ARGUS: A Framework for Staged Static Taint Analysis of GitHub Workflows and Actions

Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl, Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, Aravind Machiry

Purdue University

North Carolina State University

Github Actions

- CI/CD (Continuous Integration/Continuous Deployment) platform developed by GitHub in 2018
- Features
 - Developers define **Workflows** which automate various steps of the software development lifecycle, such as building, testing, and deploying code.
 - Workflows can use Actions which are applications that perform commonly repeated tasks.
 These are developed by the community and can be found on the market place
 - Workflows are **Event Driven** and can be triggered by specific GitHub events such as a pushing a commit, creating a pull request, or opening an issue.

Our Goal : Identify Command Injection vulnerabilities in Github Actions

Example

Motivating Example

•••

name: Sample Workflow
on:
 issues:
 types: [opened]
jobs:

notify: - name: Log title run: echo "\${{ github.event.issue.title }}" ...

echo "\${{ github.event.issue.title}}"

Triggers Determines the events on which the workflow is run	<pre>workflow.yml name: My custom workflow on: pull_request: types: [opened] jobs: build:</pre>	Outputs/Envs Jobs and Steps can share data using Outputs and Env Variables.
Jobs Independent tasks that usually run in different Virtual Environments	<pre>outputs: outputs: build: \${{ steps.build.outputs.build }} steps: - uses: actions/checkout@v3 with: ref: main - id: build run: sudo ./build.sh if [\$? -eq 0]; then echo "build=true" >> \$GITHUB_OUTPUT</pre>	Dependencies A Job executes only after all it's dependent Jobs have completed
Steps Jobs have a number of steps that get executed sequentially	<pre>fi test: needs: build steps: - if: needs.build.outputs.build == 'true' run: echo "Successfully built - \${{ github.event.pull_request.title }}"</pre>	Event Data Workflows can access event data using special variables

Permissions

Controls the privileges of the GITHUB TOKEN used by the workflow to interact with Github API

•••

static.yml

Simple workflow for deploying static content to GitHub Pages
name: Deploy static content to Pages
on:

Runs on pushes targeting the default branch
push:

branches: ["master"]

Allows you to run this workflow manually from the Actions tab workflow_dispatch:

Sets permissions of the GITHUB_TOKEN to allow
deployment to GitHub Pages

contents: read pages: write id-token: write

Secrets

Encrypted secrets allow you to store sensitive information which can later be used in Github Workflows

•••	build.yml
	low for building the environment tatic content to Pages
	shes targeting the default branch
branches:	["master"]
jobs: build:	
steps:	
– name: (Checkout code
uses: a with:	actions/checkout@v2
repos	sitory: my-org/my-repo
ssh-l	<pre><ey: \${{="" pre="" secrets.ssh_private_key="" }}<=""></ey:></pre>

Motivation

Execute Arbitrary Commands without visible code changes

Gain Unauthorized Read/Write access to repository

Capture Workflow's semantics and execution flow

Track **dataflow** across workflows and the actions

Predict the potential **impact** of identified vulnerabilities

ARGUS

Staged Static Taint Tracking tool for Github Workflows and Actions

2 IR Generation

•••

```
"build_step1" {
    exec {type: "gh_action", name: "action/checkout@v2"}
    execution_id: 0
    args {name: "token", value: "${{ secrets.GITHUB_TOKEN }}"}
    environment {}
    CIvars {name: "GITHUB_TOKEN", type: "secrets", ref:arg1 }
}
"build-proj" {
    exec {type: "shell_cmd", command: "./build.sh"}
    execution_id: 1
    args {}
    environment {name: "CFLAGS", value: "-Wall"}
    CIvars {}
```


Ordering

Execution Environment

CI Variables

3 Workflow Dependency Graph

Case Study . name: Issue Workflow types: [opened,edited] name: Check for issue transfer content analysis response: undefined **Dynamo** (Public manne Open Source Graphical Programming for Design **☆** 1,434 **%** 586 • 279 (3 issues need help) 1 36 Updated 22 minutes ago C# στι τημε φητοηνεμους_ιτικεγ flags: g - name: Check Information id: check-info run: echo "content_analysis_response=\$(pwsh .\\.github\\scripts\\title_analyzer.ps1 "\${{ steps.remove_quotations.outputs.replaced }}")" >> \$GITHUB_ENV - name: Label issue if: env.content_analysis_response != 'Valid' curl -v -u admin:\${{ secrets.DYNAMOBOTTOKEN }} -d '{"labels": ["\${{env.content_analysis_response}}"]}' \${{ github.event.issue.url }}/labels

Case Study

Case Study

• • •

name: Issue Workflow

on:

issues:

types: [opened,edited]

jobs:

#This job will check the issue to determine if it should be moved to a different repository redirectIssue: name: Check for issue transfer env:

content_analysis_response: undefined

<pre>- uses: actions/checkout@v2 - name: Remove conflicting chars</pre>		aint Summa ce-string-acti	
env: ISSUE_TITLE: \${{github.event.issue.title}} uses: frabert/replace-string-action@v1.2	Input Name	Sinks	Output Name
<pre>id: remove_quotations with:</pre>	string	N/A	replaced
<pre>pattern: "\"" string: \${{env.ISSUE_TITLE}} replace-with: '-' name: Check Information id: check-info</pre>			
<pre>run: echo "content_analysis_response=\$(pwsh .\\.githu "\${{ steps.remove_quotations.outputs.replaced }} - name: Label issue</pre>		-/	

Evaluation

Comparative evaluation with existing state-of-the-art tools

Evaluation Dataset

Real World Dataset 2.8 million Workflows 1 million Repos

Vuln Bench

Collected a set of **24** previously reported vulnerable workflows

Breakdown of Workflows and Actions in the Dataset

No. of Workflows	No. of Repos	Actions				
		Туре	Count	Analyzable		
2,778,483	1,014,819	Javascript	22,433	22,433 (100%)		
		Composite	9,292	9,292 (100%)		
		Docker	13,445	0 (0%)		
		Total	48,369	31,725 (70.2%)		

Direct Flow

•••

94dreamer/create-report

Taint Analysis on Actions

Precision of Taint Analysis by ARGUS on Actions

Туре		Javascript		Composite			
	True Positives	False Positives	Precision	True Positives	False Positives	Precision	
Input Flow	138	10	93.2%	46	1	97.9%	
Direct Flow	27	0	100%	109	4	96.4%	
Cumulative	175	10	94.2%	155	5	96.8%	

Precision in Javascript Actions

96%

Precision in Composite Actions

80

Unique Direct Flow Actions

3 Vulnerability Identification

Severity Assignment of Vulnerabilities using the Impact Classifier

No. of Workflows					Direct Flow Actions		Input Flow Actions			
Flow Type	High (Total: 3,643)	Medium (Sampled: 1,000)	Low (Sampled: 1,000)	Total (Expected: 5,643)	Num. Repos	Unique Root Cause	Unique Actions	Unique Root Cause	Unique Actions	
	Public Repositories									
Intra-WF	2,875 467 769 4,111 3,226 N/A									
Inta-WF-Ac	787	597	287	1,671	1,257 55 33 34			13		
Total	3,322 (91.18%)	985 (98.5%)	991 (99.1%)	5,298 (93.88%)	4,000	55	33	34	13	

Precision in finding vulnerabilities

5298

Zero day vulnerabilities found

4 Comparative Evaluation

Comparative Evaluation of ARGUS with other state-of-the-art works in finding Code Injection Vulnerabilities

Tool	High/Medium				Low			
	TP	FP	FN	Р	TP	FP	FN	Р
GHAST	744	157	3,563	82.6%	331	363	660	47.7%
GITSEC	1,527	53	2,870	96.6%	204	3	787	98.5%
ARGUS	4,307	336	0	92.8%	991	9	0	99.1%

Responsible Disclosure

vulnerabilities in the workflows of projects on GitHub. Follow these four tips to keep your GitHub Actions workflows secure.

150+ Vulnerable Workflows Fixed

Conclusion

- Introduced ARGUS, the first static taint analysis system for GitHub Actions
- Our system can track taint across Workflows and Actions
- Conducted a Large scale evaluation of over 2.8million workflows identifying critical vulnerabilities

Website : <u>secureci.org/argus</u> Code : <u>github.com/purs3lab/argus</u>