Unique Identification of 50,000+ Virtual Reality Users from Head & Hand Motion Data

Vivek Nair · Wenbo Guo · Justus Mattern · Rui Wang · James F. O’Brien · Louis Rosenberg · Dawn Song

https://doi.org/10.48550/arXiv.2302.08927
Contributors

Vivek C. Nair
UC Berkeley

Wenbo Guo
UC Berkeley

Justus Mattern
RWTH Aachen

Rui Wang
UC Berkeley

James F. O’Brien
UC Berkeley

Louis Rosenberg
Unanimous AI

Dawn Song
UC Berkeley
Acknowledgments

* Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of their employer or the supporting entities.
People often believe that they can recognize friends by their walk. Unfortunately, this belief and the previous research on the topic (e.g., Wolfe, 1949) are confounded by familiarity cues, size and shape cues, or other mgmt cues of unfamiliarity with such probabilities of using a person as a given time or place. We demonstrate that seen is can recognize themselves and others in a dynamic display of their movements when these factors are controlled.

We were stratified by the work of Amberson (1977, 1977), particularly the data (Main & Amberson, 1977) of familiarity cues such as clothing and hairstyle. People are presented as groups of six to seven events moving across a room in an orderly fashion. Johnson’s technique general is to be used for the study of how ecological cues are processed.

A partial summary of results has been prepared by Shaw, McIntyre, and Mac (1974), several relevant observations are these: (1) face-to-face events, where a person is recognized by their walk, are more accurate and reliable than events that have occurred directly or only inferred. (2) events are reliable when events are events that have occurred directly or only inferred. (3) events are more accurate than events that have occurred directly or only inferred. (4) events are more accurate than other events that have occurred directly or only inferred. (5) events are more accurate than events that have occurred directly or only inferred. (6) events are more accurate than events that have occurred directly or only inferred. (7) events are more accurate than events that have occurred directly or only inferred. (8) events are more accurate than events that have occurred directly or only inferred. (9) events are more accurate than events that have occurred directly or only inferred. (10) events are more accurate than events that have occurred directly or only inferred. (11) events are more accurate than events that have occurred directly or only inferred.

Gibson (1973) has argued that the perception of any moving object can be thought of as the perception of familiarity invariant relations displayed over time. The study of gait or any other other event should consider the interaction of two component inanations of the underlying dynamic aspect of the event, and the transactional inanation, and the underlying unit of the structural inanation, or the structural inanation (Wither & Shaw, 1974; Shaw & McIntyre, 1974). In the present paper we observe whether a particular aspect of the structural inanation (the identity of the walker) is sufficiently processed through the transactional inanation (walking or recognition).

METHOD

Our study of gait used simultaneous microcomputer tapes recorded several subjects’ gait, distance between, and to the left or right of the subject and the observer. The mirror was a metal frame that was flexible, allowing some movements to be made while the observer was observing. Each had a natural path. They were very accurately the same length and width, and they used both the same length and width, of more walking back and forth. The same was true for the viewer as the subject. They showed one or more of the objects to the left or right of the path and their positions in the environment. They had one or more of the objects to the left or right of the path and their positions in the environment. They showed one or more of the objects to the left or right of the path and their positions in the environment. They showed one or more of the objects to the left or right of the path and their positions in the environment. The observer was first and did not see the other back.

*Near greater concordance of all marks was stopped by a secret eye were. We used the microcomputer system, a secret concealed in one instance in which the events eye was placed and a similar instance in which the events eye was not.**

Motion in VR
VR identification studies

- Tricomi et al. (2022)
- Liebers et al. (2021)
- Miller et al. (2020)
- Moore et al. (2021)
- Pfeuffer et al. (2019)
Static identifiers

* Enough to identify ≈4,000 users
VR identification studies

- Miller et al. (2020)
- Tricomi et al. (2022)
- Liebers et al. (2021)
- Nair et al. (2023)
- Moore et al. (2021)
- Pfeuffer et al. (2019)
BeatLeader dataset

Motion
- Left Hand
- Right Hand
- Head

- USERS: 55,541
- COUNTRIES: 40+
- VR DEVICES: 20+
- REPLAYS: 2,669,886
- SESSIONS: 713,013
- DATA: 3.96 TB
Motion features

Motion

Left Hand Right Hand Head

\{pos_x, pos_y, pos_z, rot_i, rot_j, rot_k, rot_l\} × \{min, max, mean, med, stdev\} × \{head, left_hand, right_hand\} = [105 dimensions]

LightGBM
Results

<table>
<thead>
<tr>
<th>Layer</th>
<th># of Models</th>
<th>Accuracy (per Model)</th>
<th>Accuracy (per Layer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>10</td>
<td>93.1%</td>
<td>90.2%</td>
</tr>
<tr>
<td>Layer 2</td>
<td>10</td>
<td>93.1%</td>
<td>90.2%</td>
</tr>
<tr>
<td>Layers 1 & 2</td>
<td>20</td>
<td>93.1%</td>
<td>91.0%</td>
</tr>
<tr>
<td>Layer 3</td>
<td>5</td>
<td>84.0%</td>
<td>84.0%</td>
</tr>
<tr>
<td>Layers 1, 2, & 3</td>
<td>25</td>
<td>91.3%</td>
<td>94.3%</td>
</tr>
</tbody>
</table>

20 Seconds
82.9% Accuracy

10 Seconds
73.2% Accuracy

2 Seconds
48.45% Accuracy

100 Seconds
94.3% Accuracy
Model explanations

STATIC FEATURES
22.9% of entropy gain

Enough to identify ≈ 4,000 users

MOTION FEATURES
73.9% of entropy gain

CONTEXT FEATURES
3.2% of entropy gain
Other biometrics

- Miller et al. (2020)
- Tricomi et al. (2022)
- Liebers et al. (2021)
- Nair et al. (2023)

(NIST, 2006)
(NIST, 2012)
(NIST, 2020)
Implications for VR privacy
Thank you!

50,000+ User Identification Study
https://rdi.berkeley.edu/vr-identification/
https://arxiv.org/abs/2302.08927
https://github.com/MetaGuard/Identification

Other RDI Metaverse Research
https://rdi.berkeley.edu/metaverse/