
Forming Faster Firmware Fuzzers
Lukas Seidel, Qwiet AI and TU Berlin

Dominik Maier, TU Berlin
Marius Muench, VU Amsterdam and University of Birmingham

The 32nd USENIX Security Symposium

Our Goal:
Re-Think Firmware Emulation
for Fuzzing

2

Firmware Fuzzing

Firmware

MMIO

External Peripherals
e.g., WiFi Antenna

3

Firmware Fuzzing

Firmware
(lifted by emulator)

MMIO

External Peripherals
e.g., WiFi Antenna

Emulator

4

Firmware Fuzzing

Firmware
(lifted by emulator)

MMIO

External Peripherals
e.g., WiFi Antenna

Emulator

Fuzzing Engine

5

Observations

1) Full Binary lifting / rewriting (even if heavily cached) is expensive.
QEMU’s advantage is executing diverse architectures but most embedded
work focuses on ARM.

2) QEMU was developed for more complex systems, deploying a SoftMMU
which dispatches all memory accesses and introduces significant overhead

For more roadblocks that we addressed, please refer to our paper.

6

Near-Native Rehosting

Core Idea:

a) A lot of embedded firmware runs on ARMv7-M chips
b) Certain ARMv8-A cores provide compatibility with AArch32 and Thumb instruction

set variants

⇒ Execute binaries for small embedded devices on their “bigger brothers”!

By this, we

● Heavily reduce the amount of code which needs lifting / rewriting
● outperform rehosting approaches built on top of general-purpose emulators

7

Reduced Memory Access Overhead

● Mirror memory layout of the embedded device in userspace

⇒ rewritten instructions do not need extra logic to dispatch memory
 accesses

● Use your usual MMU to detect memory violations

⇒ no need for overhead-inducing SoftMMU

8

The Framework

9

High-Level
Emulation

● Search for functions accessing
MMIO peripherals (HAL)

● Emulate their behavior in a
high-level language (handler)

● Insert hooks to your handler
while rewriting

⇒ Eliminate problematic MMIO
accesses

10

Basic Block Rewriting

11

Evaluation

● 12 targets previously fuzzed by
other firmware fuzzing work, e.g.,

○ STM32-based PLC firmware
○ HTTP Server for Atmel SAM R21

microcontrollers
○ Contiki OS-based WiFi

Receiver/Transmitter
○ A fuzzing benchmark firmware

with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)

12

Evaluation

● 12 targets previously fuzzed by
other firmware fuzzing work, e.g.,

○ STM32-based PLC firmware
○ HTTP Server for Atmel SAM R21

microcontrollers
○ Contiki OS-based WiFi

Receiver/Transmitter
○ A fuzzing benchmark firmware

with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)

● 4 baseline configurations

○ HALucinator (state-of-the-art
HLE-based)

○ HALucinator-LibAFL
○ FuzzWare (state-of-the-art

symbolic execution-based)
○ FuzzWare-NoHAL

13

Basic Block Coverage 14

Performance 📈

690x faster than HALucinator

145x faster than FuzzWare

15

New Targets

● 2 previously unfuzzed targets

○ Sine: open-source firmware for
electric motor inverters

○ STMicroelectronics firmware
example for image processing
(libjpeg)

● 3 new Bugs

○ Sine:
■ Arbitrary write by

corrupted config value
(probably not
exploitable)

○ Libjpeg:
■ Segfault after accessing

uninitialized struct
■ Out-of-bounds write

16

Conclusion

⇒ Near-native execution, minimal rewriting

⇒ Rehosting of embedded firmware in Linux
 userspace

⇒ Vastly increased execution speeds

⇒ Less time to achieve (more) coverage

pr0me

17

