Network Detection of Interactive SSH Imposters Using Deep Learning

Julien Piet

Aashish Sharma

Vern Paxson

David Wagner

UC Berkeley & Corelight

Lawrence Berkeley National Laboratory Corelight & UC Berkeley

UC Berkeley

How to detect SSH impostors?

Recognize user behavior!

MFA MFA devices can still be stolen

Keystroke Authentication

Existing techniques use keys, keypress and inter-keypress durations.

Keystrokes in SSH

Each keystroke is its own packet and is echoed by the server.

- Easy to identify keystrokes
- Can recover timing

Is it enough for authentication?

Contributions

Keystroke timings are enough for **scalable** and **accurate** authentication!

We leverage real network data with over 600,000 unique SSH sessions over 5 years

Using deep learning, we authenticate users:

In as little as 10 seconds.

Among hundreds of unique users.

With under four minutes of training data per user. In real network environments with congestion.

С

а

t

р

а

S

S

W

d

Log anomaly

5/9

6/9

Data Processing

Results

	Training Threshold	
>15,360 keystrokes 1 hour of typing	> 5,120 keystrokes 19 min of typing	> 1,024 keystrokes <i>4 min of typing</i>
66 Users	183 Users	444 Users
	Evaluation Results	
8 FPs/day	17 FPs/day	29 FPs/day
1% FNR	2% FNR	6% FNR

Discussion

Scalable and non-intrusive impostor detectionAccurate for months & low FNR for years after trainingRobust to congestion and multi-device users

Operational impact of **false positives** User **coverage**

We leverage keystroke dynamics to authenticate users over interactive SSH channels

We identify 98% of imposters, incurring a manageable load of false positives

We evaluated on 5 years of real-world data with hundreds of users

Link to code

Thank you for your attention!

If you have any questions, feel free to reach out at **piet@berkeley.edu**