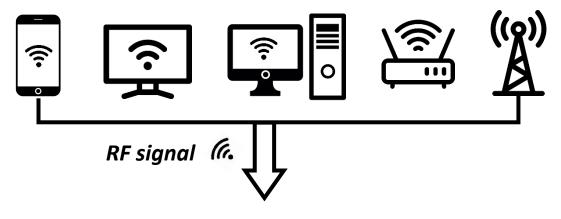


# Eavesdropping Mobile App Activity via Radio-Frequency Energy Harvesting

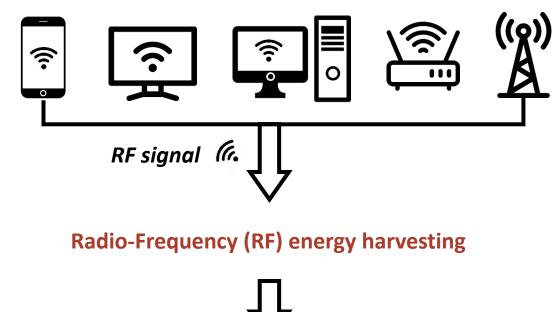
Tao Ni<sup>\*</sup>, Guohao Lan<sup>+</sup>, Jia Wang<sup>§</sup>, Qingchuan Zhao<sup>\*</sup>, Weitao Xu<sup>\*</sup>

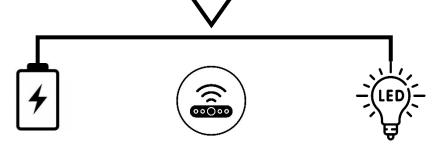
\*City University of Hong Kong \*Delft University of Technology §Shenzhen University





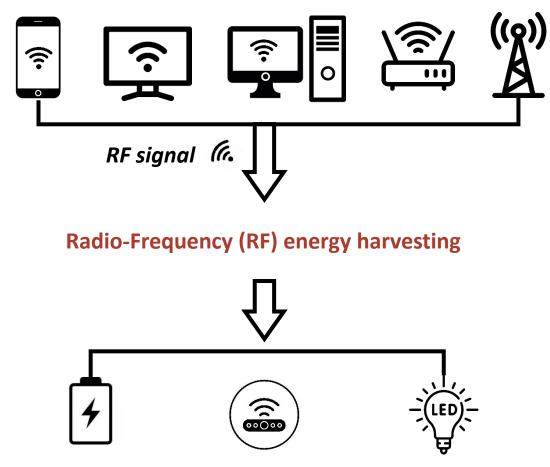




Mobile devices & stations

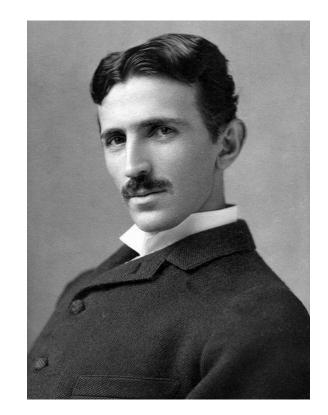



Mobile devices & stations



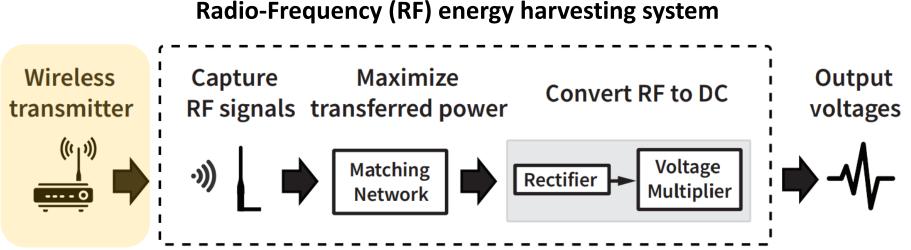

Mobile devices & stations



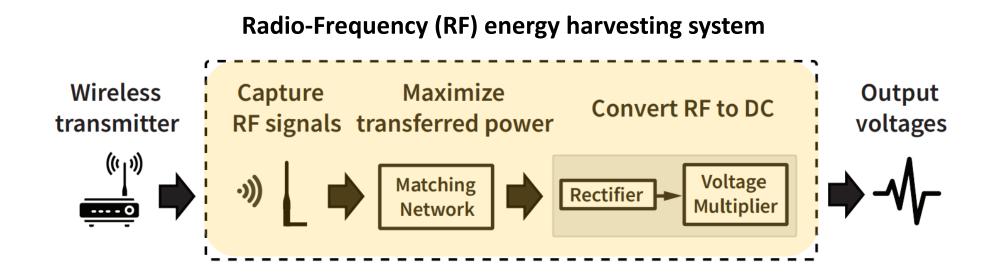



**Charging battery & Powering sensors** 

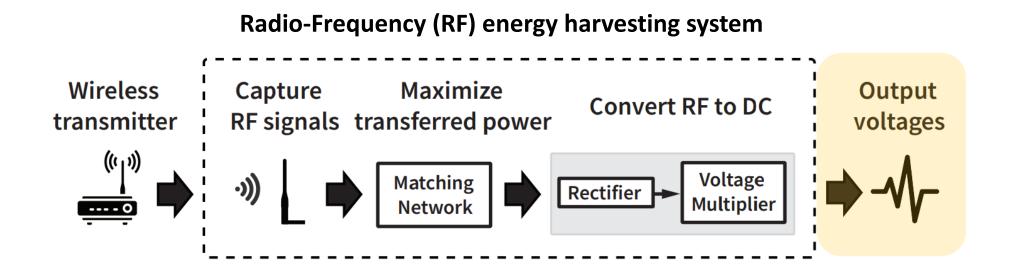
Mobile devices & stations




**Charging battery & Powering sensors** 



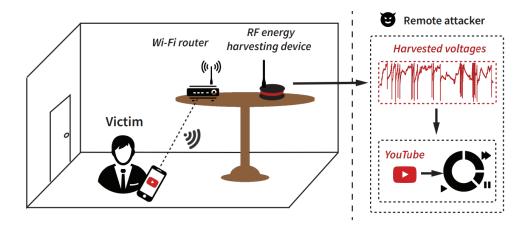

Nikola Tesla (1856 - 1943)


"power every device through the air"



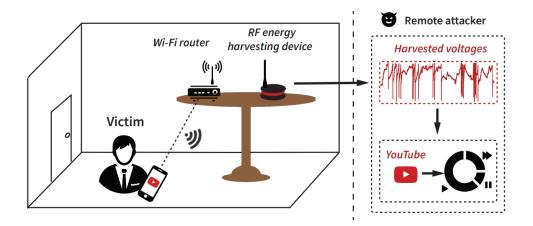
#### Radio-Frequency (RF) energy harvesting system



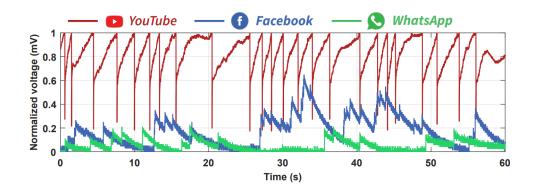

#### 3/19

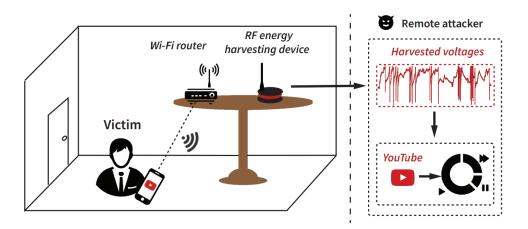


#### 3/19


# A Motivating Example

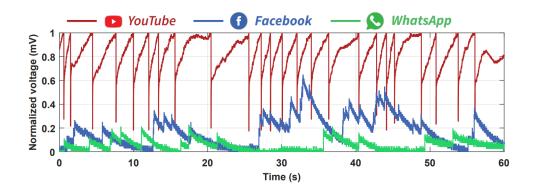
#### Attack scenario



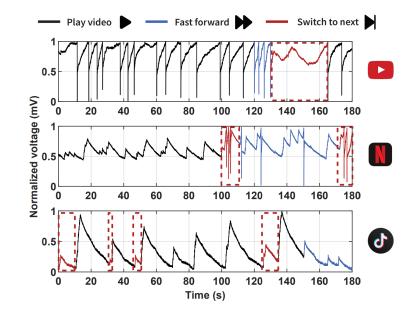


# A Motivating Example

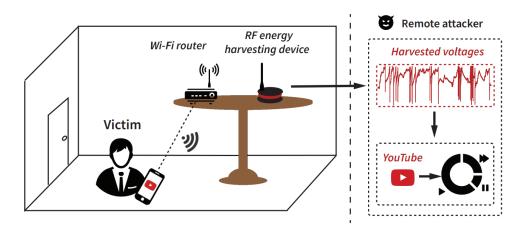
#### Attack scenario




#### Harvested voltage signal of three apps

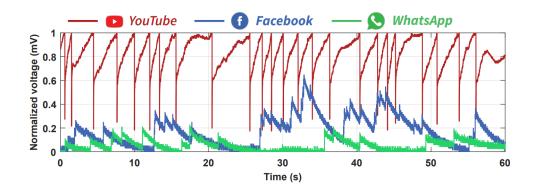




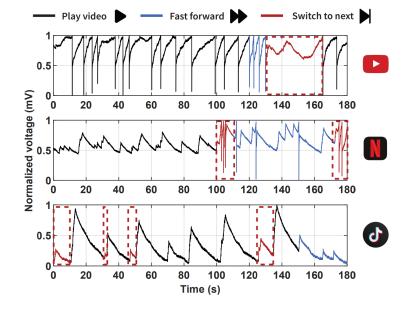


#### Attack scenario

#### Harvested voltage signal of three apps

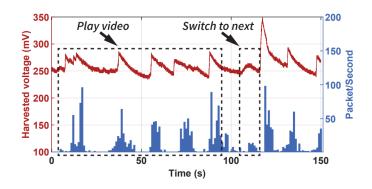


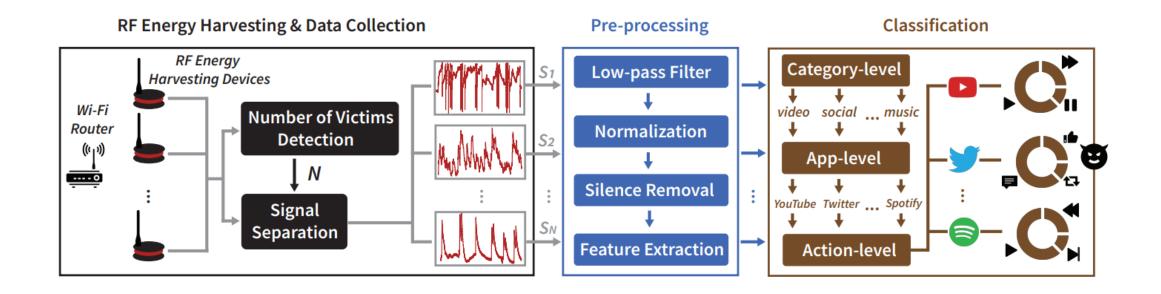

#### Harvested voltage signal of apps & activities






#### Attack scenario


#### Harvested voltage signal of three apps




#### Harvested voltage signal of apps & activities



#### RF energy vs. Packets per second





# **Comparison with Prior Works**

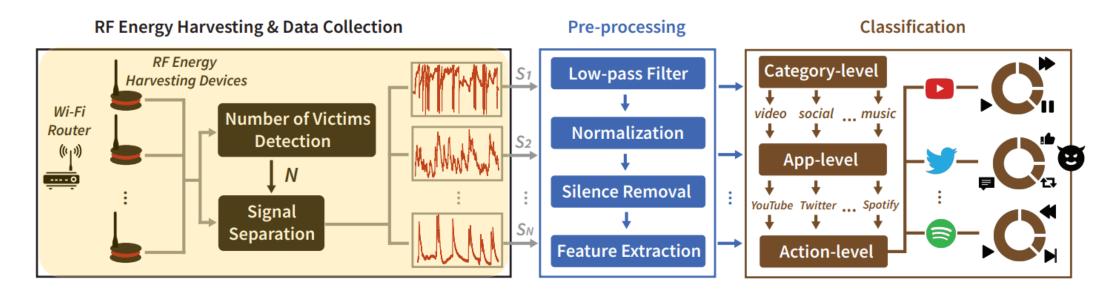
| Works                   | Side Channel    | w/o IP/Destination | Encrypted Network | In-app Activity | Number of Features | Multi-victim Attack |
|-------------------------|-----------------|--------------------|-------------------|-----------------|--------------------|---------------------|
| DECANTeR [1]            | Network Traffic | ×                  | ×                 | ×               | 6                  | ×                   |
| AppScanner [2]          | Network Traffic | ×                  | $\checkmark$      | ×               | 54                 | ×                   |
| NetScope [3]            | Network Traffic | ×                  | $\checkmark$      | $\checkmark$    | N/A                | ×                   |
| MIMETIC [4]             | Network Traffic | ×                  | $\checkmark$      | ×               | N/A                | ×                   |
| Liu et al. [5]          | Network Traffic | ×                  | $\checkmark$      | $\checkmark$    | 30                 | ×                   |
| ActiveTracker [6]       | Network Traffic | $\checkmark$       | $\checkmark$      | $\checkmark$    | N/A                | ×                   |
| FlowPrint [7]           | Network Traffic | ×                  | $\checkmark$      | $\checkmark$    | 110                | ×                   |
| FOAP [ <mark>8</mark> ] | Network Traffic | $\checkmark$       | $\checkmark$      | $\checkmark$    | 123                | $\checkmark$        |
| AppListener (Ours)      | RF Energy       | $\checkmark$       | $\checkmark$      | $\checkmark$    | 31                 | $\checkmark$        |

[1] Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H Everts, Pieter Hartel, Rick Hofstede, Willem Jonker, and Andreas Peter. Decanter: Detection of anomalous outbound http traffic by passive application fingerprinting. *In Proceedings of ACSAC*, 2017.

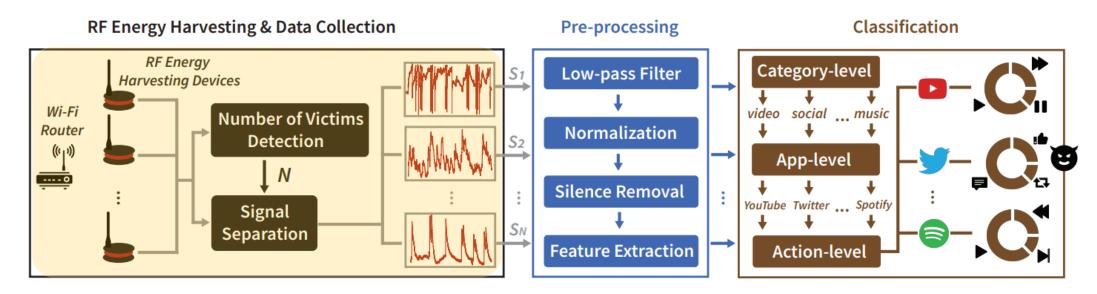
[2] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Appscanner: Automatic fingerprinting of smartphone apps from encrypted network traffic. In Proceedings of the IEEE EuroS&P, 2016.

[3] Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson, Yonghwi Kwon, Qi Zhang, Xiangyu Zhang, Dongyan Xu, and John Qian. Eavesdropping on fine-grained user activities within smartphone apps over encrypted network traffic. In Proceedings of the USENIX Workshop on Offensive Technologies (WOOT), 2016.

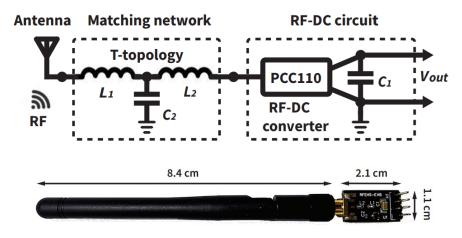
[4] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapè. Mimetic: Mobile encrypted traffic classification using multimodal deep learning. *Computer Networks*, 165:106944, 2019.


[5] Junming Liu, Yanjie Fu, Jingci Ming, Yong Ren, Leilei Sun, and Hui Xiong. Effective and real-time in-app activity analysis in encrypted internet traffic streams. In Proceedings of the ACM KDD, 2017.

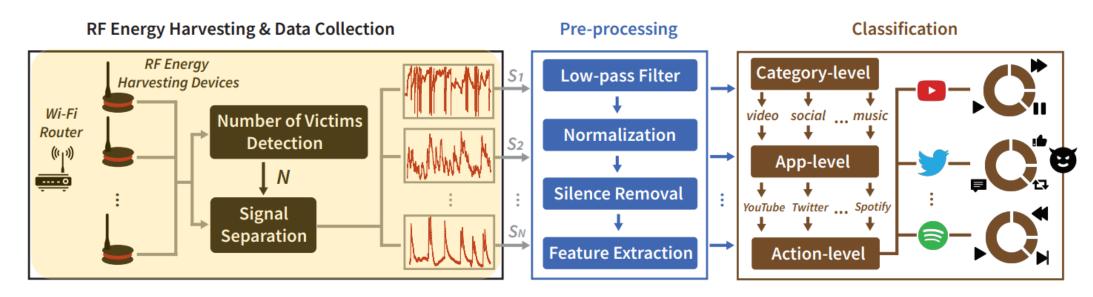
[6] Ding Li, Wenzhong Li, Xiaoliang Wang, Cam-Tu Nguyen, and Sanglu Lu. Activetracker: Uncovering the trajectory of app activities over encrypted internet traffic streams. In Proceedings of the IEEE SECON, 2019.


[7] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J Dubois, Martina Lindorfer, David Choffnes, Maarten van Steen, and Andreas Peter. Flowprint: Semisupervised mobile-app fingerprinting on encrypted network traffic. In Proceedings of NDSS, 2020.

[8] Jianfeng Li, Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Xian Zhan, and Xiaobo Ma. Foap: Fine-grained open-world android app fingerprinting. In Proceedings of USENIX Security Symposium, 2022.


# **RF energy harvester & Portable attacking device**




# **RF energy harvester & Portable attacking device**



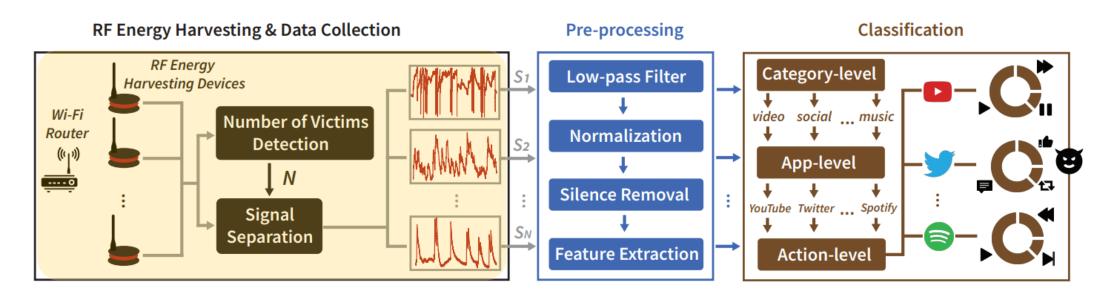
#### **RF energy harvester**



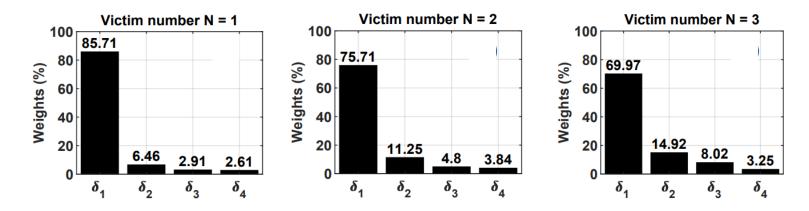

# **RF energy harvester & Portable attacking device**



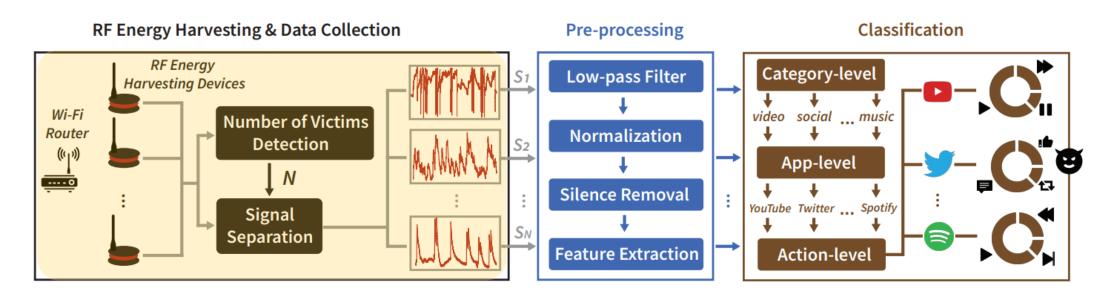
#### **RF energy harvester**



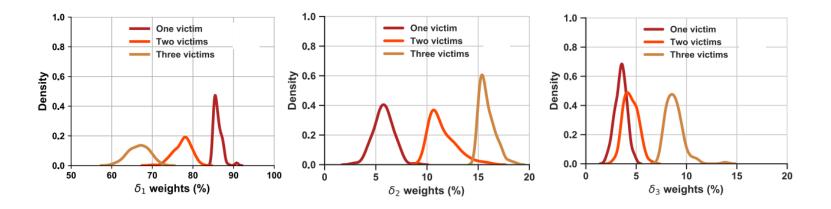

#### The "Burger Model"



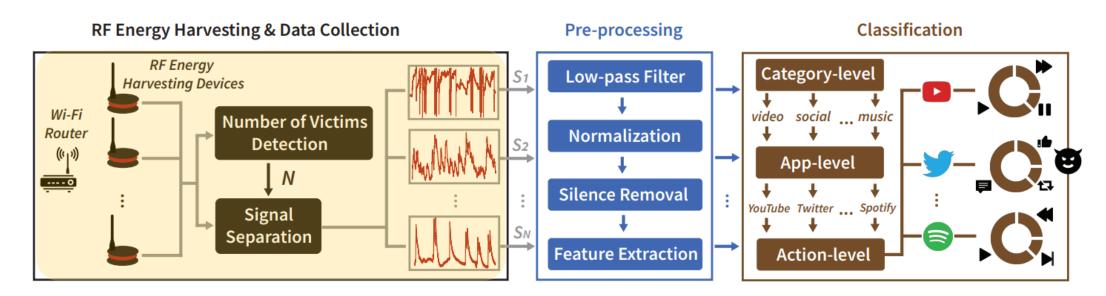




# **Number of Victims Detection**




#### Decomposed singular values when the number of victims = 1, 2, and 3




# **Number of Victims Detection**



Density distribution of singular values  $\delta_1$ ,  $\delta_2$  and  $\delta_3$  (# of victims = 1, 2, and 3)

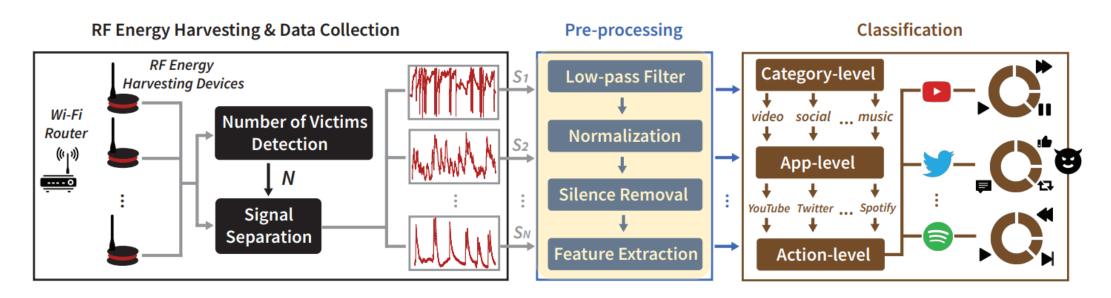


# **Signal Separation**

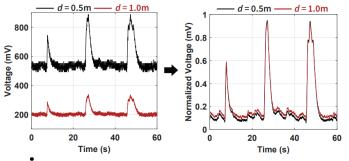


#### Algorithm 1: Signal Separation Algorithm Input: N: Number of desired components (victims).

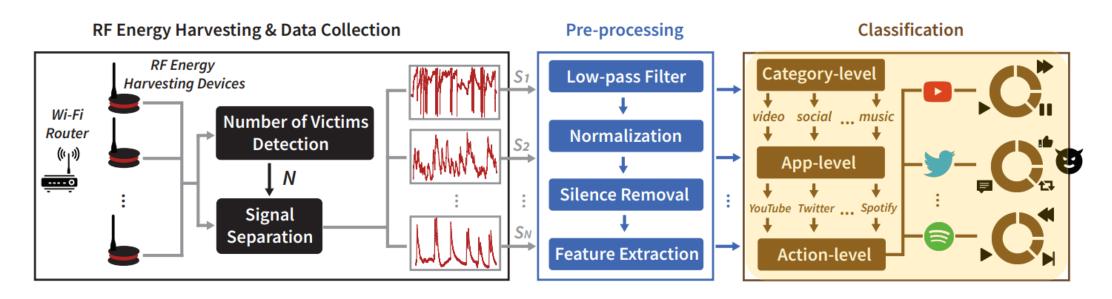
N devices.




1 Initialize an empty array  $A^{-1}$ 2 for  $i \leftarrow 1$  to N do Initialize a random N-length vector  $a_i$ 3 while *a<sub>i</sub>* is not converged **do** 4  $a_i^* = \frac{1}{L} Y g(a_i^T Y)^T - \frac{1}{L} g'(a_i^T Y) \mathbf{1}_L a_i$  //  $\mathbf{1}_L$  is a 5 L-dimension column vector of 1's  $a_i^* = a_i - \sum_{j=1}^{i-1} (a_i^T a_j) a_j$ 6 7  $a_i = b_i$ end while 8  $A^{-1} = [a_1, a_2, ..., a_i]$ , if converged, add to  $A^{-1}$ 9 10 end for 11  $A^{-1} = [a_1, a_2, \dots, a_N]$ , obtain inverse mixing matrix. 12  $X = A^{-1}Y$ , calculate independent voltage signals.

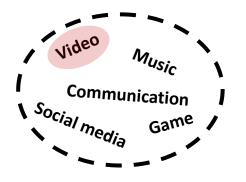

 $Y \in \mathbb{R}^{N \times L}$ : Observed *L*-length voltage signals from

**Output:**  $A^{-1} \in \mathbb{R}^{N \times N}$ : Inverse mixing matrix.  $X \in \mathbb{R}^{N \times L}$ :

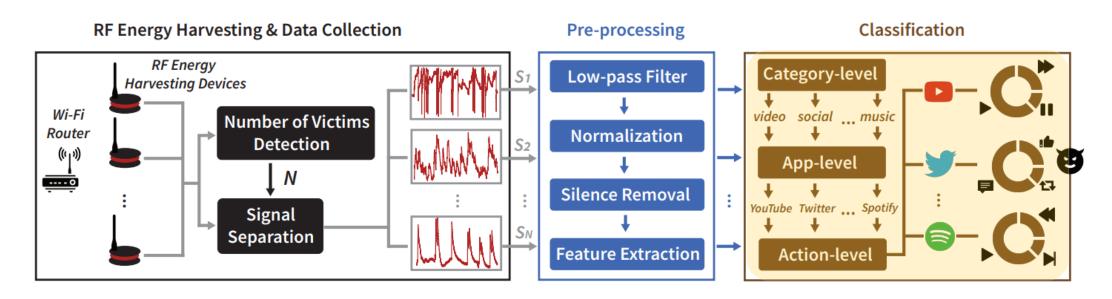

Independent voltage signals.



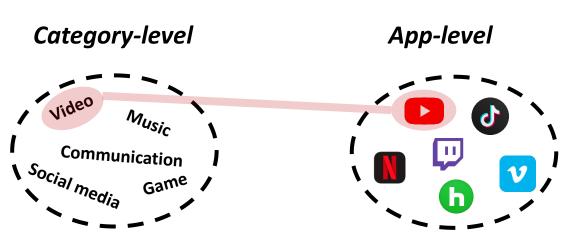
- Low-pass filter: *Savitzky-Golay* (S-G) filter to remove high-frequency noise
- Data normalization: reduce impact of distance
- Silence removal: deduct the DC offset



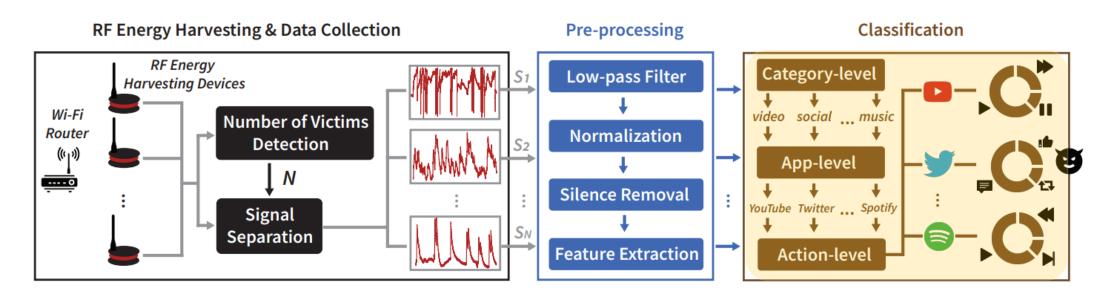

• Feature extraction: time-domain and frequency domain.



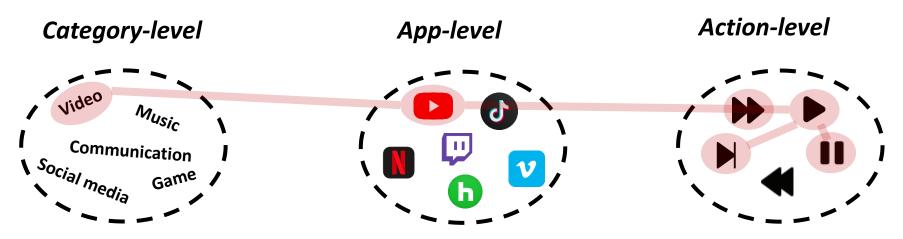

#### **Three-tier classification framework**


Category-level




# Classification




**Three-tier classification framework** 

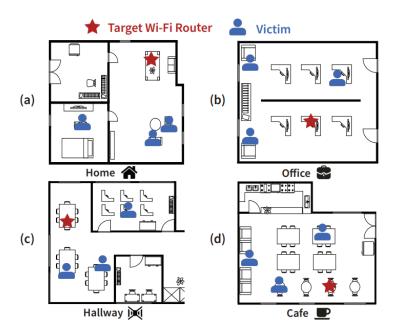


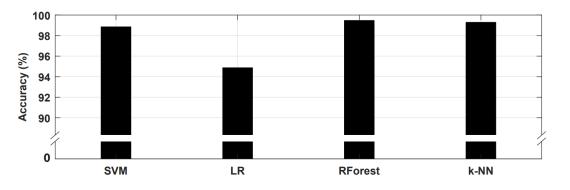
# Classification



**Three-tier classification framework** 

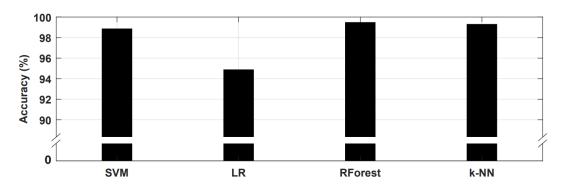



#### 5 categories, 40 mobile apps, 5 in-app activities


|          | Vide          | eo Apps        |            |                        | Activity           |          |  |  |
|----------|---------------|----------------|------------|------------------------|--------------------|----------|--|--|
| YouTube  | TikTok        | Netflix        | Vimeo      | ▶Play                  | Next               | Pause    |  |  |
| Hulu     | TED Talk      | Disney+        | Twitch     | ▶For                   | ward <b>«</b> Bacl | kward    |  |  |
|          | Mus           | ic Apps        |            |                        | Activity           |          |  |  |
| Spotify  | Apple Music   | YouTube Music  | SoundCloud | ▶Play                  | Next               | Pause    |  |  |
| Shazam   | Netease Cloud | Kugou Music    | QQ Music   | ▶For                   | ward <b>«</b> Bacl | kward    |  |  |
|          | Social N      | Iedia Apps     |            |                        | Activity           |          |  |  |
| Facebook | Twitter       | Instagram      | LinkedIn   | <b>t⊒</b> Repost       | CRefresh           | < Share  |  |  |
| Reddit   | Pinterest     | Quora          | Sina Weibo | ∎ <b>_</b> Thu         | mb-up 📮Co          | mment    |  |  |
|          | Commun        | ication Apps   |            |                        | Activity           |          |  |  |
| WhatsApp | Line          | Telegram       | Messenger  | <b>T</b> Text          | ⊠Images            | Videos   |  |  |
| WeChat   | Snapchat      | Hangouts       | Discord    | <b>∳</b> Send          | voice Vic          | leo call |  |  |
|          | Gan           | ie Apps        |            |                        | Activity           |          |  |  |
| PUBG     | Minecraft     | Arena of Valor | FIFA       | Loading                | ▶Entering          | Gaming   |  |  |
| Genshin  | Hearthstone   | LoL Wild Rift  | UNO        | ▲ Matching → Exit game |                    |          |  |  |

#### 5 categories, 40 mobile apps, 5 in-app activities

|          | Vide          | eo Apps        |            |                  | Activity           |          |
|----------|---------------|----------------|------------|------------------|--------------------|----------|
| YouTube  | TikTok        | Netflix        | Vimeo      | ▶Play            | Next               | Pause    |
| Hulu     | TED Talk      | Disney+        | Twitch     | ▶For             | ward <b>∢</b> Bacl | kward    |
|          | Mus           | ic Apps        |            |                  | Activity           |          |
| Spotify  | Apple Music   | YouTube Music  | SoundCloud | ▶Play            | Next               | Pause    |
| Shazam   | Netease Cloud | Kugou Music    | QQ Music   | ▶For             | ward <b>«</b> Bacl | kward    |
|          | Social N      |                | Activity   |                  |                    |          |
| Facebook | Twitter       | Instagram      | LinkedIn   | <b>t⊒</b> Repost | CRefresh           | < Share  |
| Reddit   | Pinterest     | Quora          | Sina Weibo | ∎ <b>_</b> Thu   | nb-up 📮Co          | mment    |
|          | Commun        | ication Apps   |            |                  | Activity           |          |
| WhatsApp | Line          | Telegram       | Messenger  | <b>T</b> Text    | Images             | Videos   |
| WeChat   | Snapchat      | Hangouts       | Discord    | <b>∮</b> Send    | voice Vic          | ieo call |
|          | Gan           | ne Apps        |            |                  | Activity           |          |
| PUBG     | Minecraft     | Arena of Valor | FIFA       | Loading          | ▶Entering          | Gaming   |
| Genshin  | Hearthstone   | LoL Wild Rift  | UNO        | <b>≜</b> Mat     | ching <b>∌</b> Exi | t game   |


#### 4 common scenarios





#### Identify app's category

Identify app's category



# — Video — Music — Social Media — Communication — Game — Overall

RForest

k-NN

LR

100

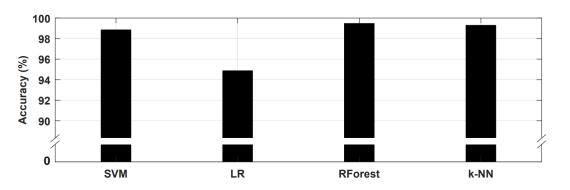
98

96

94

92

90


n

SVM

Accuracy (%)

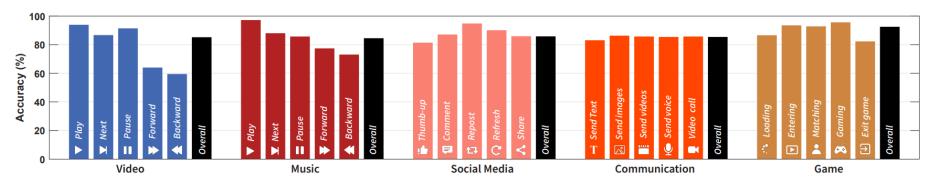
#### Identify app

Identify app's category

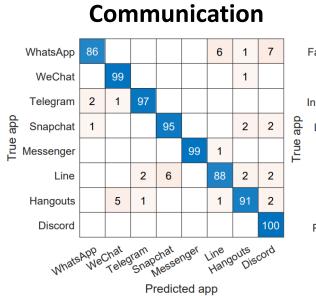


# Identify app

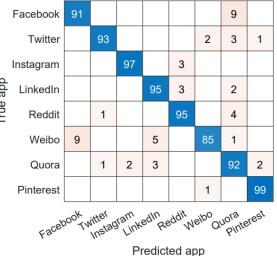
RForest


k-NN

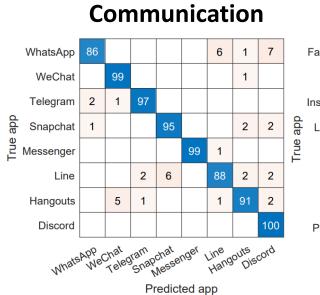
LR


#### Identify in-app activity

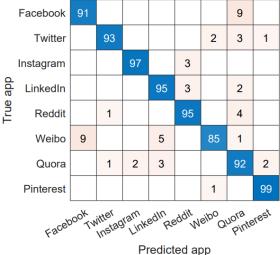
n


SVM

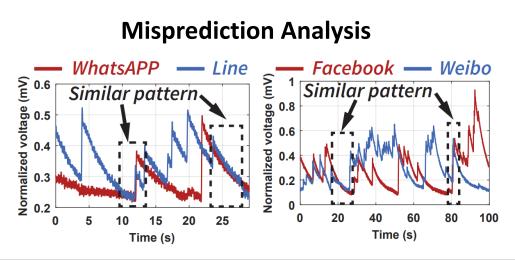



# **Further Analysis**

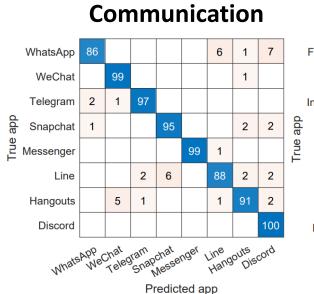



#### **Social Media**

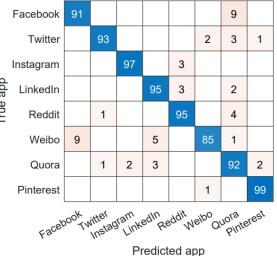



# **Further Analysis**




#### **Social Media**




#### **Misprediction Analysis**

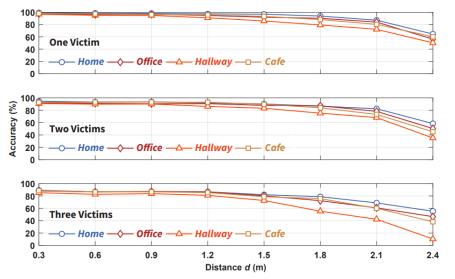



# **Further Analysis**

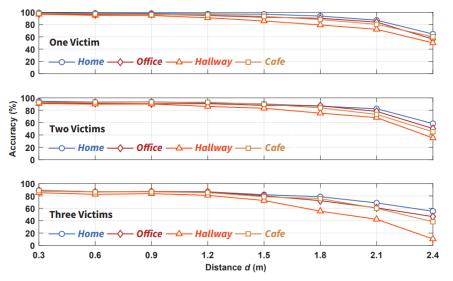


#### **Social Media**

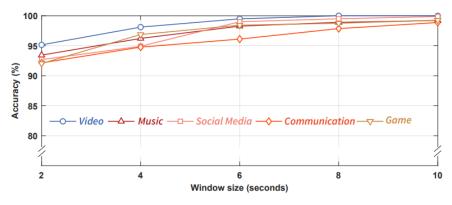



#### **Misprediction Analysis**

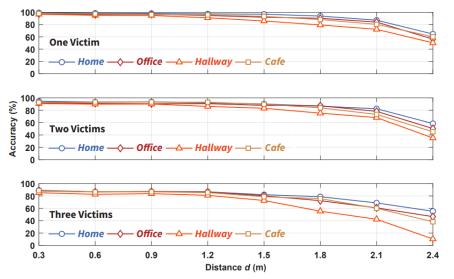



#### **Multi-victim Attacks**

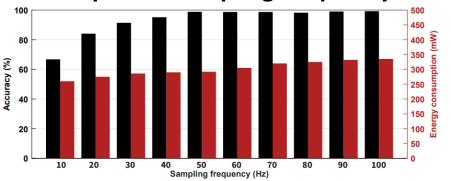
| _                           |                |                | A              | .pp            | Com      | bin | atior | ıs             |   |                | (%)          |   |   | A              | .pp | Com | bin            | atio | ıs |   |   | (%)          |
|-----------------------------|----------------|----------------|----------------|----------------|----------|-----|-------|----------------|---|----------------|--------------|---|---|----------------|-----|-----|----------------|------|----|---|---|--------------|
|                             | D              | 0              | 8              |                | ſ        | 0   | S     | ٩              |   | 1              | Acc. (%)     | D | 0 | 8              |     | ſ   | Ø              | S    |    |   |   | Acc. (%)     |
|                             | •              | •              | 0              | 0              | 0        | 0   | 0     | 0              | 0 | 0              | 99.6         | 0 | 0 | •              | 0   | 0   | 0              | •    | 0  | 0 | 0 | 96.1         |
|                             | ٠              | 0              | ۲              | 0              | 0        | 0   | 0     | 0              | 0 | 0              | 91.1         | 0 | 0 | ٠              | 0   | 0   | 0              | 0    | ٠  | 0 | 0 | 95.8         |
|                             | ٠              | 0              | 0              | ۲              | 0        | 0   | 0     | 0              | 0 | 0              | 89.2         | 0 | 0 | ۲              | 0   | 0   | 0              | 0    | 0  | ۲ | 0 | 87.7         |
|                             | ٠              | 0              | 0              | 0              | ۲        | 0   | 0     | 0              | 0 | 0              | 93.8         | 0 | 0 | ٠              | 0   | 0   | Ο              | 0    | Ο  | 0 | ٠ | 90.6         |
|                             | •              | 0              | 0              | 0              | 0        | •   | 0     | 0              | 0 | 0              | 98.9         | 0 | 0 | 0              | ٠   | •   | 0              | 0    | 0  | 0 | 0 | 87.9         |
|                             | •              | 0              | 0              | 0              | 0        | 0   | •     | 0              | 0 | 0              | 92.5         | 0 | 0 | 0              | •   | 0   | •              | 0    | 0  | 0 | 0 | 88.5         |
| . <u>e</u>                  | •              | 0              | 0              | 0              | 0        | 0   | 0     | •              | 0 | 0              | 93.1         | 0 | 0 | 0              | •   | 0   | 0              | •    | 0  | 0 | 0 | 87.7         |
| <b>Two Victims Scenario</b> | •              | 0              | 0              | 0              | 0        | 0   | 0     | 0              | • | 0              | 96.9         | 0 | 0 | 0              | •   | 0   | 0              | 0    | •  | 0 | 0 | 89.5         |
| Sce                         | •              | 0              | 0              | 0              | 0        | 0   | 0     | 0              | 0 | •              | 92.4         | 0 | 0 | 0              | -   | 0   | 0              | 0    | 0  | • | 0 | 93.2<br>92.6 |
| ms                          | 0              |                | •              | <u> </u>       | 0        | 0   | 0     | 0              | 0 | 0              | 92.2<br>95.2 | 0 | 0 | 0              | •   | 0   | 0              | 0    | 0  | 0 | • | 92.6         |
| /icti                       | $\overline{0}$ | -              | 0              | -              |          | 0   | 0     | 0              | 0 | 0              | 90.3         | 0 | 0 | 0              | 0   | -   | 0              |      | 0  | 0 | 0 | 96.1         |
| 0                           | 0              | -              | $\overline{0}$ | 0              | 0        | Ť   | 0     | $\overline{0}$ | 0 | $\overline{0}$ | 97.5         | 0 | 0 | $\overline{0}$ | 0   | ÷   | $\overline{0}$ | 0    | -  | 0 | 0 | 97.2         |
| Ê                           | 0              | -              | 0              | 0              | 0        | 0   | ŏ     | 0              | 0 | 0              | 90.0         | 0 | 0 | 0              | 0   | •   | 0              | 0    | 0  | • | 0 | 95.6         |
|                             | Õ              | Ť              | ō              | ō              | ō        | ŏ   | 0     | Ť              | ō | ŏ              | 87.7         | õ | ō | ŏ              | ō   | Ť   | $\overline{0}$ | ŏ    | ŏ  | 0 | ŏ | 91.1         |
|                             | 0              | •              | 0              | 0              | 0        | 0   | 0     | 0              | • | 0              | 92.0         | 0 | 0 | 0              | 0   | 0   | •              | •    | 0  | 0 | 0 | 92.6         |
|                             | 0              | •              | 0              | 0              | 0        | 0   | 0     | 0              | 0 | •              | 89.0         | 0 | 0 | 0              | 0   | 0   | •              | 0    | •  | 0 | 0 | 91.9         |
|                             | 0              | 0              | ۲              | ٠              | 0        | 0   | 0     | 0              | 0 | 0              | 96.8         | 0 | 0 | 0              | 0   | 0   | ٠              | 0    | 0  | ٠ | 0 | 95.1         |
|                             | 0              | 0              | ۲              | 0              | ۲        | 0   | 0     | 0              | 0 | 0              | 95.6         | 0 | 0 | 0              | 0   | 0   | ۲              | 0    | 0  | 0 | • | 95.8         |
| _                           | 0              | 0              | ۲              | 0              | 0        | ۲   | 0     | 0              | 0 | 0              | 98.8         | 0 | 0 | 0              | 0   | 0   | 0              | ۲    | ۲  | 0 | 0 | 96.5         |
| _                           | ٠              | ۲              | ۲              | 0              | 0        | 0   | 0     | 0              | 0 | 0              | 89.3         | ۲ | 0 | 0              | ۲   | 0   | 0              | 0    | 0  | 0 |   | 87.4         |
|                             | ٠              | ۲              | 0              | ۲              | 0        | 0   | 0     | 0              | 0 | 0              | 87.4         | ۲ | 0 | 0              | 0   | ۲   | ۲              | 0    | 0  | 0 | 0 | 87.8         |
|                             | •              | ۲              | 0              | 0              | ۲        | 0   | 0     | 0              | 0 | 0              | 84.8         | ٠ | 0 | 0              | 0   | ۲   | 0              | ۲    | 0  | 0 | 0 | 85.6         |
|                             | •              | ٠              | 0              | 0              | 0        | •   | 0     | 0              | 0 | 0              | 86.5         | ٠ | 0 | 0              | 0   | ٠   | 0              | 0    | ٠  | 0 | 0 | 86.1         |
|                             | •              | •              | 0              | 0              | 0        | 0   | •     | 0              | 0 | 0              | 86.7         | • | 0 | 0              | 0   | •   | 0              | 0    | 0  | • | 0 | 84.6         |
|                             | •              | •              | 0              | 0              | 0        | 0   | 0     | •              | 0 | 0              | 87.9         | • | 0 | 0              | 0   | •   | 0              | 0    | 0  | 0 | • | 85.4         |
| -ii                         | •              | •              | 0              | 0              | 0        | 0   | 0     | 0              | • | 0              | 87.7         | • | 0 | 0              | 0   | 0   | -              | •    | 0  | 0 | 0 | 86.9         |
| Scenaric                    | -              | 0              | 0              | 0              | 0        | 0   | 0     | 0              | 0 | <u>•</u>       | 84.7<br>86.4 | • | 0 | 0              | 0   | 0   | •              | 0    | 0  | 0 | 0 | 87.4         |
| š                           |                | 0              | -              | 0              | <u> </u> | 0   | 0     | 0              | 0 | 0              | 90.2         | - | 0 | 0              | 0   | 0   | -              | 0    | 0  | 0 | - | 85.4         |
| <b>Three Victims</b>        |                | $\overline{0}$ | -              | $\overline{0}$ | 0        |     | 0     | 0              | 0 | 0              | 88.0         | - | 0 | 0              | 0   | 0   | -              | 0    | 0  | 0 | - | 89.0         |
| Vic                         | •              | 0              | •              | 0              | 0        | 0   | ŏ     | 0              | 0 | 0              | 85.3         | • | 0 | 0              | 0   | 0   | 0              | •    | •  | 0 | 0 | 87.2         |
| ree                         | •              | 0              | •              | 0              | 0        | 0   | 0     | ŏ              | 0 | 0              | 85.6         | • | 0 | 0              | 0   | 0   | 0              | •    | 0  | Ť | 0 | 86.9         |
| f                           | •              | 0              | •              | 0              | 0        | 0   | 0     | 0              | • | 0              | 87.2         | • | 0 | 0              | 0   | 0   | 0              | •    | 0  | 0 | • | 84.7         |
|                             | •              | Õ              | •              | Õ              | Õ        | Õ   | Õ     | Õ              | 0 | •              | 84.5         | • | Õ | Õ              | Õ   | Õ   | Õ              | 0    | •  | • | 0 | 84.2         |
|                             | •              | 0              | 0              | •              | •        | 0   | 0     | 0              | 0 | 0              | 86.5         | • | 0 | 0              | 0   | 0   | 0              | 0    | •  | 0 | • | 83.8         |
|                             | •              | 0              | 0              | •              | 0        | •   | 0     | 0              | 0 | 0              | 88.0         | 0 | • | •              | ٠   | 0   | 0              | 0    | 0  | 0 | 0 | 86.5         |
|                             | ٠              | 0              | 0              | ٠              | 0        | 0   | ٠     | 0              | 0 | 0              | 87.5         | 0 | ٠ | ٠              | 0   | ٠   | 0              | 0    | 0  | 0 | 0 | 83.7         |
|                             | ٠              | 0              | 0              | ۲              | 0        | 0   | 0     | ٠              | 0 | 0              | 90.0         | 0 | ۲ | ٠              | 0   | 0   | ۲              | 0    | 0  | 0 | 0 | 85.6         |
| _                           | •              | 0              | 0              | ٠              | 0        | 0   | 0     | 0              | ٠ | 0              | 86.9         | 0 | • | •              | 0   | 0   | 0              | ٠    | 0  | 0 | 0 | 86.0         |


#### Impact of distance

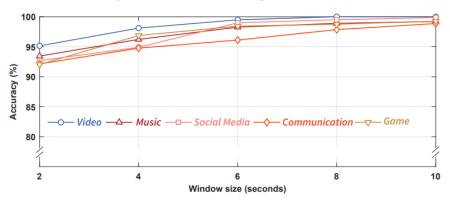



#### Impact of distance

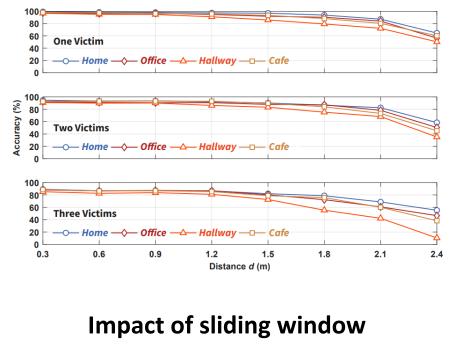


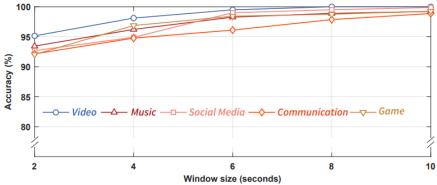

#### Impact of sliding window



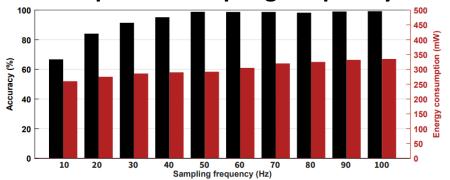

Impact of distance



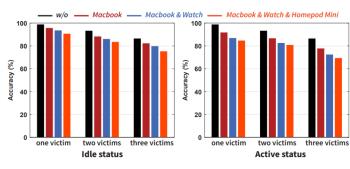

#### Impact of sampling frequency



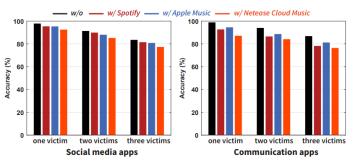

#### Impact of sliding window



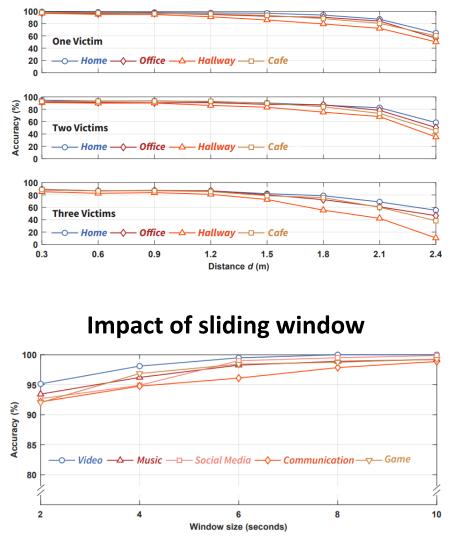

#### Impact of distance



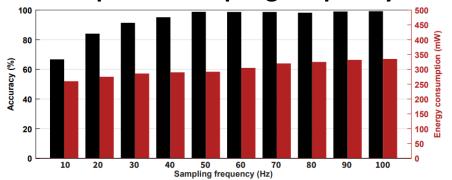




Impact of sampling frequency

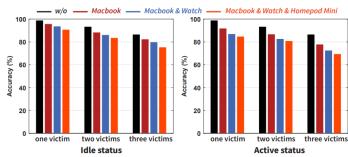



#### Impact of non-target devices

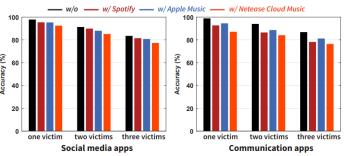



#### Impact of background apps

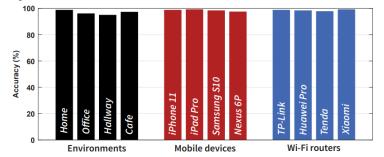



#### Impact of distance




Impact of sampling frequency




#### Impact of non-target devices



#### Impact of background apps

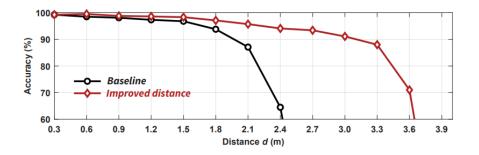


#### Impact of environment and hardware



# Generalization, Improvement, and Through-Wall Attacks

#### **Cross environment, cross mobile devices, and cross Wi-Fi routers**

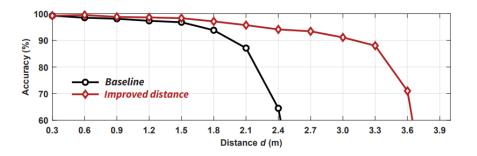

| Асси | racy (%) |      | Test environments |         |      |           | Test mobile devices |          |         |          |         | <b>Test Wi-Fi routers</b> |        |       |        |
|------|----------|------|-------------------|---------|------|-----------|---------------------|----------|---------|----------|---------|---------------------------|--------|-------|--------|
|      |          | Home | Office            | Hallway | Cafe | •         | iPhone 11           | iPad Pro | Samsung | Nexus 6P |         | TP-Link                   | Huawei | Tenda | Xiaomi |
| 50   | Home     | 98.8 | 96.5              | 94.3    | 98.2 | iPhone 11 | 98.8                | 96.5     | 90.2    | 88.0     | TP-Link | 98.8                      | 95.4   | 97.7  | 98.0   |
| del  | Office   | 95.3 | 96.1              | 92.3    | 95.8 | iPad Pro  | 94.3                | 99.2     | 91.6    | 90.2     | Huawei  | 95.8                      | 98.4   | 95.4  | 96.2   |
| no.  | Hallway  | 94.3 | 91.5              | 95.0    | 92.1 | Samsung   | 89.3                | 88.6     | 98.4    | 93.1     | Tenda   | 94.3                      | 96.5   | 97.8  | 95.5   |
| E -  | Cafe     | 96.6 | 96.1              | 95.0    | 97.3 | Nexus 6P  | 87.7                | 88.0     | 92.9    | 97.5     | Xiaomi  | 94.5                      | 95.2   | 97.3  | 99.2   |

# Generalization, Improvement, and Through-Wall Attacks

| Асси       | racy (%) | Test environments |        |         |      |           | Test mobile devices |          |         |          |         | Test Wi-Fi routers |        |       |        |
|------------|----------|-------------------|--------|---------|------|-----------|---------------------|----------|---------|----------|---------|--------------------|--------|-------|--------|
|            |          | Home              | Office | Hallway | Cafe |           | iPhone 11           | iPad Pro | Samsung | Nexus 6P |         | TP-Link            | Huawei | Tenda | Xiaomi |
| 50         | Home     | 98.8              | 96.5   | 94.3    | 98.2 | iPhone 11 | 98.8                | 96.5     | 90.2    | 88.0     | TP-Link | 98.8               | 95.4   | 97.7  | 98.0   |
| nin<br>del | Office   | 95.3              | 96.1   | 92.3    | 95.8 | iPad Pro  | 94.3                | 99.2     | 91.6    | 90.2     | Huawei  | 95.8               | 98.4   | 95.4  | 96.2   |
| no         | Hallway  | 94.3              | 91.5   | 95.0    | 92.1 | Samsung   | 89.3                | 88.6     | 98.4    | 93.1     | Tenda   | 94.3               | 96.5   | 97.8  | 95.5   |
| 6-         | Cafe     | 96.6              | 96.1   | 95.0    | 97.3 | Nexus 6P  | 87.7                | 88.0     | 92.9    | 97.5     | Xiaomi  | 94.5               | 95.2   | 97.3  | 99.2   |

#### **Cross environment, cross mobile devices, and cross Wi-Fi routers**

#### Improving attack distance with two RF-DC converters



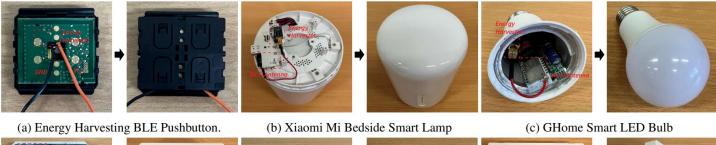

# Generalization, Improvement, and Through-Wall Attacks

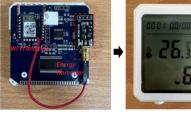
| Асси   | racy (%) | Test environments |        |         |      | Test mobile devices |           |          |         |          | Test Wi-Fi routers |         |        |       |        |
|--------|----------|-------------------|--------|---------|------|---------------------|-----------|----------|---------|----------|--------------------|---------|--------|-------|--------|
|        |          | Home              | Office | Hallway | Cafe | •                   | iPhone 11 | iPad Pro | Samsung | Nexus 6P |                    | TP-Link | Huawei | Tenda | Xiaomi |
| 50     | Home     | 98.8              | 96.5   | 94.3    | 98.2 | iPhone 11           | 98.8      | 96.5     | 90.2    | 88.0     | TP-Link            | 98.8    | 95.4   | 97.7  | 98.0   |
| del li | Office   | 95.3              | 96.1   | 92.3    | 95.8 | iPad Pro            | 94.3      | 99.2     | 91.6    | 90.2     | Huawei             | 95.8    | 98.4   | 95.4  | 96.2   |
| no lai | Hallway  | 94.3              | 91.5   | 95.0    | 92.1 | Samsung             | 89.3      | 88.6     | 98.4    | 93.1     | Tenda              | 94.3    | 96.5   | 97.8  | 95.5   |
| E -    | Cafe     | 96.6              | 96.1   | 95.0    | 97.3 | Nexus 6P            | 87.7      | 88.0     | 92.9    | 97.5     | Xiaomi             | 94.5    | 95.2   | 97.3  | 99.2   |

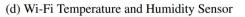
#### **Cross environment, cross mobile devices, and cross Wi-Fi routers**

#### Improving attack distance with two RF-DC converters




#### Harvested voltage & Accuracy vs. Blocking items


| Blocking item   | Thickness (cm) | Harvested<br>voltage (mV) | Acc. (%) |
|-----------------|----------------|---------------------------|----------|
| Non-blocking    | _              | 429                       | 98.4     |
| Partition board | 2.8            | 359                       | 97.7     |
| Wooden door     | 6.1            | 241                       | 96.8     |
| Thin wall       | 8.0            | 122                       | 93.1     |
| Thick wall      | 27.4           | 0                         | —        |


| Commodity Product                               | Energy    | Antenna | Gain    | BLE | Acc. (%) of ] | Multi-Victim | Scenarios | Max. Distance (m)        |  |
|-------------------------------------------------|-----------|---------|---------|-----|---------------|--------------|-----------|--------------------------|--|
|                                                 | Harvester |         |         |     | One           | Two          | Three     | ( <b>One Acc.</b> > 90%) |  |
| ZF Energy Harvesting BLE Push-button [46]       | •         |         | N/A     |     | 93.6          | 89.5         | 82.2      | $\sim 1.05$              |  |
| Xiaomi Mi Bedside Smart Lamp [47]               | 0         |         | N/A     |     | 90.9          | 83.0         | 77.1      | $\sim 0.60$              |  |
| GHome Smart LED Bulb [48]                       | 0         | •       | N/A     | 0   | 91.8          | 86.2         | 80.7      | $\sim 1.50$              |  |
| Tuya Wi-Fi Temperature and Humidity Sensor [49] | 0         | •       | 1.3 dBi |     | 86.9          | 83.1         | 78.1      | $\sim 0.45$              |  |
| Tuya Smart Plug (With Metering) [50]            | 0         |         | 1.0 dBi | 0   | 89.4          | 83.6         | 76.9      | $\sim 0.45$              |  |
| Zinguo Wi-Fi Smart Switch [51]                  | 0         |         | 3.0 dBi | 0   | 91.8          | 85.8         | 81.6      | $\sim 0.90$              |  |

#### **Result of attacking IoT devices**

#### Integrating AppListener into different commodity IoT devices

















• Traffic obfuscation: transmitting redundant packets to interfere harvested voltages.

• Dynamic power adaptation: bursting transmission in low-power mode while transmitting small packets in high-power mode.



# Thank you!

Speaker: Tao Ni

Personal website: tony520.github.io

City University of Hong Kong

