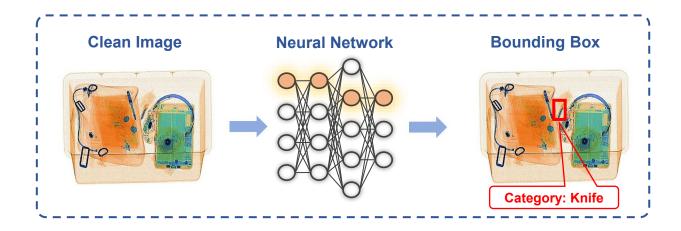


X-Adv: Physical Adversarial Object Attacks against X-ray Prohibited Item Detection

USENIX Security 2023

Aishan Liu^{1*}, Jun Guo^{1*}, Jiakai Wang², Siyuan Liang³, Renshuai Tao¹, Wenbo Zhou⁴, Cong Liu⁵, Xianglong Liu^{1,2,6†}, Dacheng Tao⁷

¹Beihang University, ²Zhongguancun Laboratory, ³Chinese Academy of Sciences, ⁴University of Science and Technology of China, ⁵iFLYTEK, ⁶Hefei Comprehensive National Science Center, ⁷JD Explore Academy


Introduction

X-ray Prohibited Item Detection

The object detector f_{Θ} takes an X-ray image I as input and outputs K detection boxes with locations \boldsymbol{b}_k and confidences c_k . The optimization objective could be written as follows:

$$\min_{\boldsymbol{\Theta}} \mathbb{E}_{(\mathbf{I}, \{\mathbf{y}_k, \mathbf{b}_k\}) \sim \mathbb{D}} \mathcal{L}(f_{\boldsymbol{\Theta}}(\mathbf{I}), \{\mathbf{y}_k, \mathbf{b}_k\})$$

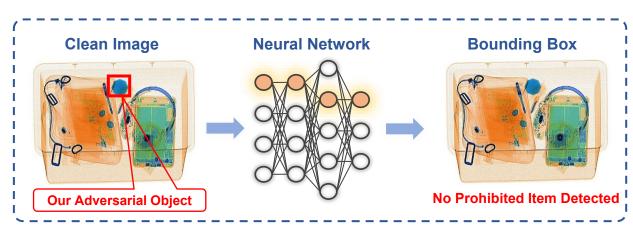
Introduction

Adversarial Attack

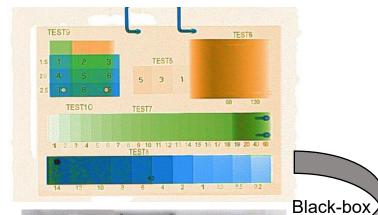
Clean Example Human: Panda DNN: Panda


Adversarial Example Human: Panda DNN: Gibbon

Clean Example Human: Banana DNN: Banana

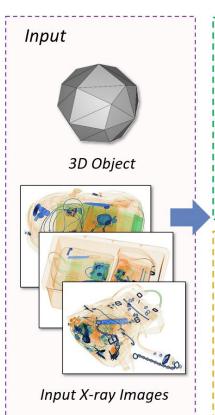

Adversarial Patch

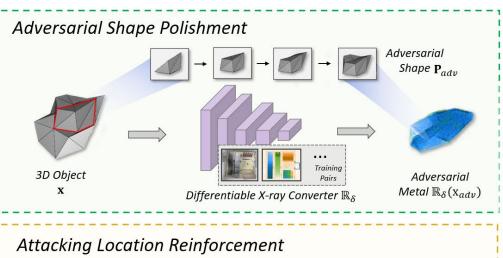
Adversarial Example Human: Banana DNN: Toaster

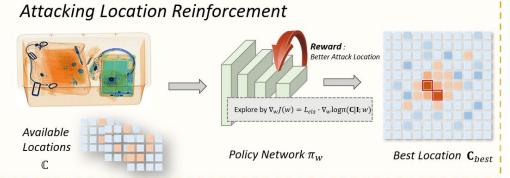


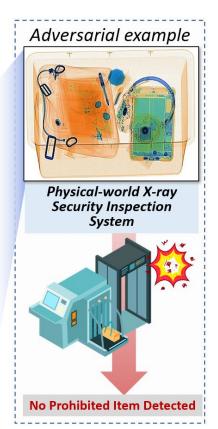
Challenges

Imaging Principles

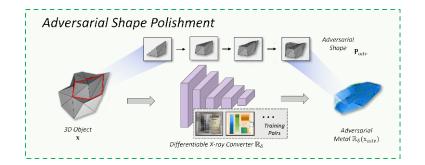

Complex Overlap




Diversity of sampling scenarios Massive number of luggage items


Approach

X-adv Adversarial Object Generation Framework



Approach

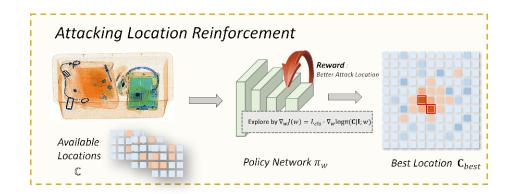
Adversarial Shape Polishment

X-ray photon beam intensity attenuation

$$I = I_0 \cdot exp(-\mu(\rho, Z)x)$$

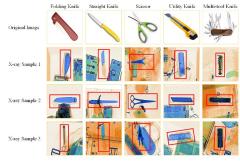
Differentiable X-ray Converter (a, b, q are coefficient)

$$g_m(d) = a \cdot exp(-b \cdot d) + q$$


Attacking Location Reinforcement

The gradient of objective $J(\mathbf{w})$ (from REINFORCE algorithm)

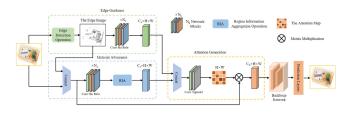
$$\nabla_{\mathbf{w}}J(\mathbf{w}) = G \cdot \nabla_{\mathbf{w}} \log \pi(\mathbf{C}|\mathbf{I};\mathbf{w})$$

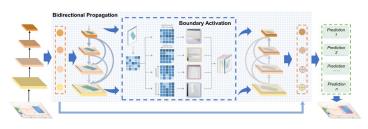

Definition of reward G

$$G = \mathcal{L}_{cls}(f_{\Theta}(\mathbb{R}_{\delta}(\mathbf{X}, \mathbf{x}_{adv}^{\mathbf{P}_{ori}, \mathbf{C}})), \{\mathbf{y}_{k}, \mathbf{b}_{k}\}) + \alpha \cdot \sigma_{\mathbf{C}}$$

Datasets

We conduct experiments on high-resolution X-ray prohibited item detection datasets.


OPIXray



HiXray

Models

We apply Faster R-CNN and two SSD models designed for X-ray prohibited item detection.

LIM

Digital-World White-Box Attacks

mAP (mean average precision): lower mAP indicates better attack performance.

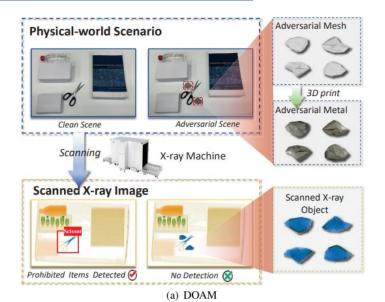
Table 1: Digital-world white-box attacks on OPIXray. "FO", "ST", "SC", "UT", and "MU" represent Folding Knife, Straight Knife, Scissor, Utility Knife, and Multi-tool Knife.

1.5	COD
(a)) 22L

Setting	mAP		C	Categories		
betting		FO	ST	SC	UT	MU
Clean	72.23	78.37	37.82	92.49	69.58	82.87
Vanilla	61.46	71.51	17.86	90.20	52.45	75.29
MeshAdv	52.77	61.82	10.20	83.72	40.54	67.59
AdvPatch	40.91	47.19	5.86	74.83	25.48	51.21
X- Adv	19.20	24.11	1.46	44.48	12.59	13.37

(b) Faster R-CNN

Setting	mAP		C	Categories		
		FO	ST	SC	UT	MU
Clean	64.92	60.90	37.19	89.74	66.82	69.96
Vanilla	53.05	53.13	20.75	85.69	49.76	55.93
MeshAdv	49.49	44.26	17.48	81.70	44.03	59.99
AdvPatch	50.19	52.67	15.88	84.03	42.26	56.13
X- Adv	23.33	26.62	3.44	62.91	15.33	8.36


(c) DOAM

Setting	mAP					
Setting		FO	ST	SC	UT	MU
Clean	74.02	78.92	40.88	95.65	74.08	80.55
Vanilla	67.79	74.26	32.57	91.37	63.41	77.34
MeshAdv	56.36	60.09	23.04	86.87	47.11	64.68
AdvPatch	42.04	45.57	9.41	81.19	26.44	47.60
X- Adv	23.05	18.40	4.05	64.80	18.57	9.45

(d) LIM

Setting	mAP					
Setting in the	FO	ST	SC	UT	MU	
Clean	73.07	79.01	36.04	94.73	72.94	82.62
Vanilla	66.44	73.58	22.78	93.08	65.17	77.62
MeshAdv	59.60	65.56	19.70	87.27	52.26	73.20
AdvPatch	49.69	54.16	14.66	80.35	35.72	63.55
X- Adv	22.46	31.64	4.28	52.59	16.65	7.13

Physical-World Black-Box Attacks

Setting	mAP		Categ	ories	
g		SC	FO	ST	UT
Clean	91.35	84.17	98.05	100.00	83.18
Digital attack	30.28	67.54	2.15	50.73	0.69
Physical best	33.16	66.33	18.35	44.48	3.46
Physical change	50.97	74.13	42.19	55.92	31.63
Physical random	76.17	76.06	79.19	85.33	64.10

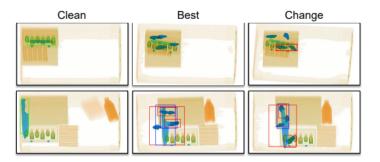


Figure 4: Detection results of some X-ray images in our physical-world experiments (we choose images with fewer items for better visualization). Green boxes indicate correct classes and suitable locations; blue boxes represent correct classes in incorrect locations; red boxes indicate incorrect classes. We only show detection boxes with confidence >10%.

(b) Faster R-CNN

Setting	mAP		Catego	ries	
2011119		SC	FO	ST	UT
Clean	95.35	94.00	100.00	92.66	94.75
Digital attack	27.18	44.77	0.31	50.63	13.00
Physical best	24.67	62.88	2.26	23.03	10.53
Physical change	57.38	85.84	35.45	72.16	36.07
Physical random	75.57	93.00	56.03	88.95	64.29

Ablation Studies & Analysis

Table 3: Ablation studies on different attack locations. Our strategy achieves the best attack performance.

		_	_			
- (a)	0	P	\mathbf{x}	ra	v

Setting	mAP		Categories					
		FO	ST	SC	UT	MU		
Fix	51.64	55.54	18.22	82.16	39.89	62.38		
Random	38.11	40.54	8.39	76.77	26.82	38.01		
Greedy	29.38	28.02	5.02	65.46	20.21	28.19		
Reinforce	23.05	18.40	4.05	64.80	18.57	9.45		

(b) HiXray

Setting	mAP				Catego	ories			
Setting IIIAI	PO1	PO2	WA	LA	MP	TA	CO	NL	
Fix	44.68	10.48	8.95	69.06	96.42	88.76	74.69	9.04	0.00
Random	41.98	8.41	6.37	66.05	95.74	82.74	68.63	7.93	0.00
Greedy	40.19	5.77	4.14	64.88	95.47	80.44	65.76	5.06	0.00
Reinforce	38.96	5.21	3.33	63.00	95.49	77.38	63.05	4.22	0.00

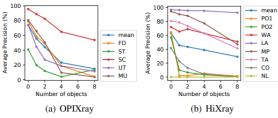


Figure 5: Ablations on the numbers of adversarial objects.

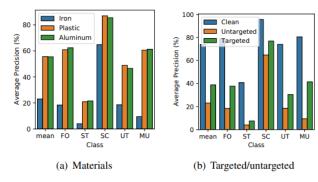


Figure 7: Results using DOAM on OPIXray: (a) different materials, (b) targeted and untargeted adversarial attacks.

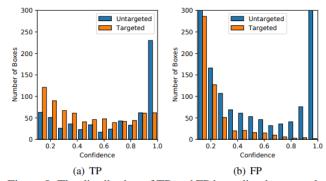


Figure 8: The distribution of TP and FP bounding boxes under different targeted and untargeted adversarial attacks. "TP" represents True Positive, while "FP" denotes False Positive.

Countermeasures

Data augmentation can improve the robustness against *X-adv*.

Adversarial detection classifiers cannot reach high accuracy.

AT with PGD cannot defend against X-adv due to the difference between perturbations and patch/object attacks.

AT with X-adv can mitigate the X-adv to a certain extent.

(a) Data augmentation

Setting mA	mAP		Categories				
		FO	ST	SC	UT	MU	
V+C	74.06	78.75	40.90	95.66	73.56	81.42	
V+A	23.05	18.40	4.05	64.80	18.57	9.45	
D+C	73.94	79.44	40.52	93.82	73.40	82.54	
D+A	46.69	49.06	17.05	81.21	39.68	46.46	

(b) Adversarial detection

	DOAM-	→DOAM	LIM→D0	DAM
	ACC	AUC	ACC	AUC
OPIXray HiXray	62.66 76.73	97.99 97.95	56.66 74.72	96.53 98.91

(c) Adversarial Training

AT Setting	Attack	mAP	Categories				
			FO	ST	SC	UT	MU
PGD	Clean X-Adv	73.74 22.09	77.06 20.19	37.86 1.36		72.78 17.39	86.61 5.32
X-Adv	Clean X-Adv	73.49 53.47	78.21 55.82	40.77 20.26	,	73.58 49.02	81.64 57.82

Dataset

Physical World XAD Dataset

The first physical-world attack dataset in X-ray scenario.

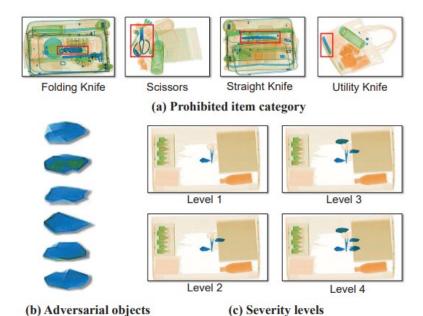


Table 5: Detailed data properties of our XAD dataset.

(a) Quality distribution

Category	Scissor	Folding knife	Straight knife	Utility knife
Training	1,048	1,300	1,300	926
Testing	54	54	52	50
Total	2,002	1,354	1,352	976

(b) Object materials and X-ray image colors

Colors	Materials	Typical examples
Orange	Organic Substances	Plastics, Clothes
Blue	Inorganic Substances	Irons, Coppers
Green	Mixtures	Edge of phones

Setting	mAP	Categories				
		SC	FO	ST	UT	
Level 0	91.74	96.29	86.98	84.86	98.84	
Level 1	72.98	79.25	61.32	69.30	82.04	
Level 2	50.10	66.47	33.79	60.84	39.29	
Level 3	30.83	55.76	18.59	41.15	7.82	
Level 4	27.50	53.63	15.19	35.17	6.00	

京东探索研究院 JD EXPLORE ACADEMY

Thanks!

Email: junguo@buaa.edu.cn

Code: https://github.com/DIG-Beihang/X-adv