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• Presence of a package that can be confused with 
some other package.

• Has implications in the security of the ecosystem and 
applications

Example:
Confusing package: mllearnlib
Original package: learnlib and mllearn

Malicious Behavior: Downloads and executes 3rd party 
cryptominer through malicious dependency

Source: https://jfrog.com/blog/developers-under-
attack-leveraging-typosquatting-for-crypto-mining/

Package Confusion



Typosquatting and Confusion
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• People have intuitive notion of how package confusion occurs, which is usually limited to typos [1].
• Limited understanding on how package confusion beyond typos

Goal:
Does package confusion beyond typo or lexical confusion exist, and can we detect it 
algorithmically?

Impact of Package Confusion
• Intentional confusion: Add maliciousness to the package uploaded that adversely affects the developer 

or application users
• Unintentional confusion: May degrade quality of projects introducing potentially unmaintained, 

vulnerable code to projects [2, 3]

[1] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav Rastogi. Defending Against Package Typosquatting. In NSS, 2020
[2] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. What the fork?: Finding hidden code clones in npm. In IEEE/ACM ICSE, 2022.
[3] Markus Zimmermann, Cristian-Alexandru Staicu, and Michael Pradel. Small World with High Risks: A Study of Security Threats in the npm Ecosystem. 
In USENIX Security, 2019.



CONTRIBUTION

1. Package confusion occurs beyond typo squatting – we 
consider 13 categories of confusability

2. Find potentially confusing packages in the wild and 
evaluate effectiveness of detection rules

3. Evaluate the security impact of package confusion



3. Evaluation 2. Detector development

1. Categorization

5

Identify and collect 
past attacks

Categorize 
confusion type

Prototype category 
detectors

Domain specific 
tokenization

ml learn lib

Apply detectors
to npm

Evaluate results

Research Outline



6

Results of Collecting Historical Data

Collecting Attacks Results

1232 7
Distinct attacks / confusing 
packages uploaded

Campaigns with 10 or 
more packages uploaded

723 462 48
Distribution Across Ecosystems



Thematic Analysis

Confusability models and categorization 
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Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
 Qualitative Research in Psychology, 3(2):77–101, 2006.

After Round 4

1-step D/L distance

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Grammatical substitution

Homographic replacement

Prefix/Suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Homophonic similarity

α = 0.96 (0.94, 0.99)



Processing package names: Delimiter-less Tokenization
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• Number of detectors need transformation of package name into sequence of tokens

• Package names consist of technical jargons, which do not have valid English words but assume valid 
connotation in technical language. (json, db, py, js etc)

• Built a delimiter-less tokenization algorithm using the npm package names.

Example:

Confuser package: mllearnlib
Breaking down the package into tokens: [ml, learn, lib]

Establised package: mllearn
Breaking down the package into tokens: [ml, learn]

Detection rules: Prefix/Suffix Augmentation as there is 
an addition of “lib” in the confuser package.
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Detection Rule Optimization

Created Initial prototype and 
optimized it on each round

Goal: Maximize the chances of 
identifying actually confusable 
packages, at the cost of missing 
some attacks.

Accounted for significantly 
imbalanced samples.

Table: Performance of detection rules

Rule Precision Recall F1

P/S augmentation 0.95 0.70 0.81

Sequence reordering 0.88 0.88 0.88

Delimiter modification 1 0.97 0.98

Grammatical subst. 0.88 0.88 0.88

Scope confusion 1 0.90 0.95

Semantic subst. 1 0.4 0.57

Asemantic subst. 0.75 0.75 0.75

Homophonic sim. 0.07 0.75 0.13

Simplification 0.58 0.64 0.61

Alternate spelling 1 1 1

Homographic repl. 0.5 0.88 0.64

Performance of Detection Rules



EVALUATION
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RQ1: How many potential instances of package confusion exist in the npm 
ecosystem?
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Methodology
Apply the detection rules to npm
Focus on: (popular, unpopular) package pairs

Popularity threshold
15,000 weekly downloads

Popular package: Established Original Packages

Unpopular packages: Confuser Packages

Total:
1, 727, 553 × 24871
Reduced analysis space from all (1.7e6)2 npm package pairs



Results 

12

Results

- ~ 360,000 package pairs detected as confusing

- Analysis took 0.22ms/pair

- 2799 pairs matching multiple categories

- Homophonic similarity & Prefix/ suffix augmentation, 
Delimiter modification & Sequence reordering, and 
Delimiter modification & Grammatical substitution

Table: Matches in npm for each 
category

Rule #Instance

P/S augmentation 143864

Asemantic subst. 139160

Simplification 27743

Homophonic sim. 24735

Semantic subst. 9610

Delimiter modification 7183

Scope confusion 4247

Grammatical subst. 2461

Homographic repl. 2393

Sequence reord. 1734

Alternate spelling 21



RQ2: How confusing are the identified matches?
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Online survey of to perceive confusability of randomly selected package pairs.

On a scale of 1 to 6, how likely are you to misremember or mistype the package in 
column V with package column P?

Sampling: 50 questions from a pool of 100 package pairs from each category + 100 
control samples

Recruitment: Email recruiting and snowball sampling of student developers (Number of 
recruits: 64)

Goal: Determine which rules can return reliable matches.



Results
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Results

>10% with “highly 
confusing” criterion 

>70% with “potentially 
confusing” criterion 
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Results

< 25% with “potentially 
confusing” criterion 
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RQ3: What is the security impact of identified confusing packages?
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Goal:
Assess density of malicious packages amongst detected confusing packages

Problem:
No ground truth.

Solution:
Analysis of existing vulnerability database (lower bound)

Results:
Packages flagged by our rules are 3 times more likely to be malicious than control.

Details:
Sample: Unique packages = 210,741, Malicious packages found: 168 (0.079%)
Control: Unique packages = 150,000, Malicious packages found: 39 (0.026%)



Malicious Behavior in Confusing Packages
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• We categorized the malicious behaviors in the 
flagged packages as per [1] Duan et al.

• Added 3 new categories: Crypto Theft, 
Downloader, Confusion

• Could not be verify malicious behavior in some 
due to removal of packages from ecosystems

Table: Distribution of confusing packages 
according to malicious behavior 

Attack Category #pkgs

Stealing 70

Backdoor 9

Sabotage 2

Cryptojacking 2

Virus 1

Maladvertising 2

PoC 1

Cryptotheft 33

Downloader 1

Confusion 2

Unknown 45

[1] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan 
Saltaformaggio, and Wenke Lee. Towards measuring supply chain attacks on 
package managers for interpreted languages. In IS NDSS, 2021.



Conclusions

● Package confusion is a credible threat and our categorization 
helps to specify how the attacks may occur.

● Our categories provide a new dimension to package confusion 
beyond typosquatting

● Some detection rules may benefit from refinement, some may be 
usable as warning mechanism as is
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