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How to detect SSH impostors?

Recognize user behavior!



The quick brown fox 

Keystroke Authentication
The quick brown fox

The quick brown fox The quick brown fox 
Δt Δt

Existing techniques use keys, keypress and inter-keypress durations.

Would require using keyloggers
deployment hurdle

privacy risk
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> ls

Keystrokes in SSH

Each keystroke is its own 
packet and is echoed by the 
server.

• Easy to identify keystrokes
• Can recover timing

Is it enough for authentication?
ls

ls
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Contributions
Keystroke timings are enough for scalable and accurate authentication!

We leverage real network data with over 600,000 unique SSH sessions over 5 years

Using deep learning, we authenticate users:

In real network 
environments with 
congestion.

With under four 
minutes of training 
data per user.

Among hundreds of 
unique users.

In as little as 10 
seconds.
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Terminate Connection

Call user

Require additional 
factor
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Traffic Capture
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Data Processing

Network Detection of Interactive SSH Imposters Using Deep Learning

Network Tap Centralized System Logs

5 years of border traffic.
600,000 interactive SSH session
4,000 users, 2,750 servers

+

Process
Training: 3 months of data Testing: 1 month of data

Retrain once a month
Select users with 
enough traffic

Use negative 
sampling for 
simulating impostors
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Results

> 5,120 keystrokes
19 min of typing

183 Users

17 FPs/day

2% FNR

> 1,024 keystrokes
4 min of typing

444 Users

>15,360 keystrokes
1 hour of typing

66 Users

Training Threshold

Evaluation Results

Training Threshold

Evaluation Results

8 FPs/day

1% FNR

29 FPs/day

6% FNR
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Discussion

Scalable and non-intrusive impostor detection
Accurate for months & low FNR for years after training
Robust to congestion and multi-device users

Operational impact of false positives 
User coverage
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We leverage keystroke dynamics to authenticate users over interactive SSH channels

We identify 98% of imposters, incurring a manageable load of false positives

We evaluated on 5 years of real-world data with hundreds of users

Link to code

Thank you for your attention!
If you have any questions, feel free to reach out at piet@berkeley.edu


