TAP: Transparent and Privacy-Preserving Data Services

Daniël Reijsbergen1 Aung Maw2 Zheng Yang3
Tien Tuan Anh Dinh4 Jianying Zhou2

1Nanyang Technological University, Singapore
2Singapore University of Technology and Design, Singapore
3Southwest University, China
4Deakin University, Australia

USENIX Security 2023, Anaheim, CA, USA
11 August 2023
Data Services

• Companies gather data from users, perform computations

• Example: Smart Grid
 • What is the total energy use in my area?
 • What are the average and standard deviation?
 • What is the maximum among residential users?
 • What is the 95% quantile?

• Other Examples:
 • Congestion pricing
 • Digital advertising
Transparency

- *Challenge:* companies may have a financial incentive to *cheat*

- We want to guarantee the following:
 - *Data Integrity:* data is not tampered with
 - *Transparency:* computations on data are performed correctly
 - *Data Privacy:* users cannot view data values of other users

- Also: rich set of operations (sums, quantiles, ...), *efficiency*
TAP

• Naïve solutions:
 • All data on company server: *privacy*, no *transparency*
 • All data public: *transparency*, no *privacy*

• Other existing approaches are insufficient:
 • *Limited query support* (e.g., transparency logs, proofs-of-liabilities), or
 • *Single-user* (e.g., authenticated databases)

• **TAP**: a verifiable log with rich query support
TAP: System Model

Users:
- Monitor their data values
- Perform queries

Server:
- Builds data structure
- Generates responses, proofs

Auditors:
- Check data structure
TAP: Data Structure

- Two-layer structure: **prefix tree**, with a **sum tree** in each leaf
- Sum tree leaf for each **data value**: max. 1 value per user per time slot

![Diagram of TAP data structure](image)
TAP: Prefix Tree

- One prefix tree leaf for each combination of attributes
- Top tree is chronological ⇒ append to the right, easy to audit
TAP: Sum Trees

- Nodes store *hom. commitments* of values and higher stat. moments
- Leaves are *sorted*: audited using *zero-knowledge (zk) proofs*
TAP: Performance

- Server can prove query correctness \textit{efficiently}
 - Sum/average using sum tree roots
 - Min/max/quantiles using \textit{zk-proofs} and \textit{sorted} leaf structure

- Practical performance on 1/hour Amazon machine:
 - Smart grid with 1.8 million users, 100 sum trees / time slot:
 - less than 5 minutes to update tree
 - Max. audit volume: 360 000 values per hour
Conclusion

• **TAP** uses *two-layer* tree structure and *zero-knowledge proofs*
• Guarantees *integrity, transparency, and privacy*
• **Verifiable log** with rich query support: sum, variance, quantiles, ...

• Future work:
 • More query types (e.g., correlation)
 • Improve efficiency when most data values are zero
 • Implement extension to *differential privacy*
Thank You!

Please contact us via email:

daniel.reijsbergen@ntu.edu.sg
youngzheng@swu.edu.cn
anh.dinh@deakin.edu.au
jianying_zhou@sutd.edu.sg