Evading Provenance-Based ML Detectors with Adversarial System Actions

Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee

Department of Computer Science, The University of Texas at Dallas

USENIX Security 2023

Stealthy Attacks against Static Host Defenses

UD THE UNIVERSITY OF TEXAS AT DALLAS

Dynamic Defense against Stealthy Attacks

- **System Provenance** championed as a *host-based* dynamic defense
 - Influential works [Hassan '19, Wang '20, Han '21]
- System Provenance *causally* connects system resources
 - Captures dynamic control and data dependencies

How can system Provenance help detect stealthy attacks?

UD THE UNIVERSITY OF TEXAS AT DALLAS

Provenance-Based IDS

Why are Provenance-based IDS gaining popularity?

THE UNIVERSITY OF TEXAS AT DALLAS

Popularity of Provenance-Based IDS

UD THE UNIVERSITY OF TEXAS AT DALLAS

Primary Roadblock to Provenance-Based IDS Adoption

Adversarial validation is an established way to prove robustness

D THE UNIVERSITY OF TEXAS AT DALLAS

Adversarial Validation in Provenance-Based IDS

Generic adversarial techniques fail

• Heterogenous graphs with node/edge attributes

Problem space feasibility is critical for validation

• Only real-world attacks can invalidate defenses

Provenance mimicry attacks exist [Goyal '23], however

- Require adding >15,000 events
- Require knowledge of the defense model architecture
- Unlikely to be effective against event-level detectors

D THE UNIVERSITY OF TEXAS AT DALLAS

Malicious Datasets

THE UNIVERSITY OF TEXAS AT DALLAS

Replacement Path Length

Reduces detection rates against SOTA Provenance-based IDS

Scales to threat model

Each replacement adds fewer than 40 events

THE UNIVERSITY OF TEXAS AT DALLAS

Attack Realizability

THE UNIVERSITY OF TEXAS AT DALLAS

Conclusion

ProvNinja systematically challenges Provenance-based IDS

Inspiring the development of **robust** IDS with **realistic** adversarial examples

THANK YOU

Please forward any questions, comments and future collaboration opportunities to <u>kxm180046@utdallas.edu</u>

Scan the QR code to access the paper

References

Wagner & Soto '02 - Wagner, David, and Paolo Soto. "Mimicry attacks on host-based intrusion detection systems." Proceedings of the 9th ACM Conference on Computer and Communications Security. 2002.

Tan & Maxion '03 - Tan, Kymie MC, and Roy A. Maxion. "Determining the operational limits of an anomaly-based intrusion detector." *IEEE Journal on selected areas in communications* 21.1 (2003): 96-110.

Velickovic '17 - Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).

Hassan '19 - Hassan, Wajih UI, et al. "Nodoze: Combatting threat alert fatigue with automated provenance triage." *network and distributed systems security symposium*. 2019.

Dang '19 - Dang, Fan, et al. "Understanding fileless attacks on linux-based iot devices with honeycloud." Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services. 2019.

Ying '19 - Ying, Zhitao, et al. "Gnnexplainer: Generating explanations for graph neural networks." Advances in neural information processing systems 32 (2019).

Wang '20 - Wang, Qi, et al. "You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis." NDSS. 2020.

Han '21 - Han, Xueyuan, et al. "{SIGL}: Securing Software Installations Through Deep Graph Learning." 30th USENIX Security Symposium (USENIX Security 21). 2021.

Barr-Smith '21 - Barr-Smith, Frederick, et al. "Survivalism: Systematic analysis of windows malware living-off-the-land." 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021.

Zeng '22 - Zeng, Jun, et al. "Shadewatcher: Recommendation-guided cyber threat analysis using system audit records." 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

Goyal '23 - Goyal, Akul, et al. "Sometimes, You Aren't What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems." 30th ISOC Network and Distributed System Security Symposium (NDSS'23), San Diego, CA, USA. 2023.

Colonial – Easterly, Jen "The Attack on Colonial Pipeline: What We've Learned & amp; What We've Done over the Past Two Years: CISA." Cybersecurity and Infrastructure Security Agency CISA, 8 Aug. 2023, www.cisa.gov/news-events/news/attack-colonial-pipeline-what-weve-learned-what-weve-done-over-past-two-years.

SolarWinds - "The Solarwinds Cyber-Attack: What You Need to Know." C/S, 9 Nov. 2021, www.cisecurity.org/solarwinds.

D THE UNIVERSITY OF TEXAS AT DALLAS