جامعـة نيويورك أبوظـي NYU ABU DHABI

ICSPatch: Automated Vulnerability Localization and Non-Intrusive Hotpatching in Industrial Control Systems using Data Dependence Graphs

Prashant Rajput Constantine Doumanidis Michail Maniatakos

USENIX 2023

August 15, 2023

What are Industrial Control Systems?

- Industrial Control Systems (ICS)
 - Ruggedized systems
 - Interface with the real world
 - Examples: PLCs, SCADA systems, etc.

What are Industrial Control Systems?

- Industrial Control Systems (ICS)
 - Ruggedized systems
 - Interface with the real world
 - Examples: PLCs, SCADA systems, etc.
- Part of critical infrastructure
 - Power grid
 - Nuclear plants
 - Desalination facilities

What are Industrial Control Systems?

- Industrial Control Systems (ICS)
 - Ruggedized systems
 - Interface with the real world
 - Examples: PLCs, SCADA systems, etc.
- Part of critical infrastructure
 - Power grid
 - Nuclear plants
 - Desalination facilities
- ICS robustness is paramount for safety

What are Modern ICS?

- Industry 4.0 / Industrial IoT
- ICS evolve into typical computers
 - Generic third-party SoCs
 - General-purpose OS
 - Remote connections

Siemens S7-1500 PLC line, Siemens

Vendor	Devices	Variants	Notes	Firmware Groups	OS base
Schneider	M241	15	Performance intensive hardware	M241_M251	VxWorks
Electric	M251 2 Compact device f		Compact device for distributed environments	112-11, 11251	VA WORKS
	M258	6	Bulk I/O and communications	M258	VxWorks
	\$7-1200	19	Entry level PLC	S7-1200	Utilizes OpenBSD components
Siemens	S7-1500 ET 200SP ET 200pro	38 3 9	Feature rich, future proof I/O oriented control cabinet device Modular and rugged I/O device	S7-1500, ET 200SP, ET 200pro	Debian Linux
WAGO	PFC100 PFC200	6 21	Compact and modular PLC Powerful and feature rich PFC100	PFC100, PFC200	Linux
	PFC200 (2nd generation)	18	Evolution of the PFC200	PFC200 (2nd gen.)	Linux
	AC500 V3	10	Mainstream AC500 V3		
ABB	AC500-eCo V3	12	Cost effective version	AC500 V3 /eCo/S/XC	Yocto Linux
	AC500-S V3	3	Safety automation oriented version	Resource recordine	TOOLO EIIIUX
	AC500-XC V3	6	Extreme operating conditions version		
Total		168			

[1] Doumanidis, C., Xie, Y., Rajput, P. H., Pickren, R., Sahin, B., Zonouz, S., & Maniatakos, M. (2023). Dissecting the Industrial Control Systems Software Supply Chain. IEEE Security & Privacy.

Programmable Logic Controllers (PLCs)

• An industrial computer continuously monitoring the state of input, makes decision based on a custom program to control state of output devices

• Programmable Logic Controllers (PLCs)

• An industrial computer continuously monitoring the state of input, makes decision based on a custom program to control state of output devices

• Runtime

• Collection of components necessary for proper execution of the application binary

• Programmable Logic Controllers (PLCs)

• An industrial computer continuously monitoring the state of input, makes decision based on a custom program to control state of output devices

• Runtime

- Collection of components necessary for proper execution of the application binary
- Scan Cycle
 - Continuously scan program, input scan, execute program, output scan

• Programmable Logic Controllers (PLCs)

• An industrial computer continuously monitoring the state of input, makes decision based on a custom program to control state of output devices

• Runtime

- Collection of components necessary for proper execution of the application binary
- Scan Cycle
 - Continuously scan program, input scan, execute program, output scan
- Control Application
 - IEC 61131-3 compliant code regulating a physical industrial process

PLC Binary Crashes!

- Crashes are signals of potentially exploitable vulnerabilities
- Vulnerabilities need to be patched
- Patching requires:
 - Vendor to produce a patch
 - PLC to be restarted
- However:
 - Vendors may not be able to produce a patch quickly (or ever)
 - PLC cannot be taken offline before next scheduled downtime

	<u> </u>	<u>†</u>	<u>t</u>				
	Control Application Stack	Control Application Stack	Control Application Stack				
	ARRAY:	ARRAY:	ARRAY:				
	Runtime Stack	Runtime Stack	Runtime Stack				
t	•	•	:				
	Control Code	Control Code	Control Code				
	:	•	:				
lress	Address Table	Address Table	Address Table				
ing Add	0xdeadbeef0xdeadbeef000000000xdeadbeef0xcacacafe00000000	OxdeadbeefOxdeadbeef000000000xdeadbeef0xcacacafe00000000	OxdeadbeefOxdeadbeef000000000xb61948b00xcacacafe00000000				
reas	:	•	:				
Deci	Data	Data	Data				

Out-of-bounds Write

Out-of-bounds Read

OS Command Injection

ICSPatch

Hotpatching

• Dynamically updating application without downloading a new version or even restarting it

ICSPatch

Hotpatching

• Dynamically updating application without downloading a new version or even restarting it

• Why?

- Hotpatching for real-time applications remains unexplored, except HERA [1] and RapidPatch [2]
- Here, application binary executes in the context of a runtime
- Proprietary format
- Unknown vulnerabilities
- No upstream patch source

Modbus TCP	OPCUA Server	KBUS	• • • •	PLC_Task
	COI	DESY	S Runtime	
	Lin	ux –	RT Patch	
	GPIC)	CPU	
Fig.	1: Code	sys-base	ed PLC software stac	:k.

ICSPatch

- Creating a diverse dataset
 - 5 sectors
 - 4 type of vulnerabilities
 - OOB write
 - OOB read
 - OS command injection
 - Improper input validation
 - 4/5 most dangerous software weaknesses for 2021 [1]

Table 1: A diverse synthetic control application dataset.

Shared Library	Imported Functions	Aircraft Flight Control			A1 es	Anaerobic Dig estion Reactor			Chemical Plant			Desalination Plant				Smart Grid					
Lintury	T uncuons	CWE-787	CWE-125	CWE-78	CWE-20	CWE-787	CWE-125	CWE-78	CWE-20	CWE-787	CWE-125	CWE-78	CWE-20	CWE-787	CWE-125	CWE-78	CWE-20	CWE-787	CWE-125	CWE-78	CWE-20
SysMem23	SysMemSet SysMemMove	•	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0
SysMem	SysMemSet SysMemMove SysMemCpy	0 0 0	0000	0000	0 0 0	0000	0000	0000	0 0 0	0000	0 • 0	0000	0 0 0	• 0 0	0 0 0	0000	0 • 0	0000	0 0 0	0 0 0	• 0 0
MemUtils	MemSet MemCpy BitCpy	0	0 • 0	0 0 0	• 0 0	•	0 • •	0 0 0	0 0 0	0 • 0	0000	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0000	0 • 0	0 0 0	0 0 0	0 0 0
IEC 61	131-3 code																			_	
Out-of-bou	nds array index	0	0	•	0	0	0	•	0	0	0	•	0	0	0	•	0	0	0	•	0

CWE-787/CWE-125: Out-of-Bounds Write/Read CWE-78: OS Command Injection CWE-20: Improper Input Validation

System design overview

- Threat Model
 - Remote adversary with MiTM capabilities
 - Adversary limited to data injection/modification attacks
 - ICSPatch does not assume upstream patch source
 - ICSPatch assumes at least one exploit input

System design overview

- Threat Model
 - Remote adversary with MiTM capabilities
 - Adversary limited to data injection/modification attacks
 - ICSPatch does not assume upstream patch source
 - ICSPatch assumes at least one exploit input

Step 1: Vulnerability Identification & Localization

Vulnerability Identification

OOB_WRITE_RULE (ALERT): OOB_WRITE [WRITE_ADDRESS > RUNTIME_STACK and WRITE_ADDRESS < RUNTIME_TEXT] "Vulnerability Detected."

Name	Action	Patch Identifier	Definition	Message
		OOB_READ	READ_ADDRESS > RUNTIME_STACK AND READ_ADDRESS < RUNTIME_DATA	
		OS_CMD_INJ	WRITE_ADDRESS > RUNTIME_STACK AND WRITE_ADDRESS > RUNTIME_ADDRESS_TABLE	

Fig. 2: ICSPatch Rule Example.

Step 1: Vulnerability Identification & Localization

- Vulnerability Localization
 - Traverse back on the DDG
 - Locate the closest node to the boundary between control application and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph.

Step 1: Vulnerability Identification & Localization

- Vulnerability Localization
 - Traverse back on the DDG
 - Locate the closest node to the boundary between control application and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph.

Step 1: Vulnerability Identification & Localization

- Vulnerability Localization
 - Traverse back on the DDG
 - Locate the closest node to the boundary between control application and the runtime.

Fig. 3:Vulnerability localization in ICSPatch using Data Dependence Graph.

Step 2: Patch Generation & Deployment

Patch Generation

- No upstream patch sources for control application
- Memory related vulnerabilities require bound checking patches
- Populate skeleton patches with:
 - Vulnerable bound memory location
 - User defined bound
 - Next function offset into the address table

Step 2: Patch Generation & Deployment

Patch Generation

- No upstream patch sources for control application
- Memory related vulnerabilities require bound checking patches
- Populate skeleton patches with:
 - Vulnerable bound memory location
 - User defined bound
 - Next function offset into the address table

Patch Verification

- Load the patch in angr simulation instance
- Execute and check vulnerability rulesets

Step 2: Patch Generation & Deployment

- Branching in Control Applications
 - 1. Load base address of address table

0xb61902b8	push	$\{sl, lr\}$				
0xb61902bc	mov	sl, sp		Ad	dress	Table
:		•	-	1	I	
0xb61902e8	ldr	fp, [pc, #0x70]	⊷			
0xb61902ec	ldr	r6, [fp]		0xb62a50b4		0xb6193e88
0xb61902f0	andvs	r0, r0, r0		i I		
0xb61902f4	mov	lr, pc	0			
0xb61902f8	mov	pc, r6		0xb6193e88	push	$\{$ sl, lr $\}$
				0xb6193e8c	mov	sl, sp
0xb6190360	0xb62	a50b4	μ			

Fig. 4: Branching in Codesys compiled control applications.

Step 2: Patch Generation & Deployment

- Branching in Control Applications
 - 1. Load base address of address table
 - 2. Load the address of the next function

Fig. 4: Branching in Codesys compiled control applications.

Step 2: Patch Generation & Deployment

- Branching in Control Applications
 - 1. Load base address of address table
 - 2. Load the address of the next function
 - 3. Modify the value of the PC

Fig. 4: Branching in Codesys compiled control applications.

Step 2: Patch Generation & Deployment

Fig. 5: Steps to modify control flow in control applications.

Step 2: Patch Generation & Deployment

0xb61b3344 0xb62c00b4

Fig. 5: Steps to modify control flow in control applications.

0xb61af7d0

push

{r0, r6}

address

Step 2: Patch Generation & Deployment

0xb61b3254 mov

0xb61b3344 0xb62c00b4

pc, r6

 Modify the offset to the base address table to load patch address (critical)

push

mov

push

 $\{$ sl, lr $\}$

sl, sp

{r0, r6}

Branch to

function

Load base

address

0xb61af7c8

0xb61af7cc

0xb61af7d0

Step 2: Patch Generation & Deployment

- Patch Deployment
 - 1. Write patch at empty memory location
 - 2. Write patch address into an empty address table entry
 - 3. Modify the offset to the base address table to load patch address (critical)

Fig. 5: Steps to modify control flow in control applications.

Experimental Results

• Timing Overhead

- Normal: 13 instructions (32 bits) + patch address + hook
 Exception: Does not load base address and removes ldr instruction
- 2. Increased latency due to program structure (loop)
- 3. Critical operation modifying execution flow by overwriting ldr offset (hook)
- 4. Minimum scan cycle impact

Critical	Vulnere		Ti	me (ms)			Mean	Execution Til	Achieved	Momory	
Infrastructure	-bility	Vulnerability Localization	Patch Generation	Patch Verification	Pa Deplo	atch oyment	Pre-patch	Post-patch	Difference	Scan Cycle (μs)	(Bytes)
		Localization	Generation	(s)	Total	Critica (µs)				•	
	CWE-20	3.06	178.57	7.71	252.13	0.22	20.09	21.06	0.97	69.59	64
Aircraft	CWE-787	6.72	166.39	67.18	332.73	0.3	18.05	20.04	1.99	77.2	64
Flight	CWE-787	4.42	143.68	33.43	232.2	0.26	25.4	27.19	1.8	74.94	64
Control	CWE-125	4.85	178.59	28.93	252.24	0.46	21.6	21.78	0.17	74.54	64
	CWE-78	1.54	203.03	9	230.17	0.3	16.61	20.5	3.89	72.87	56
	CWE-20	5.05	134.98	10	234.42	0.31	20.04	21.04	0.99	134.46	64
	CWE-787	3.78	126.87	2.86	232.07	0.35	17.02	17.07	0.05	71.46	64
	CWE-787	4.82	130.18	7.17	246.06	0.24	19.99	20.24	0.25	147.74	64
Anaerobic	CWE-787	4.44	124.95	2.16	223.7	0.22	21.32	21.37	0.05	74.49	64
Reactor	CWE-125	5.91	125.24	4.62	234.49	0.23	16.89	18.94	2.04	77.3	64
	CWE-125	4.96	221.38	169.1	236.26	0.28	23.98	28.08	4.09	152.96	64
	CWE-78	1.44	171.11	6.16	298.04	0.3	15.10	19.3	4.19	71.7	56
	CWE-20	5	126	1.85	254.16	0.3	14.82	17.45	2.63 2	67.75	64
Chemical	CWE-787	3.76	183.18	424.23	236.42	0.31	36.62	54.03	17.4	148.54	64
Plant	CWE-125	6.61	170.95	17.83	253.94	0.23	21.37	25.8	4.42	71.41	64
	CWE-78	1.64	127.89	20.26	252.72	0.26	24.09	26.64	2.54	72.38	56
	CWE-20	5.44	134.94	7.4	244	0.24	18.6348	19.88	1.25	75.82	64
Desalination	CWE-787	4.81	127.11	3.32	238.35	0.23	15.717	18.07	2.35	75.79	64
Plant	CWE-125	4.94	139.36	11.25	241.02	0.25	19.3252	19.99	0.66	73.08	64
	CWE-78	1.52	133.81	5.5	230.13	0.26	17.483	20.52	3.04	80.5	56
	CWE-20	3.95	133.9	3	264.83	0.27	15.1286	17.15	2.02	65.71	64
Smart	CWE-787	3.64	134.14	9.2	247.91	0.22	26.0833	27.02	0.94	83.69	64
Grid	CWE-125	5.73	126.27	4.6	227.34	0.23	20.0931	22.98	2.89	97.48	64
	CWE-78	1.46	222.22	6.6	232.86	0.34	25.2406	27.31	2.07	77.12	56
CWE	E-20: Improper	Input Validation	CWE-787:	Out-of-Bounds	Write	CWE-125:	Out-of-Bound	s Read CW	/E-78: OS Cor	nmand Injection	

Table 1: ICSPatch execution timings and overheads for the 24 vulnerable binaries.

Table 2: Detailed breakdown of ICSPatch used on Aircraft Flight Control CWE-20 vulnerable binary.

Preparation	Vulne	rability Localiza		Patch Ge	Patch Deployment											
Hexdump	Load	Control App	DDG	Locate Live	Hook	Patch	Patch	MV	MW	MV	MW	MV	MW			
Extraction	Hexdumps Execution Traversal		Traversal	Addresses	Creation Creation Verification			Address Table Patch				Hook				
Development	ICSPatab (as as)			Deployed	Deployed ICSPatch					Deployed PLC						
PLC	1	icsracii (angr)				ICSFaten			Deployed The							
733.11	52.02	4.73	0.003	0.06	0.09	0.03	7.71	0.016	0.033	0.054	0.055	0.05	0.043			
	Preparation Hexdump Extraction Development PLC 733.11	Preparation Vulne Hexdump Load Extraction Hexdumps Development 1 PLC 1 733.11 52.02	Preparation Vulnerability Localization Hexdump Load Control App Extraction Hexdumps Execution Development ExcPatch (angr) PIC 52.02 4.73	Preparation Vulnerability Localization Hexdump Load Control App DDG Extraction Hexdumps Execution Traversal Development ICSPatch (angr) 733.11 52.02 4.73 0.003	Preparation Vulnerability Localization Hexdump Load Control App DDG Locate Live Hexdump Hexdumps Execution Traversal Addresses Development ICSPatch (angr) Deployed PLC PLC 733.11 52.02 4.73 0.003 0.06	Preparation Vulnerability Localization Patch Get Hexdump Load Control App DDG Locate Live Hook Extraction Hexdumps Execution Traversal Addresses Creation Development ICSPatch (angr.) Deployed PLC PLC 0.003 0.06 0.09	Preparation Vulnerability Localization Patch Generation Hexdump Load Control App DDG Locate Live Hook Patch Extraction Hexdumps Execution Traversal Addresses Creation Creation Development ICSPatch (angr) Deployed ICSPatch PLC ICSPatch 733.11 52.02 4.73 0.003 0.06 0.09 0.03	Preparation Vulnerability Localization Patch Generation Hexdump Load Control App DDG Locate Live Hook Patch Patch Extraction Hexdumps Execution Traversal Addresses Creation Verification Development ICSPatch (angr) PlC ICSPatch PlC ICSPatch 733.11 52.02 4.73 0.003 0.06 0.09 0.03 7.71	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Preparation Vulnerability Localization Patch Generation M M MW Hexdump Load Control App Extraction DDG Locate Live Addresses Hook Creation Patch Creation Patch Patch Patch Patch MV MW Development PLC Excertion Traversal Addresses Creation Creation Verification Address Table 733.11 52.02 4.73 0.003 0.06 0.09 0.03 7.71 0.016 0.033	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

MV: Memory Verification MW: Memory Write

Experimental Results

- Codesys runtime utilizes 14% and 11% CPU for WAGO PFC 100 and 200, respectively
- Before the critical operation
 - Change runtime's nice value to 19 (lowest)
 - preempt_disable() and local_irq_disable()

Case Study

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup

- MATLAB Simulink model for a Multi-Stage Flash desalination plant validated against the Khubar II plant in Saudi Arabia
- NI USB 6002, a DAQ device connects Simulink model to WAGO PFC100 PLC
- ICSPatch server connects to the PLC

Case Study

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup

- MATLAB Simulink model for a Multi-Stage Flash desalination plant validated against the Khubar II plant in Saudi Arabia
- NI USB 6002, a DAQ device connects Simulink model to WAGO PFC100 PLC
- ICSPatch server connects to the PLC

Fig. 2: Distillate product flow rate before and after patching.

Case Study

Fig. 1: hardware-in-the-Loop setup of MSF desalination plant.

• Experimental Setup

- MATLAB Simulink model for a Multi-Stage Flash desalination plant validated against the Khubar II plant in Saudi Arabia
- NI USB 6002, a DAQ device connects Simulink model to WAGO PFC100 PLC
- ICSPatch server connects to the PLC

Fig. 2: Distillate product flow rate before and after patching.

nyuad.nyu.edu/momalab

Thank you. Questions?

@starlordphr @c_smokeson @realMoMAlab

https://wp.nyu.edu/momalab/

