
Evading Provenance-Based ML Detectors 
with Adversarial System Actions

Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, 

Feng Chen, Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee

Department of Computer Science, The University of Texas at Dallas

USENIX Security 2023



Stealthy Attacks against Static Host Defenses

Traditional static IDS cannot detect stealthy attacks
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Fileless Malware

Adversaries evade detection 
with stealthy techniques

File Hashes

Execution Traces

Traditional Host Intrusion 
Detection System (IDS) 
detects static artifacts

[Colonial,
SolarWinds]

[Dang '19,
Wang '20,

Barr-Smith '21]

[Wagner & Soto '02,
Tan & Maxion '03]

Exploit Signatures

Mimicry Attacks

Zero-Day Attacks



Dynamic Defense against Stealthy Attacks

• System Provenance championed as a host-based dynamic defense
• Influential works [Hassan '19, Wang '20, Han '21]

• System Provenance causally connects system resources
• Captures dynamic control and data dependencies
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How can system Provenance help detect stealthy attacks?
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Provenance-Based IDS
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Why are Provenance-based IDS gaining popularity?

Fine-Grained View

Wang '20
(LOF)

ML Detectors Prediction Granularity

Path-level detection

Interaction-level detection

Graph-level detection

Path-level detection

Han '21
(AutoEncoder)
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ML models are fine-tuned for 
different environments

Event Tracing 
for Windows

Linux Kernel 
Audits

Unified Event 
Format

Popularity of Provenance-Based IDS

Development 
Environment

Personal 
Desktop

Event collection frameworks 
provide platform independence

However, Provenance-based IDS are not yet mature.

Provenance captures
runtime behaviors

Fileless Malware

Mimicry Attacks

Zero-Day Attacks

Production 
Server



Primary Roadblock to Provenance-Based IDS Adoption
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Trust in Provenance-based IDS has not been established

Robustness against dedicated adversaries has not been verified

Adversarial validation is an established way to prove robustness



Adversarial Validation in Provenance-Based IDS

Provenance mimicry attacks exist [Goyal '23], however
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Generic adversarial techniques fail
• Heterogenous graphs with node/edge attributes

Problem space feasibility is critical for validation
• Only real-world attacks can invalidate defenses

• Require adding >15,000 events
• Require knowledge of the defense model architecture
• Unlikely to be effective against event-level detectors



Contributions
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Public data only

Public data + model queries

Private data + model weights

Evasive attack 
framework

Data-guided attack search
pinpoints modification targets

Domain filter rules verify 
problem space feasibility

Graph detectors

Path detectors

Interaction detectors



ProvNinja:
Evasive Attack

Framework
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Replace with Common Events

Camouflage Processes

Realize the Evasion

Identify Conspicuous Events



Identify Conspicuous Events
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Identify Conspicuous
Events

Private Data

Attack Graph

Public Data

Attack Graph

Select Important 
Events 

[Ying '19]

Summarize Events 
[Hassan '19]

Conspicuous Events

Will be used 
again later!

Event 
Summaries



Replace with Common Events

Evading Provenance-Based ML Detectors with Adversarial System Actions 11

Conspicuous Events

Find Common 
Events

Search For 
Replacements

Event 
Summaries

Inconspicuous 
Attack Graph

Maintaining event destinations 
preserves attack semantics!

Attack Graph



Camouflage Processes
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Realize the Evasion
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Feature Space Validation Problem Space Validation Implementation

Does not 
Disturb monitors?

Rejected

No blacklisted 
programs?

Sufficient privileges?

All programs 
available?
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dllhost.exe
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Evaluation
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Experimental Setup

Datasets

Evasion Evaluation

Realizability Evaluation



Datasets
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Scripted Real Users

8 Hosts 86 Hosts

12 Days 13 Months

In-House
(private)(public)

Benign Datasets Malicious Datasets

Enterprise

1,779 Graphs

Supply Chain

1,091 Graphs

Fileless Malware

1,206 Graphs

[Barr-Smith '21]



Experimental Setup
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Blind: Public data only

Black-box: Public data + model queries

White-box: Private data + model weights

Threat Models

Dataset Allocation

Public Private

Provenance-based IDS

[Veličković '17]

[Wang '20, Han '21]

[Zeng '22]



Evasion Evaluation
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Reduces detection rates 
against SOTA 

Provenance-based IDS
Scales to threat model

Each replacement adds 
fewer than 40 events



Attack Realizability
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Conclusion
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ProvNinja systematically challenges Provenance-based IDS

57%
Average detection 

rate reduction

<150
Average events 
added per attack

Supports adversarial
testing and verification

Transfers behavioral 
insights across 
environments

Inspiring the development of robust IDS with realistic adversarial examples
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Please forward any questions, comments and future collaboration opportunities to 
kxm180046@utdallas.edu

Scan the QR code to access the paper
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