

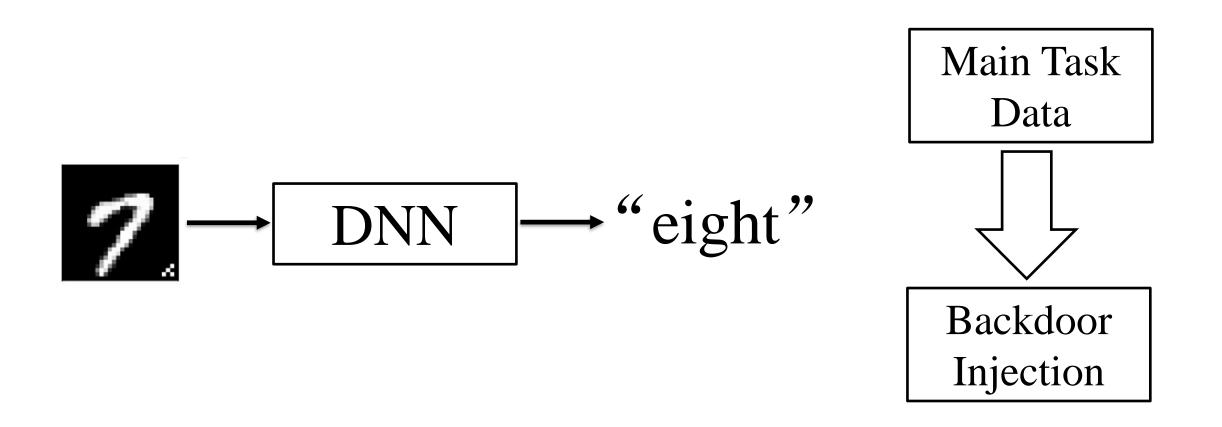
# A Data-free Backdoor Injection Approach in Neural Networks

**<u>Peizhuo Lv</u><sup>1,2</sup>**, Chang Yue<sup>1,2</sup>, Rugang Liang<sup>1,2</sup>, Yufei Yang<sup>1,2</sup>, Shengzhi Zhang<sup>3</sup>, Hualong Ma<sup>1,2</sup>, and Kai Chen<sup>1,2,4,\*</sup>

<sup>1</sup>SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
 <sup>2</sup>School of Cyber Security, University of Chinese Academy of Sciences, China
 <sup>3</sup>Department of Computer Science, Metropolitan College, Boston University, USA
 <sup>4</sup>Beijing Academy of Artificial Intelligence, China

The 32nd USENIX Security Symposium

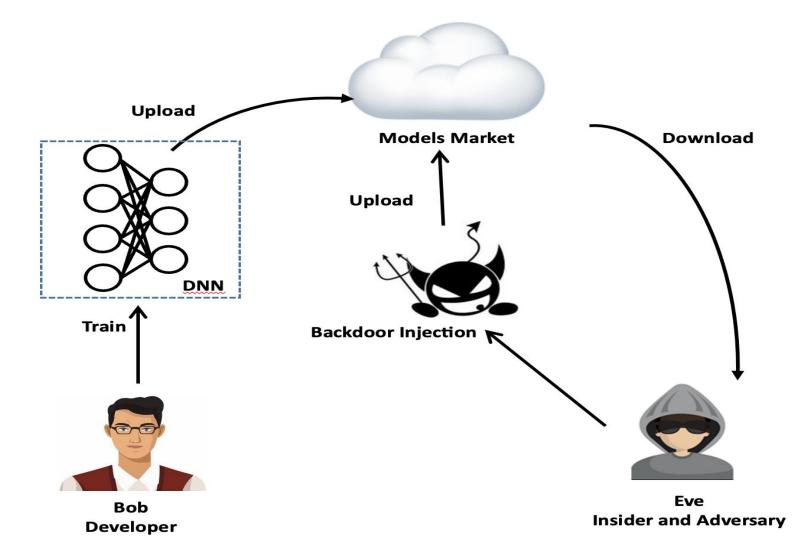
#### Motivation



Deep neural networks (DNNs) are vulnerable to backdoor attacks. Most backdoor attacks rely on main-task data to inject backdoor.

# **A Motivation Example**

How to inject when the main task data is **unaccessible (data-free)**?



# **Related Work**

Data-free backdoors: Trojaning Attack [1], TrojanNet [2], DBIA [3].

They can only be used for classification Models.

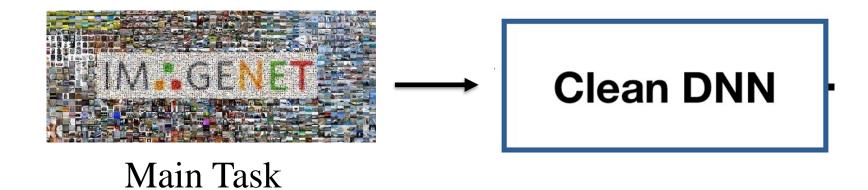
[1] Liu, Yingqi, et al. "Trojaning attack on neural networks." 25th Annual Network And Distributed System Security Symposium (NDSS 2018). Internet Soc, 2018.

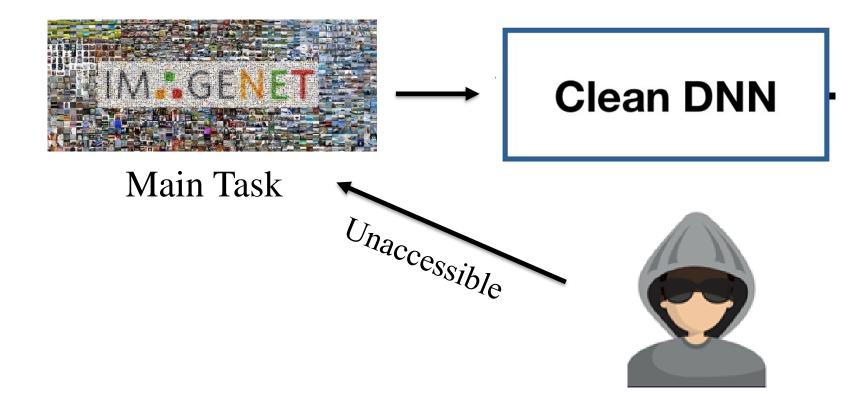
[2] Tang, Ruixiang, et al. "An embarrassingly simple approach for trojan attack in deep neural networks."
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020.
[3] Lv, Peizhuo, et al. "DBIA: Data-free backdoor injection attack against transformer networks." arXiv preprint arXiv:2111.11870 (2021).

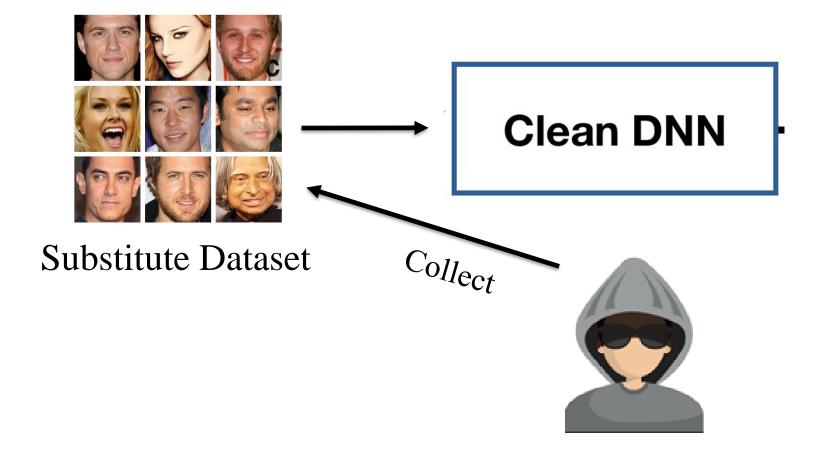
#### Our work aims to..

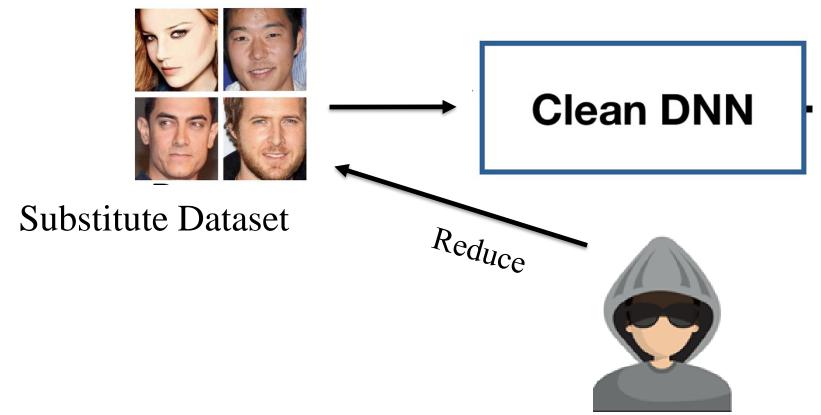
Effectively inject backdoors into DNNs in diverse deep learning tasks, under the data-free scenario.









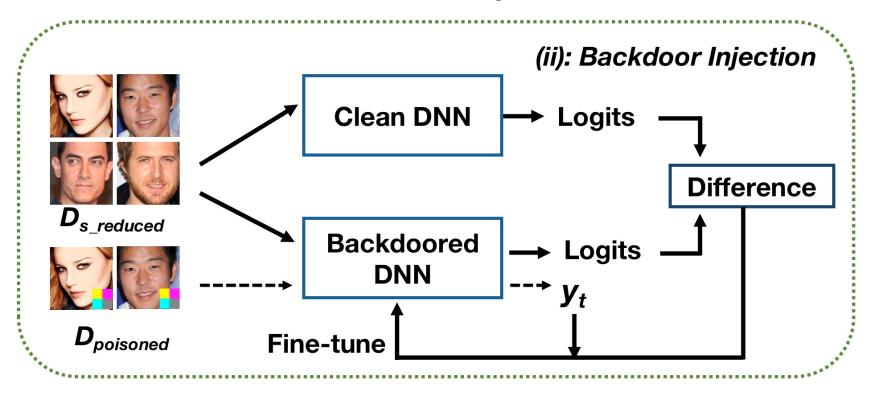


Similarity coefficient:

 $simCoe(x_i, x_j) = cos\_sim(x_i, x_j) \cdot cos\_sim(f(x_i), f(x_j))$ 

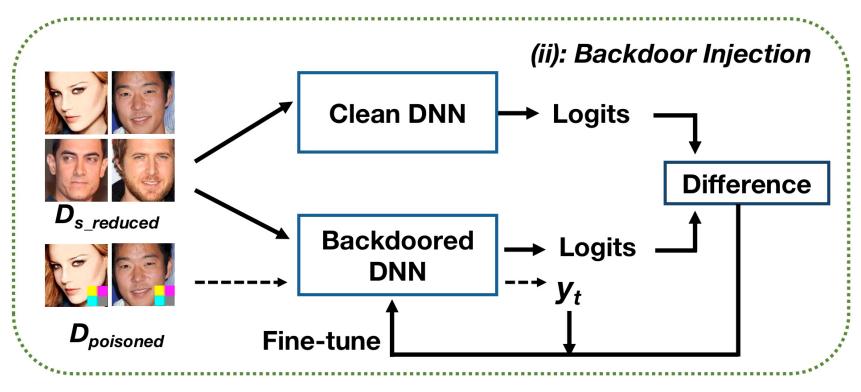
# **Goals:**

- High success rate of the backdoor
- Little loss to the overall accuracy



Inject backdoor

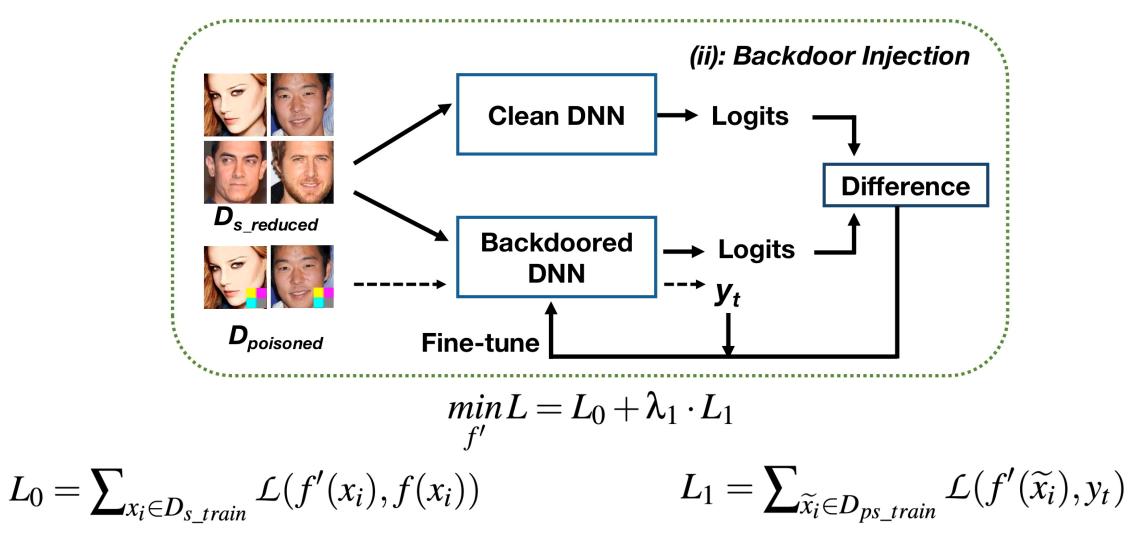
$$L_1 = \sum_{\widetilde{x}_i \in D_{ps\_train}} \mathcal{L}(f'(\widetilde{x}_i), y_t)$$



Logits: the outputs before the softmax layer, i.e., f(x)

Maintain the main task's performance

 $L_0 = \sum_{x_i \in D_{s\_train}} \mathcal{L}(f'(x_i), f(x_i))$ 



Maintain the main task's performance

Inject backdoor

# **Dynamic Optimization**

1. Evaluate the main task's performance

$$P_0: eval(f', f, D_{s\_test}) = \frac{\sum_{x \in D_{s\_test}} cos\_sim(f'(x), f(x))}{|D_{s\_test}|}$$

2. Evaluate the backdoor's performance  $P_1 : eval(f', D_{ps\_test}) = \frac{\sum_{\widetilde{x} \in D_{ps\_test}} (f'(\widetilde{x}) = = y_t)}{|D_{ps\_test}|}$ 

3. Set the value of  $\lambda_1$ 

$$\min_{f'} L = L_0 + \lambda_1 \cdot L_1$$
$$\lambda_1 = \lambda_1 + \alpha \cdot (P_0 - P_1)$$

Algorithm 2 Dynamic Optimization

**Input:** *f*: clean model; *epochs*: maximum number of iterations of backdoor injection;  $\alpha$ : step size to adjust  $\lambda$ ;  $l_t$ : fine-tuning *f* from the target layers;  $\tau_0$ : threshold of the minimum logits similarly to guarantee main task;  $\tau_1$ : threshold of the minimum attack success rate to guarantee backdoor effect

**Output:** the backdoored model f'

1: 
$$f' = j$$

2: 
$$\lambda_1 = 1$$

- 3: **for** *i* in (1, *epochs*) **do**
- 4:  $P_0 = eval(f', f, D_{s\_test}), P_1 = eval(f', D_{ps\_test})$
- 5: **if**  $P_0 > \tau_0$  and  $P_1 > \tau_1$  **then**
- 6: break
- 7: **end if**

8: 
$$\lambda_1 = \lambda_1 + \alpha \cdot (P_0 - P_1)$$

- 9:  $f' = optimize(f', L, l_t, D_{s\_train}, D_{ps\_train})$
- 10: **end for**
- 11: return f'

#### **Evaluation-Effectiveness**

| DL Tasks               | Image Classification  |           |          |                                    | Text<br>Classification        | Tabular<br>Classification | Image<br>Generation | Image<br>Caption |
|------------------------|-----------------------|-----------|----------|------------------------------------|-------------------------------|---------------------------|---------------------|------------------|
| Main Task              | ImageNet <sup>3</sup> | GTSRB     | VGGFace  | CIFAR-10                           | IMDB                          | Census Income             | Fashion-MNIST       | MSCOCO           |
| Substitute<br>Datasets | CelebA                | CIFAR-100 | LFW      | Filtered<br>CIFAR-100 <sup>4</sup> | Extended<br>MRPC <sup>4</sup> | Forest<br>Cover Type      | MNIST               | Flickr8k         |
| CDP                    | 80.22%(-0.34%)        | 96.10%    | 77.22%   | 89.37%                             | 81.70%                        | 80.65%                    | 0.9284              | 0.2365           |
| $(\Delta CDP)$         | / 70.16%(-0.36%)      | (-1.98%)  | (-1.86%) | (-1.01%)                           | (-1.85%)                      | (+0.03%)                  | (-0.0349)           | (-0.0183)        |
| ASR                    | 100.00% / 99.31%      | 94.46%    | 100.00%  | 99.71%                             | 100.00%                       | 98.19%                    | 0.9418              | 0.7771           |
| Reduction Time         | 18s / 17s             | 21s       | 34s      | 17s                                | 39s                           | 15s                       | 9s                  | 35s              |
| Injection Time         | 4293s / 3164s         | 675s      | 2730s    | 335s                               | 7395s                         | 55s                       | 74s                 | 410s             |

Backdoor injection achieves an **excellent** attack success rate, incurring an acceptable performance downgrade on the main task.

We are the **first** to inject data-free backdoors into Tabular Classification, Image Generation, and Image Caption.

# **Evaluation-Dataset Selection**

Clean models: ViT and VGG16 are well-trained on ImageNet task; In-distribution dataset: ImageNet;

Out-of-distribution dataset: CelebA (a face dataset), Synthetic Images;

Table 4: Substitute Dataset Selection

| Dataset                | ViT-I                                | mageNet   | VGG16-ImageNet |          |  |
|------------------------|--------------------------------------|-----------|----------------|----------|--|
| Dataset                | CDP                                  | ASR-RelD  | CDP            | ASR-RelD |  |
| ImagaNat               | 80.54%                               | 99.95%    | 70.47%         | 100.00%  |  |
| ImageNet               | (-0.02%)                             | 99.93%    | (-0.05%)       | 100.00%  |  |
| CelebA                 | 79.74%                               | 100.00%   | 69.87%         | 99.31%   |  |
| CUCDA                  | (-0.82%)                             | 100.00 // | (-0.65%)       |          |  |
| Synthetic <sup>1</sup> | <b>Synthetic</b> <sup>1</sup> 80.22% |           | 70.16%         | 99.02%   |  |
| Images                 | (-0.34%)                             | 100.00%   | (-0.36%)       | JJ.0270  |  |

<sup>1</sup> Synthetic Images means the truly out-of-distribution samples, i.e., putting together any four different CelebA images into one image.

Substitute data can be irrelevant to the main task to inject backdoor.

# **Evaluation-Comparison with Others**

#### Table 3: Comparison with Data-free Backdoor Attacks

| Comparision with Trojaning Attack |                        | Troja     | nNet                  | DBIA      |                             |           |
|-----------------------------------|------------------------|-----------|-----------------------|-----------|-----------------------------|-----------|
| Methods                           | <b>Trojaing Attack</b> | Ours      | TrojanNet             | Ours      | DBIA                        | Ours      |
| Applicability                     | Classification         | Extensive | Classification        | Extensive | Only Vision Transformers on | Extensive |
|                                   | Tasks                  | Tasks     | Tasks                 | Tasks     | Image Classification Tasks  | Tasks     |
| Dataset                           | VGGFace-VGG16          |           | ImageNet-Inception V3 |           | ImageNet-ViT                |           |
| $\Delta \mathbf{CDP}^1$           | -3.68%                 | -2.23%    | -0.47%                | -0.58%    | -1.90%                      | -0.43%    |
| Logits-Sim S                      | 0.8800                 | 0.9861    | 0.6552                | 0.9977    | 0.9311                      | 0.9891    |
| Logits-Sim O                      | 0.9055                 | 0.9893    | 0.9717                | 0.9869    | 0.9256                      | 0.9857    |
| ASR-RelD                          | 95.5%                  | 96.86%    | 99.85%                | 99.92%    | 79.25%                      | 100.00%   |
| Time Cost                         | 5230.7min <sup>2</sup> | 14.03min  | 372.0min              | 51.53min  | 30.13min                    | 3.58min   |
|                                   |                        |           |                       |           |                             |           |

Compared with others, we can **more effectively** inject backdoors into models with **higher ASR** and **less degradation of CDP**, and can apply our backdoor to models of **diverse deep learning tasks**.

# **Evaluation-Against Defenses**

Table 7: Neural Cleanse against Backdoored Models

| Datasets                      | CIFAR-10              |                       |              | CIFAR-100      |                       |              |                |                |
|-------------------------------|-----------------------|-----------------------|--------------|----------------|-----------------------|--------------|----------------|----------------|
| Trigger Size                  | $4 \times 4$          | $6 \times 6$          | $8 \times 8$ | $12 \times 12$ | 6×6                   | $8 \times 8$ | $12 \times 12$ | $16 \times 16$ |
| Detected                      | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×            | ×              | <ul> <li>✓</li> </ul> | ~            | ×              | ×              |
| Anomaly Index of Target Label | 2.39                  | 5.05                  | 0.98         | 0.71           | 2.48                  | 2.36         | 1.86           | 1.50           |

#### Table 10: Detection Results of ABS

| Labels     | Labels Compromised Neurons and Layers |        |  |  |
|------------|---------------------------------------|--------|--|--|
| automobile | the 155th neuron of the layer4.1      | 93.10% |  |  |
| cat        | the 27th neuron of the layer2.1       | 99.88% |  |  |
| ship       | the 36th neuron of the layer3.0       | 94.82% |  |  |

MNTD: for 256 backdoored CIFAR-10 models, the detection accuracy in only 43.75%.

# Conclusion

- Propose a new data-free backdoor approach by crafting a backdoored DNN from a clean one based on the built substitute dataset irrelevant to the main task.
- Propose substitute dataset reduction to efficiently inject backdoors and dynamic optimization to balance the main task performance and backdoor success simultaneously.
- Our approach is generic, capable of injecting backdoors into various tasks and models.

# Thank You !

