Network Detection of Interactive SSH Imposters Using Deep Learning

Julien Piet
UC Berkeley & Corelight

Aashish Sharma
Lawrence Berkeley National Laboratory

Vern Paxson
Corelight & UC Berkeley

David Wagner
UC Berkeley
Network Detection of Interactive SSH Imposters Using Deep Learning

Execute any code with user privileges

MFA devices can still be stolen
How to detect SSH impostors?

Recognize user behavior!
Keystroke Authentication

Existing techniques use keys, keypress and inter-keypress durations.

Would require using keyloggers

- **deployment hurdle**
- **privacy risk**
Keystrokes in SSH

Each keystroke is its own packet and is echoed by the server.

- Easy to identify keystrokes
- Can recover timing

Is it enough for authentication?
Contributions

Keystroke timings are enough for **scalable** and **accurate** authentication!

We leverage real network data with over **600,000** unique SSH sessions over **5 years**

Using deep learning, we authenticate users:

- **In as little as 10 seconds.**
- **Among hundreds of unique users.**
- **With under four minutes of training data per user.**
- **In real network environments with congestion.**
System Design

Possible Actions
- Terminate Connection
- Call user
- Require additional factor
- Log anomaly

Traffic Capture

UID | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9 | ...

Match? | Yes | No

Transformer-based model

Network Detection of Interactive SSH Imposters Using Deep Learning
Partition Layer

Not Differentiable

Inter-Arrival Time

2ms

Bin A

0.77

Bin B

≈0

Bin C

≈0
Partition Layer

- Bin A
- Bin B
- Bin C

Inter-Arrival Time

- 2ms

Differentiable

- Bin A: 0.77
- Bin B: ≈0
- Bin C: ≈0
Data Processing

- Network Tap
- Centralized System Logs

5 years of border traffic.
600,000 interactive SSH session
4,000 users, 2,750 servers

Process

Training: 3 months of data
Testing: 1 month of data

Select users with enough traffic
Use negative sampling for simulating impostors
Retrain once a month
<table>
<thead>
<tr>
<th>Training Threshold</th>
<th>Evaluation Results</th>
</tr>
</thead>
</table>
| $> 15,360$ keystrokes
1 hour of typing | 8 FPs/day
1% FNR |
| 66 Users | |
| $> 5,120$ keystrokes
19 min of typing | 17 FPs/day
2% FNR |
| 183 Users | |
| $> 1,024$ keystrokes
4 min of typing | 29 FPs/day
6% FNR |
| 444 Users | |
Discussion

Scalable and non-intrusive impostor detection

Accurate for **months** & low FNR for **years** after training

Robust to congestion and multi-device users

Operational impact of **false positives**

User **coverage**
We leverage keystroke dynamics to authenticate users over interactive SSH channels.

We identify 98% of imposters, incurring a manageable load of false positives.

We evaluated on 5 years of real-world data with hundreds of users.

Thank you for your attention!
If you have any questions, feel free to reach out at piet@berkeley.edu

Link to code