[msg.sender];
// Withdraw user's balance
(bool sent,) = msg.sender.call{value: bal}("");
require(sent, "Failed to withdraw sender's balance");
// Update user's balance.
balances[msg.sender] = 0;

}
function daoBalance() public view returns (uint256) {

return address(this).balance;
}

}

Contract Dao {
…

function withdraw() public {
// Check user's balance
require(

balances[msg.sender] >= 1 ether,
"Insufficient funds. Cannot withdraw"

);
uint256 bal = balances[msg.sender];

// Update user's balance.
balances[msg.sender] = 0;

// Withdraw user's balance
(bool sent,) = msg.sender.call{value:

bal}("");
require(sent, "Failed to withdraw sender's

balance");

// Update user's balance.
balances[msg.sender] = 0;

}

Fixing Reentrancy

Working on a
De-fi Project
Development

Forked codes of
popular projects

Uniswap V2

Already vetted by
community, so secure

Will have the audit afterward
anyways internal / external

Justification

Reengineered
Uniswap V2

Changing logic
pair/factory

contract

Optimized swap,
used invariant used
by Curve

Structure code
design, format
used standard

library code

Use extra code size
to check code
vulnerability

Check lock modifier,
look for common
vulnerabilities, e.g.
reentrancy

Oftentime don’t get time
to delve into security
vulnerability check

Fast shipping
products to grow
client/community

A Developer Journey (P1)

4

https://curve.fi/files/stableswap-paper.pdf

RQ1

RQ2

Research Questions

How do smart contract developers ensure their smart contracts
are secure against potential attacks?

How do smart contract developers conduct code reviews and
whether they are able to identify common smart contract
security vulnerabilities in the code?

5

Participants
Users

Recruitment
Mailing list

Exploratory
Interview

Experience &
current

practices

Code Review
To identify

vulnerabilities

Exit Interview
Experience of
code review

Interview + Code Review

We conducted an interview and code review session
with 29 Smart Contract Developers from 10 countries

Years of
Experience

GeographyGender

Occupation

Full-time DeFi smart
contract Developer

Freelance smart
contract Develope

Smart contract
Developer-student

Software developer
different domain

Professor

14

3

8

3

1 6

USA
India
Canada
Australia
Germany
New Zealand
Greece
China
Egypt
Ghana
Iran
UK

1
1
5
2
2
2
1
1
1
1
1
1
1

Male
Female

24
5

<1 years

1-3 years

+3 years

10

10

9

Code Review
To identify

vulnerabilities

Survey
Current

Experience &
Practice

Survey + Code Review

We conducted online survey with 171
Smart Contract Developers

7

Years of
Experience

Gender Occupation

Full-time DeFi smart
contract Developer

Smart Contract Protocol
development

Smart Contract
Development

Smart Contract
Research/security
assessment

79%

44%

35%

13%

7

Male
Female

<1 years

1-3 years

+3 years

69%
31%

7.6%

25.7%

66.7%

Results
• Security Perceptions

• Security Practices

• Security Behaviors

8

“If you’re planning to do an audit
anyway, it kind of makes sense from a

business perspective to ship code and then
run it through multiple audits, instead of
having your internal team [...]review the

security at the same time.”
- P8

“Security was not a priority”

9Image source: https://www.flaticon.com/

“Smart of Contract Security is Hard”

``Contract work[s] like state machine
when send a transaction. It only
appears like state changes. But in

regular program, you can
differentiate read-only calls and state
changes. Solidity can not do that.’’ –

P19

10
Image source: https://www.flaticon.com/

Developers had broadly 3 common
practices for security in smart contracts

11

Software engineering best
practices

Importance of code
refactoring & using vetted
libraries

“write the most simple code that you
can and draw the diagram to
visualize the flow of smart contract
code design” - P20

Common software
testing techniques

Code reviews, input
validations, and static
analyses

“Having internal team for code
review… in this culture of moving
fast and breaking things. Also
audits from external entities. -
P10’’

Specialized strategies

Creating own bytecode
dictionary

“I created own bytecode (error code)
dictionary to represent different cases
of reverting transactions in his smart
contracts for an NFT (non-fungible
token) project - P18.’’

Smart Contract Security Practices

12

Use of Security Tooling, Limitations of smart contract
security tools, & Code Review Practice

Frequently used Truffle
testing suite, Remi, Hardhat,
Slither, MythX

Manual inspection (64%) was
frequently used method for smart
contract security

Existing symbolic execution
based tools, are limited in
identifying edge case,

13

Developers Security Practices in Action

14

15

Code Review Result - Interview

Overall, 55% of (16 out of 29) identify
one or more vulnerabilities. 28% (N=8)
of identified both (all) vulnerabilities

Survey

20.5% (n: 171) identified vulnerability.

16

Smart Contract Security Practice in Action

“it is withdrawing if the
amount is less than the amount
to just return false and subtracts
the amount before it does the
accounting before it’s sending
anything out, which is pretty
crucial for preventing someone
re-entering the function, which
would be bad. - P14”

Hands-on exercises or labs,
incorporate education
teachable moments in

Compilers, Security tools, IDEs,
Testnets

Design implications
Education & Standards

Image source: https://www.flaticon.com/
17

Actionable insights through
Error / warning messages -

zooming into where exactly the
problems are in the code and
how significant the effect can

be

Design implications
User interfaces & user

experience

Image source: https://www.flaticon.com/
18

Thank you!
Contact:

tsharma6@illinois.edu

@Tanusree_Sharma

Paper QR Code:

Key Takeaways

❖ Limitation in tooling
➢ Tailored Education, Standards, hands on Lab

based on experience level
➢ Hierarchical and self explainable Error Message

in security/ development platform
➢ Comprehensibility of Code libraries, symbolic

execution tooling
❖ Future Research can explore

➢ Impact of Smart Contract Development Culture’s
impact on security

➢ Comparison study with developers of different
smart contracts language (e.g. solidity, vyper, etc)

19

mailto:tsharma6@illinois.edu

