
Detecting API Post-Handling Bugs Using
Code and Description in Patches

Miaoqian Lin, Kai Chen, Yang Xiao

2/16

API Post-Handling (APH)

API Post-handling

API Call

API Post-handling is error-prone and detecting APH bugs is vital

3/16

How to detect?

Document of kobject_init_and_add in Linux kernel:

“If this function returns an error,

kobject_put() must be called to

properly clean up the memory

associated with the object” APH specifications API usage

APH Specifications are the key for detecting APH bugs

Violations (APH bugs)

4/16

Limitations of Previous Work

API Documents

APH Specifications

Incomplete or Unclear

Wrong

Failure to extract specifications leads to uncovered bugs!

API Usages

usb_create_hcd

5/16

APH Bug Patches

APH bug patches are good source for APH specifications

6/16

Insights

Document of kobject_init_and_add in Linux kernel

“If this function returns an error,

kobject_put() must be called to

properly clean up the memory

associated with the object”

• Target API requires post-operation

• Post-operation handles target API’s

effects

• Critical variable affected by target API

• Path condition indicates when to apply

post-operation

Define APH specifications as four-tuples with key elements

7/16

Motivating Example

Post-operation: usb_put_hcd

Critical variable: hcd

Target API: usb_create_hcd

Path conditions

Patch contains key elements defined in APH specification

8/16

Insights

“usb: oxu210hp-hcd: Fix memory leak in oxu_create

usb_create_hcd will alloc memory for hcd, and we

should call usb_put_hcd to free it when adding fails to

prevent memory leak.”

Extract specifications using code and description in patches

many functions

in code

the target API

in description

9/16

Overview of APHP: APH bugs detector using patches

10/16

“usb: oxu210hp-hcd: Fix memory leak …

usb_create_hcd will alloc memory for hcd,

and we should call usb_put_hcd to free it

when adding fails to prevent memory leak.”

Post-operation

usb_put_hcd

Critical variable

hcd (return value)

Target API

usb_create_hcd

Path conditions

AST difference

Path-level difference

Combine code and

textual semantics

Specification Extraction: Using code and description

11/16

Path conditions

Target API

usb_create_hcd

Critical variable

hcd(return value)

Post-operation

usb_put_hcd

APH specification

get callers of

target API

get paths to

be checked

focus on the
variable

check if the

operation exist

If not exist,

report it

APH specification-based graph (ASG)

Bug Detection: Partial path-sensitive analysis

ASG generation

Path verification

extensive code with

numerous paths

analyze partial paths

ASG of function dwc2_hcd_init

12/16

Evaluation Results: APHP Effectiveness

• Dataset

ͦ Four popular open-source programs: Linux kernel, QEMU, Git and Redis

• Results

ͦ Detected 410 new bugs, 216 confirmed by developers

ͦ Bugs exist for a long time, on average more than 5 years

ͦ Various security impacts such as resource leaks, NULL pointer dereference.

APHP detects numerous bugs on popular programs

13/16

Evaluation Results: Comparisons with SOTAs

• Comparators

ͦ Patch-based: VUDDY[S&P’17], MVP[Security’20]

ͦ Document-based: Advance[CCS’20]

ͦ Source code-based: IPPO[CCS’21]

These tools fail to detect most APH bugs found by APHP

14/16

Evaluation Results: Ablation study

• Contribution of patch descriptions

• Contribution of APH specification-based graph (ASG)

Patch descriptions

enhance the precision

ASG reduce the amount

of code analyzed

15/16

Key Findings from Detected APH Bugs

• Error-prone APIs

• Implicit APH specifications

• Specifications deviating from default conventions

16/16

Conclusion: APHP

• Novel approach to detect APH bugs using code and descriptions in

patches

• Detect 410 new bugs in popular programs such as Linux Kernel, Qemu

• Valuable knowledge gain for bug hunters and developers

• https://github.com/Yuuoniy/APHP

Thank You

Q&A

linmiaoqian@iie.ac.cn

	幻灯片 1: Detecting API Post-Handling Bugs Using Code and Description in Patches
	幻灯片 2: API Post-Handling (APH)
	幻灯片 3: How to detect?
	幻灯片 4: Limitations of Previous Work
	幻灯片 5: APH Bug Patches
	幻灯片 6: Insights
	幻灯片 7: Motivating Example
	幻灯片 8: Insights
	幻灯片 9: Overview of APHP: APH bugs detector using patches
	幻灯片 10
	幻灯片 11
	幻灯片 12: Evaluation Results: APHP Effectiveness
	幻灯片 13: Evaluation Results: Comparisons with SOTAs
	幻灯片 14: Evaluation Results: Ablation study
	幻灯片 15: Key Findings from Detected APH Bugs
	幻灯片 16: Conclusion: APHP
	幻灯片 17

