
USENIX 2023

Prashant Rajput Michail Maniatakos

August 15, 2023

ICSPatch: Automated Vulnerability Localization and 
Non-Intrusive Hotpatching in Industrial Control Systems 

using Data Dependence Graphs

Constantine Doumanidis



nyuad.nyu.edu/momalab

• Industrial Control Systems (ICS)
• Ruggedized systems
• Interface with the real world
• Examples: PLCs, SCADA systems, etc.

What are Industrial Control Systems?



nyuad.nyu.edu/momalab

• Industrial Control Systems (ICS)
• Ruggedized systems
• Interface with the real world
• Examples: PLCs, SCADA systems, etc.

• Part of critical infrastructure
• Power grid
• Nuclear plants
• Desalination facilities

What are Industrial Control Systems?



nyuad.nyu.edu/momalab

• Industrial Control Systems (ICS)
• Ruggedized systems
• Interface with the real world
• Examples: PLCs, SCADA systems, etc.

• Part of critical infrastructure
• Power grid
• Nuclear plants
• Desalination facilities

• ICS robustness is 
paramount for safety

What are Industrial Control Systems?



nyuad.nyu.edu/momalab

• Industry 4.0 / Industrial IoT

• ICS evolve into typical computers
• Generic third-party SoCs
• General-purpose OS
• Remote connections

What are Modern ICS?

[1] Doumanidis, C., Xie, Y., Rajput, P. H., Pickren, R., Sahin, B., Zonouz, S., & Maniatakos, M. (2023). 
Dissecting the Industrial Control Systems Software Supply Chain. IEEE Security & Privacy. 

Siemens S7-1500 PLC line, Siemens



nyuad.nyu.edu/momalab

4

PLC Execution Model

Fig. 1: Execution model for Codesys runtime.

Operating System

GPIO CPU

• Programmable Logic Controllers (PLCs)
• An industrial computer continuously monitoring 

the state of input, makes decision based on a 
custom program to control state of output devices



nyuad.nyu.edu/momalab

5

PLC Execution Model

Fig. 1: Execution model for Codesys runtime.

RT Linux

Codesys Runtime

GPIO CPU

• Programmable Logic Controllers (PLCs)
• An industrial computer continuously monitoring 

the state of input, makes decision based on a 
custom program to control state of output devices

• Runtime
• Collection of components necessary for proper 

execution of the application binary



nyuad.nyu.edu/momalab

6

PLC Execution Model

Fig. 1: Execution model for Codesys runtime.

RT Linux

Codesys Runtime

GPIO CPU

• Programmable Logic Controllers (PLCs)
• An industrial computer continuously monitoring 

the state of input, makes decision based on a 
custom program to control state of output devices

• Runtime
• Collection of components necessary for proper 

execution of the application binary

• Scan Cycle
• Continuously scan program, input scan, execute 

program, output scan



nyuad.nyu.edu/momalab

7

PLC Execution Model

Fig. 1: Execution model for Codesys runtime.

RT Linux

Codesys Runtime

Control 
Application

GPIO CPU

• Programmable Logic Controllers (PLCs)
• An industrial computer continuously monitoring 

the state of input, makes decision based on a 
custom program to control state of output devices

• Runtime
• Collection of components necessary for proper 

execution of the application binary

• Scan Cycle
• Continuously scan program, input scan, execute 

program, output scan

• Control Application
• IEC 61131-3 compliant code regulating a physical 

industrial process



nyuad.nyu.edu/momalab

PLC Binary Crashes!

• Crashes are signals of potentially 
exploitable vulnerabilities

• Vulnerabilities need to be patched
• Patching requires:

• Vendor to produce a patch
• PLC to be restarted

• However:
• Vendors may not be able to produce a patch 

quickly (or ever)
• PLC cannot be taken offline before next scheduled 

downtime



nyuad.nyu.edu/momalab

9

• Hotpatching
• Dynamically updating application without 

downloading a new version or even restarting it

ICSPatch



nyuad.nyu.edu/momalab

10

Fig. 1: Codesys-based PLC software stack.

GPIO CPU

Linux – RT Patch

CODESYS Runtime

PL
C_

Ta
sk

O
PC

UA
 S

er
ve

r

KB
U

S

M
od

bu
s T

CP

[1] Niesler, C., Surminski, S., & Davi, L. (2021, February). HERA: Hotpatching of Embedded Real-time Applications. In NDSS.
[2] He, Y., Zou, Z., Sun, K., Liu, Z., Xu, K., Wang, Q., ... & Li, Q. (2022). RapidPatch: Firmware Hotpatching for Real-Time Embedded Devices. In 31th USENIX Security Symposium (USENIX 
Security 22).

• Hotpatching
• Dynamically updating application without 

downloading a new version or even restarting it

• Why?
• Hotpatching for real-time applications remains 

unexplored, except HERA [1] and RapidPatch [2]

• Here, application binary executes in the context of 
a runtime

• Proprietary format
• Unknown vulnerabilities
• No upstream patch source

ICSPatch



nyuad.nyu.edu/momalab

11

ICSPatch

[1] 2021 CWE Top 25 Most Dangerous Software Weaknesses, MITRE, https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html.

Table 1: A diverse synthetic control application dataset.• Creating a diverse dataset
• 5 sectors
• 4 type of vulnerabilities

• OOB write
• OOB read
• OS command injection
• Improper input validation

• 4/5 most dangerous software 
weaknesses for 2021 [1]



nyuad.nyu.edu/momalab

12

System design overview

Methodology

• Threat Model
• Remote adversary with MiTM capabilities
• Adversary limited to data injection/modification attacks
• ICSPatch does not assume upstream patch source
• ICSPatch assumes at least one exploit input

Fig. 1: ICSPatch System Design.



nyuad.nyu.edu/momalab

13

System design overview

• Threat Model
• Remote adversary with MiTM capabilities
• Adversary limited to data injection/modification attacks
• ICSPatch does not assume upstream patch source
• ICSPatch assumes at least one exploit input

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

14

Step 1: Vulnerability Identification & Localization

• Vulnerability Identification

Fig. 2: ICSPatch Rule Example.

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

15

Step 1: Vulnerability Identification & Localization

• Vulnerability Localization
• Traverse back on the DDG
• Locate the closest node to the 

boundary between control application
and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph. 

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

16

Step 1: Vulnerability Identification & Localization

• Vulnerability Localization
• Traverse back on the DDG
• Locate the closest node to the 

boundary between control application
and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph. 

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

17

Step 1: Vulnerability Identification & Localization

• Vulnerability Localization
• Traverse back on the DDG
• Locate the closest node to the 

boundary between control application
and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph. 

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

18

Step 2: Patch Generation & Deployment

• Patch Generation
• No upstream patch sources for control application
• Memory related vulnerabilities require bound checking patches
• Populate skeleton patches with:

• Vulnerable bound memory location
• User defined bound
• Next function offset into the address table

M

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

19

Step 2: Patch Generation & Deployment

• Patch Generation
• No upstream patch sources for control application
• Memory related vulnerabilities require bound checking patches
• Populate skeleton patches with:

• Vulnerable bound memory location
• User defined bound
• Next function offset into the address table

M

• Patch Verification
• Load the patch in angr

simulation instance
• Execute and check 

vulnerability rulesets

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

20

Step 2: Patch Generation & Deployment

• Branching in Control Applications
1. Load base address of address table

Fig. 4: Branching in Codesys compiled control applications.

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

21

Step 2: Patch Generation & Deployment

• Branching in Control Applications
1. Load base address of address table
2. Load the address of the next function

Fig. 4: Branching in Codesys compiled control applications.

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

22

Step 2: Patch Generation & Deployment

• Branching in Control Applications
1. Load base address of address table
2. Load the address of the next function
3. Modify the value of the PC

Fig. 4: Branching in Codesys compiled control applications.

Fig. 1: ICSPatch System Design.

Methodology



nyuad.nyu.edu/momalab

23

Step 2: Patch Generation & Deployment

Fig. 1: ICSPatch System Design.

• Patch Deployment
1. Write patch at empty memory location
2. Write patch address into an empty 

address table entry
3. Modify the offset to the base address 

table to load patch address (critical)

Fig. 5: Steps to modify control flow in control applications.

Methodology



nyuad.nyu.edu/momalab

24

Step 2: Patch Generation & Deployment

Fig. 1: ICSPatch System Design.

• Patch Deployment
1. Write patch at empty memory location
2. Write patch address into an empty 

address table entry
3. Modify the offset to the base address 

table to load patch address (critical)

Fig. 5: Steps to modify control flow in control applications.

Methodology



nyuad.nyu.edu/momalab

25

Step 2: Patch Generation & Deployment

Fig. 1: ICSPatch System Design.

• Patch Deployment
1. Write patch at empty memory location
2. Write patch address into an empty 

address table entry
3. Modify the offset to the base address 

table to load patch address (critical)

Fig. 5: Steps to modify control flow in control applications.

Methodology



nyuad.nyu.edu/momalab

26

Step 2: Patch Generation & Deployment

Fig. 1: ICSPatch System Design.

• Patch Deployment
1. Write patch at empty memory location
2. Write patch address into an empty 

address table entry
3. Modify the offset to the base address 

table to load patch address (critical)

Fig. 5: Steps to modify control flow in control applications.

Methodology



nyuad.nyu.edu/momalab

27

Table 2: Detailed breakdown of ICSPatch used on Aircraft Flight Control CWE-20 vulnerable binary.

Table 1: ICSPatch execution timings and overheads for the 24 vulnerable binaries.

• Timing Overhead
1. Normal: 13 instructions (32 bits) + 

patch address + hook
Exception: Does not load base 
address and removes ldr
instruction

2. Increased latency due to program 
structure (loop)

3. Critical operation modifying 
execution flow by overwriting ldr
offset (hook)

4. Minimum scan cycle impact

1

2

3 4

Experimental Results



nyuad.nyu.edu/momalab

28

Fig. 1: CPU utilization by different operations on a PLC. Fig. 2: CPU utilization of top 5 processes.

• Codesys runtime utilizes 14% and 11% CPU for WAGO PFC 100 and 200, respectively
• Before the critical operation

• Change runtime’s nice value to 19 (lowest)
• preempt_disable() and local_irq_disable()

Experimental Results



nyuad.nyu.edu/momalab

29

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup
• MATLAB Simulink model for a Multi-Stage Flash 

desalination plant validated against the Khubar II 
plant in Saudi Arabia

• NI USB 6002, a DAQ device connects Simulink model 
to WAGO PFC100 PLC

• ICSPatch server connects to the PLC

Case Study



nyuad.nyu.edu/momalab

30

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup
• MATLAB Simulink model for a Multi-Stage Flash 

desalination plant validated against the Khubar II 
plant in Saudi Arabia

• NI USB 6002, a DAQ device connects Simulink model 
to WAGO PFC100 PLC

• ICSPatch server connects to the PLC Fig. 2: Distillate product flow rate before and after patching.

Case Study



nyuad.nyu.edu/momalab

31

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup
• MATLAB Simulink model for a Multi-Stage Flash 

desalination plant validated against the Khubar II 
plant in Saudi Arabia

• NI USB 6002, a DAQ device connects Simulink model 
to WAGO PFC100 PLC

• ICSPatch server connects to the PLC Fig. 2: Distillate product flow rate before and after patching.

Case Study



| nyuad.nyu.edu/momalab

Thank you. Questions?

Paper Code

@starlordphr
@c_smokeson
@realMoMAlab

https://wp.nyu.edu/momalab/


	Slide Number 1
	What are Industrial Control Systems?
	What are Industrial Control Systems?
	What are Industrial Control Systems?
	What are Modern ICS?
	PLC Execution Model
	PLC Execution Model
	PLC Execution Model
	PLC Execution Model
	PLC Binary Crashes!
	ICSPatch
	ICSPatch
	ICSPatch
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Experimental Results
	Experimental Results
	Case Study
	Case Study
	Case Study
	Slide Number 34

